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ABSTRACT This paper presents a novel offloading technique designed to enhance the efficiency of Internet
of Things (IoT) applications within a sophisticated three-layer architecture situated in a fog computing
environment. The [oT layer contains various intelligent IoT devices that generate a large number of
tasks, each characterized by distinct specifications such as size, computational demand, communication
requirements, and latency constraints. owing to the limited storage and computing capacity of resource-
constrained IoT devices, it is essential to offload these tasks to different layers to ensure effective processing
while satisfying the required Quality of Service (QoS) goals. To address this challenge, a fuzzy logic-
based task scheduler is employed to make informed offloading decisions, considering task attributes and
determining the most suitable processing layers—whether locally at the IoT layer, on collaborative fog
nodes, or in the cloud. Furthermore, the study leverages the Deep Q Network (DQN) method, a form
of deep reinforcement learning, to identify the optimal fog node for offloading tasks and to maintain
a balanced workload distribution across collaborative fog nodes. The experimental findings demonstrate
that the proposed scheme outperforms state-of-the-art solutions in terms of latency, power consumption,
network usage, throughput, and offloading rate in comparison with the Non-offload, First-Fit, GASDEO,
and NAFITO-FLA methods.

INDEX TERMS Offloading, fuzzy logic, deep reinforcement learning, DQN, IoT applications, fog
computing.

I. INTRODUCTION

The development of Internet of Things (IoT) technology has
resulted in the emergence of various time-sensitive IoT appli-
cations, such as autonomous vehicles [1], augmented reality,
and smart healthcare [2], [3]. These applications require
significant computational resources with low latency for real-
time processing, resulting in high energy consumption for
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resource-limited IoT devices. The fog computing paradigm
has emerged as a viable alternative to overcome the
resource constraints and intensive computing demands of IoT
devices [4], [5].

Fog computing brings cloud-like services to the network
edge to enhance the performance of IoT applications in
terms of resource utilization, energy usage, service delay, and
workload balancing [6]. With fog computing, time-sensitive
data can be processed at the network edge or near the data
source, minimizing the amount of data sent to the cloud [7],
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[8]. This not only optimizes the use of computational
resources but also ensures that smart applications satisfy their
time-sensitive requirements [9].

However, the implementation fog computing presents fur-
ther challenges, and user task offloading is considered a major
hurdle. The research in [10] and [11] comprehensively covers
all issues related to offloading in fog computing, including
decisions regarding whether tasks should be executed locally
or transmitted to the cloud or fog. An additional challenge
involves the distribution of the workload across various
heterogeneous fog devices with different resources and
computational capacities. The increasing number of requests
exacerbates this challenge, potentially resulting in longer
task queues for more powerful fog nodes. The extended
waiting time within these queues may exceed the latency
requirements of the time-sensitive applications.

In addition, many single-fog computing systems cannot
effectively manage resource-intensive tasks owing to a lack of
available resources, inadequate processing capacities, or the
dynamic nature of task demands. Consequently, vertical
offloading is employed to transfer the task to a remote
cloud server when the processing demands of a task surpass
the capabilities of fog platforms. Alternatively, horizontal
offloading is another viable option, involving the allocation
of user tasks to the most suitable surrogate fog nodes [12].

To address the aforementioned challenges, it is essential
to have a task scheduler that identifies which tasks will
be executed by the local, fog, or cloud layers to meet
the targeted objectives of IoT applications [13], [14].
Moreover, effective resource allocation becomes vital in
this situation, ensuring the distribution of user tasks among
different fog nodes while satisfying diverse quality of service
requirements [15]. Accordingly, this study introduces a novel
task offloading strategy based on task scheduling and load
balancing to enhance the performance of IoT applications
within a three-layer architecture in a fog-cloud computing
environment. Initially, IoT devices generate a large number
of heterogeneous tasks. Due to the limited storage and
computational capabilities of IoT devices, these tasks must
be transferred into different layers for effective processing.
To achieve this, a fuzzy logic strategy is implemented, which
serves as a task scheduler to select the target processing layers
(e.g., locally at the IoT layer, collaborative fog node, or cloud)
while considering the different characteristics of each
task.

In the process of task offloading, if a fog node in a fog layer
is unable to handle a task because of processing requirements,
the system checks whether the task can be sent to a different
fog node within the same cluster. The task is redirected to
the alternative fog node if the response is positive; otherwise,
it is moved to the cloud layer. This mechanism ensures
that when a task is assigned to one fog node in a cluster
during task placement, other nodes within that cluster can
also serve the task if necessary. This approach results in
reduced energy consumption and latency because it provides
quick access to the task within the same cluster without
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relying on cloud access. Furthermore, this leads to increased
task allocation to the fog layer during implementation,
thereby reducing the number of requests directed to the cloud
layer and consequently lowering the energy consumption
of the layer. To achieve this, the implementation involves
employing a DQN algorithm, which identifies the optimal
fog node for offloading user tasks and ensures a balanced
load distribution among collaborative fog nodes within each
cluster.

The proposed scheme considers several important aspects
of the implementation of a novel offloading strategy. These
aspects include: a) making optimal decisions on whether to
offload tasks locally or remotely, b) selecting the most suit-
able fog nodes, c) inter-fog collaboration, d) heterogeneity of
task and computational nodes, and e) the capable distribution
load among computational nodes. In this regard, extensive
simulation results are provided to demonstrate the efficiency
of the proposed mechanism. The primary contributions of this
study are as follows.

o Implement a novel offloading strategy to enhance
the performance of latency-sensitive applications
within the three-layer architecture of a fog-cloud
environment.

o The proposed strategy considers several important
aspects, such as making optimal decisions on whether
to offload tasks locally or remotely, selecting the most
suitable fog node, encouraging inter-fog collaboration,
addressing the heterogeneity of task requirements and
computational nodes, implementing task scheduling,
and facilitating load-sharing.

o The fuzzy logic strategy was implemented as a task
scheduler to determine the target processing layers
for heterogeneous tasks generated from IoT devices,
considering the different characteristics of each task.
(e.g., local fog node, collaborative fog nodes, and cloud)

o Presented a Deep Q learning (DQN) method to deter-
mine the most suitable fog node for offloading user
tasks and ensure balanced load distribution among
collaborative fog nodes within each cluster.

« Finally, we assessed the effectiveness of the proposed
offloading schema using an iFogSim simulator. The
experimental results demonstrate that the proposed
scheme outperforms the other approaches in terms of
latency, power consumption, network usage throughput,
and offloading rate.

The rest of the paper is structured as follows. Section II
discusses the current state-of-the-art task offloading strate-
gies for fog computing. Section III outlines the proposed
novel offloading strategy, focusing on task scheduling and
load balancing within a three-layered fog-cloud computing
architecture. The algorithms employed in the proposed
architecture are described in Section I'V. Section V evaluates
the performance of the proposed offloading schema by
comparing it with benchmark schemes. Finally, Section VI
concludes the study and outlines potential future research
directions.
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Il. RELATED WORK

Task offloading is a well-established concept widely used in
cloud computing. Offloading involves transferring tasks from
resource-constrained IoT devices to another resource-rich
device in order to improve the performance of time-critical
IoT applications. Devices belonging to users are strategically
positioned at the network’s edge, facilitating the offloading
of computationally intensive tasks to fog and cloud nodes
through 4G/5G or Wireless Local Area Networks (WLAN)
Networks. In instances where a single fog node is inadequate
to handle ever-increasing workloads, additional fog or
cloud nodes are available to assist in handling such tasks.
This practical solution effectively supports IoT applications
by sending computationally intensive tasks to resource-
rich servers within the fog-cloud system. Researchers [10]
systematically and comprehensively analyzed the utilization
of RL or DRL algorithms to address offloading-related
challenges in fog computing. This study elaborates on
the offloading process from various prespectives, covering
aspects such as offloading decisions, offloading metrics,
offloading directions, and offloading modes.

This section presents an overview of the most relevant
studies that are closely related to our research. For instance,
the study [16] presented an offloading approach to identify
the optimal location for executing modules. A MAPE
control loop was implemented on the intelligent gateway
to determine whether the task should be processed locally
or transferred to the fog or cloud. The proposed method
involved two stages: first, a greedy technique was employed
to locally evaluate Fog Devices (FDs), considering sibling
nodes and the parent, second, the optimal location for module
execution was determined using a Deep Reinforcement
Learning (DRL) algorithm. The evaluation of this method
is based on the following criteria: time delay, execution
cost, energy consumption, learning rate, network resource
consumption, and time interval of the offloading operation.
The results indicate that the proposed schema exhibits
superior performance compared to other existing algorithms.
However, the allocation of tasks to their respective desti-
nations depends on the sequence of fog nodes, or could.
Moreover, their offloading design lacks a predefined task
scheduling mechanism to identify the tasks that should be
performed at each layer. The authors also did not consider
the heterogeneity of the workloads and fog devices.

Additionally, the study described in [17] involved a
four-tier architecture intended for workload balancing and
delay-aware scheduling within fog computing. The first
tier, Tier-1, includes the IoT devices. The following tier
categorizes workloads into Low Priority (LP) and High
Priority (HP) through a router, utilizing the Dual Fuzzy Logic
method. The Fuzzifier processes the following input metrics:
minimum execution time, maximum completion time, task
size, and arrival time. Tasks assigned high priority were
directed to the fog tier. Within Tier 3, a new fog computing
paradigm, specifically an artificial fractal, was proposed as
an alternative to centralized or distributed fog environments.
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Each fog node integrates a communication component, load
monitor, and fog scheduler. The communication component
functions as a messenger that sends heartbeat messages to the
seed node to address fog node failures. An Artificial Neural
Network (ANN) was deployed to predict the current usage of
fog nodes, which were regularly updated. When an IoT device
suffers from a lack of available resources, the request is sent
to the cloud tier. Nevertheless, their offloading architecture
failed to select the most optimal fog node for task offloading
within the fog tier.

A context-aware computation offloading decision maker
was proposed by the authors of this research [18]. Their
approach introduced a MAPE loop to solve the offloading
decision-making process. The proposed architecture covers
the monitoring, analysis, planning, and execution phases.
During the monitoring phase, contexts were collected,
and in the analysis phase, these contexts were examined.
Subsequently, the planning phase formulates the offloading
instructions, and finally, the execution phase implements
these instructions. The proposed context-aware approach
then determines the appropriate offloading decision. The
evaluation of this approach incorporates metrics such as
execution cost, network usage, power consumption, module
size, mobile types, delay, and time interval of offloading oper-
ations. However, the authors did not observe heterogeneity in
the task and fog devices. They also did not consider inter-fog
collaboration.

Another study was conducted to tackle task prioritization
and offloading policies using fuzzy logic [19]. The primary
goal was to minimize the incurred delay and average waiting
time. Additionally, the proposed approach considers the
priority of each task and assign them to the respective queues
for scheduling by compatible nodes. Concurrent execution of
different task types across various target layers. Furthermore,
a binary elitism-based multi-population Jaya algorithm was
employed to schedule diverse tasks, with the aim of achieving
optimal mapping. The proposed algorithm evaluates both
task and machine heterogeneity to assess its effectiveness.
The experimental findings demonstrates the superiority of
the proposed method over existing methods. However, their
offloading architecture proved inadequate in choosing the
most appropriate fog node for task offloading, and it could
not distribute the workload evenly among processing nodes.

The research outlined in [20] introduced an innovative
method for task offloading, aiming to reduce the total delay
for time-critical applications. This method incorporates a
fuzzy logic technique, taking into account various application
characteristics such as network demand, CPU demand, and
delay sensitivity, in addition to considering resource utiliza-
tion and heterogeneity. However, their offloading architecture
proved inadequate in choosing the most appropriate fog node
for task offloading, and could not distribute the workload
evenly among the processing nodes.

At study conducted by researchers [21] addressed the
challenge of task offloading within a software-defined access
network. IoT devices communicate with fog computing
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TABLE 1. Summary of current works on offloading strategies.

. Optlm?}l Optimal fog  Heterogen  Heterogeneity of . Load
Existing offloading . . inter-fog . .
- node eity of computational . balancin  Task Scheduling
works decision on . collaboration
selection tasks nodes g
layer
[16] v v x x X x x
[17] v X x x v v v
[18] v v x x x x x
[19] v x v v v x v
[20] v X v v x X v
[21] x v x x v x x
[22] X v x X v x x
[23] v v X X v v x
[24] v x v v x x v
[26] x v X x v v x
[27] x v X x x x v
[28] X v x x x x v
[29] x X X x x v v
[25] x X X v x v x
Proposed v v v v v v v
schema

nodes in a network via multi-hop IoT access points (APs).
The key considerations of the proposed methodology include:
a) best decision-making for local or remote task processing,
b) selecting the most appropriate fog node, and c) determining
the ideal path for offloading. The experimental results
demonstrated a substantial reduction in the average delay
and energy consumption compared to existing methods.
Nevertheless, the offloading architecture requires a proficient
pre-planned task scheduling mechanism to designate the
appropriate layer for processing each task. Additionally, it is
incapable of distributing the workload among processing
nodes.

Another research outlined in [22] introduced an effec-
tive decision-making strategy, endowing fog nodes with
intelligence to determine a suitable method for data pro-
cessing. Devote, developed through reinforcement learning
algorithms, demonstrated adaptability to a dynamic IoT
environment. The selection of an algorithm relies on the
nature of the data, and is categorized as too critical, critical,
or normal. In addition, to select a suitable fog node to
offload critical data, an online secretary-based algorithm
was proposed. This algorithm effectively manages the trade-
off between processing delays and efficient data service.
Numerical analysis showed that Devote incurred minimal
service delays while achieving heightened user satisfaction.
However, this study did not address the aspects of device
heterogeneity and mobility.

Furthermore, the authors [23] introduced a novel strategy
for task offloading, aiming to make optimal decisions regard-
ing when and where to offload a task, whether to a fog node
or the cloud server. The problem was formulated as a Markov
decision process (MDP). The introduced MDP involves two
decision-makers: IoT users, responsible for selecting the fog
node to transfer their tasks, and fog nodes, which may select
to transfer specific tasks to other alternative fog devices or to
the remote cloud to distribute the workload fairly across fog
nodes. To overcome the challenges associated with large state
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and action spaces, a Q-learning approach was developed to
derive an ideal policy. Simulation results demonstrate that the
proposed schema reduces the delay time and improves load
balancing compared to alternative methods. However, their
offloading schema did not have an efficient predetermined
task scheduling to choose the appropriate layer for processing
each task.

Many task offloading strategies have been implemented
in the literature that consider different fog architectures and
evaluate different performance metrics [16], [17], [18], [19],
[20], [211, [22], [23], [24], [25]. However, a significant
portion of these methods designed for dedicated computing
situations in fog environments and some important aspects
have not been considered in their offloading strategies: a)
making optimal decisions on whether to perform local or
remote task computation; b) selecting the most appropriate
fog node; c) inter-fog collaboration; e) heterogeneity of task
and computational nodes; f) task scheduling; and g) load-
sharing. Addressing these aspects contributes to enhanced
performance metrics in fog-cloud computing. Addressing
these aspects contributes to enhanced performance metrics in
fog-cloud computing. Therefore, we propose a novel offload-
ing scheme for three-layered fog computing to optimize
the performance of IoT applications while considering the
aforementioned aspects. A summary of the current work on
offloading techniques is presented in TABLE 1.

IIl. PROPOSED SYSTEM ARCHITECTURE

As mentioned earlier, the main challenge in fog computing
is to determine whether tasks should be performed locally
or transferred to fog or cloud. Another challenge involves
effectively distributing tasks among available resources to
reduce latency and power consumption. Despite the preced-
ing section covering different solutions to the highlighted
challenges, there is still room for future improvements in
lowering delays and energy usage in fog-cloud systems.
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FIGURE 1. Proposed system model.

This section introduces our innovative offloading strategy,
engaging task scheduling, and workload balancing aimed
at enhancing the performance of IoT applications within a
three-layer architecture in a fog environment, as illustrated in
FIGURE 1.

The hierarchical architecture of the proposed approach
consists of three layers: the IoT layer (Layer 1), fog layer
(Layer 2), and cloud layer (Layer 3). This architecture
includes IoT devices in the IoT layer and intermediate nodes
responsible for task routing to the appropriate fog nodes or
cloud. The Fog layer contained a collection of geographically
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distributed fog nodes. In addition, a cloud datacenter was
deployed in the third layer of the hierarchical architecture.
The operational characteristics of each layer are as follows:
Initially, the IoT layer contained many heterogeneous
intelligent devices that produced a substantial volume of
data through actuators (e.g., Motors and valves), sensors
(e.g., temperature sensors, humidity sensors, and motion
sensors), and Intelligent IoT Devices(e.g., Smart cameras,
wearable devices, and environmental monitoring devices).
Additionally, this layer incorporates intermediate nodes such
as switches, and routers, which are referred to as intelligent
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gateways. Because of the restricted processing and storage
capacities of IoT devices, these intelligent gateways transfer
these tasks from IoT devices to either the fog or the
cloud layer. Moreover, this layer employs a fuzzy logic
technique to evaluate and categorize user tasks according to
their specifications in order to identify suitable layers for
offloading (e.g., locally at the IoT layer, collaborative fog
node, or cloud).

Next, the Fog Layer contains many geographically dis-
tributed computing nodes, also known as fog nodes. In this
phase, the K-means strategy is used to cluster all fog nodes
based on their geographical distance. Each cluster contains a
combination of heterogeneous and homogeneous resources
to achieve the QoS goals. Every fog node in a cluster
communicates with a fog cluster controller (FCC). The fog
controller (FC) is responsible for linking all FCCs of the
Fog layer. The FC includes a load balancer that efficiently
allocates workload to each cluster. A DQN algorithm is
implemented in this layer to find the optimal fog node
to offload user tasks and create a balanced load among
collaborative fog nodes in each cluster.

Finally, the cloud layer is responsible for executing
intensive tasks that do not have stringent delay constraints,
aiming to minimize the service time and fulfill general
deadline requirements. This layer includes centralized,
high-performance virtual machines (VMs), which serve as
computing nodes

10T Device Layer

Using Lowest Delay First
(LDF) scheduling to

exceutes offloading tasks

Collaborative fog

Fuzzy Logic nodes
controller used to

Received task form 3

Tot Devices

Locally

Fog Layer
DQN Used to select the Optimal

3| fog Node to offload user tasks and
offload the user tasks e
ensure load among collaborative fog|
to the Target Layer. ! 8
A nodes within each clusteres

l l

Cloud Layer

Remote
cloud

Optimal fog Node and Using

Using Lowest Delay First (LDF) Using Lowest Delay First (LDF)

scheduling to executes offloading scheduling to executes offloading
tasks tasks

FIGURE 2. The flow chart of the proposed offloading approach.

The next section describes the details of the operational
characteristics of each layer in the proposed architecture,
along with the algorithms used for task scheduling and load
balancing to address offloading issues. FIGURE 2 depicts a
flowchart of all the stages of the proposed approach. The main
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TABLE 2. Main research motivations.

Layers Operational Algorithm used
characteristics of each
layer
1. Data acquisition
Fuzzy Logic
Algorithm
Layer-1 (IoT 2. Optimal decision on:
devices) A.  Locally
B.  Collaborative
fog node
C. Cloud
1. Fog nodes clustering K-means++
clustering
Layer-2 (Fog 2. Optimal fog node DQN Algorithm

Layer) selection and load

balancing

It is responsible for

processing executed -
intensive tasks that do not

have stringent delay

constraints.

Layer-3 (Cloud)

TABLE 3. Definitions of the symbols used in the paper.

Symbol Definition

IoT Internet of Thing

QoS Quality of service

DQN Deep Q learning or Deep Q network

DRL Deep reinforcement learning

FDs Fog Devices

I Learned policy

LP Low priority

HP High priority

ANN Artificial neural network

AP Access points

FCC Fog cluster controller

FC Fog controller

VMs Virtual machines

FLA Fuzzy logic architecture

MSE Mean squared error

NAFITO- | Greedy auto-scaling deep reinforcement learning-

FLA based offloadin

GASDEO A novel a_pproach for IoT tasks offloading basded
fuzzy logic algorithem

Qd Queuing delay

Td Transmission delay

Prod Propagation delay

Pd Processing delay

EC Energy consumption

Tn Current time

Tlu The last utilization update time

Ph The host power at the last utilization update

Bps Bits per second

Nspt The total number of tasks that have been
successfully transmitted

Ti The time taken for the transfer tasks

Tf Total number of tasks that have been successfully
offloaded or transferred

N The total number of tasks including both local and
oftloaded tasks

research motivations and algorithms used in this study are
outlined in TABLE 2. The symbols used in this study are listed
in TABLE 3.
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FIGURE 3. Offloading decisions using fuzzy logic architecture.

IV. ALGORITHMS USED IN THE PROPOSED
ARCHITECTURE

This section provides a detailed explanation of the operational
characteristics of each layer, building on the overview
previously presented. In addition, it outlines the algorithms
implemented in each layer for task scheduling and load
balancing to address offloading issues.

A. IoT LAYER: DATA ACQUISITION

The IoT layer generates a substantial volume of data
originating from heterogeneous intelligent IoT devices. The
data are received with varying specifications, including size,
computational demand, communication demand, and delay
constraints.

The pseudocode for application preparation is presented
as follows: To execute the proposed method, the follow-
ing elements are created: IoT Devices, Smart gateways,
heterogeneous fog devices, remote cloud data centers,
IoT applications, and network topology, as illustrated in
Algorithm 1. Subsequently, the simulator was initiated.
Each task generates an IoT application in each time slot
using different parameters (size, computational demand,
communication demand, and tolerance delay constraints).
In the final stage of this algorithm, the optimal computational
resources are selected to offload user tasks, as introduced in
Algorithm 2.

Additionally, the proposed approach gathers information
about offloading tasks to determine the appropriate location
for transfering the task (e.g., locally at the IoT layer,
collaborative fog nodes, or the cloud), as depicted in Figure 3.
The process for scheduling and allocating tasks is as follows:
During this phase, the fuzzy logic controller method was
employed to evaluate and categorize the tasks based on their
specifications, with the aim of selecting suitable processing
layers. This classification categorizes user tasks into three
classes: the local class (class 1), collaborative fog nodes class
(class 2), and cloud class (class 3).
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Algorithm 1 Application Preparation
It Create a Set of IoT devices

2: Create smart gateways

3: Create the heterogeneous fog node with different capac-
ity (storage, CPU, Processing)

4. Create remote Cloud data center

5: Create an IoT application that contains module and task

6

7

: Create Network Topology
: For each task that generates in loT application-specific
time slot do
8: Create a Task with parameters (Task Size,
computational demand, communication demand,
and tolerate delay constraint) and utilize fuzzy
logic technique to determine the target
computational resource for offloading
By Algorithm 2
9: end for

The local class contains high-priority tasks that have
strict delays and do not demand many computational and
communication resources to be serviced. Therefore, it will
be placed at locally at the IoT layer (labeled as Q1). The
collaborative fog node class involves tasks characterized by
moderate delay, requiring intermediate levels of computa-
tional and communication resources for efficient service.
Thus, this class involves a combination of heterogeneous
and homogeneous nodes to be processed. Consequently,
collaborative fog nodes (labeled as Q2) are appropriate for
executing such tasks. Lastly, the cloud class covers all tasks
that necessitate extensive computational and communication
resources with a tolerated delay for processing. Consequently,
tasks belonging to this category are handled by the cloud
(labeled as Q3). In this context, the fuzzy logic procedure
is utilized to categorize user requests, assigning each user
request to the respective queues (Q1, Q2, and Q3).

The Fuzzy Logic Architecture (FLA) consists of three
main parts: (1) fuzzy inputs, (2) fuzzification, and (3)
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FIGURE 4. The four membership functions.
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R1:if Task Size is Minimal AND Computational
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Locally

R2:if Task Size is Moderate AND Computational
IDemand is Moderate AND Communication Demand is
Moderate AND Delay Tolerance is Moderate mnTHEN

CollaborativeFog

Rn: Task Size is Significant AND Computational
Demand is Significant AND Communication
Demand is Significant AND Delay Tolerance is
Significant THEN Cloud

Fuzzification (Rule-based)

Target Layer

Defuzzification

FIGURE 5. The output membership function of the fuzzy logic system.

defuzzification, as shown in Figure 3. Fuzzy inputs served
as the primary parameters for the fuzzification process. Four
input parameters are considered based on the requirements
of the tasks: (1) Task Size, (2) Computational Intensity,
(3) Communication Intensity, and (4) delay tolerance of
the task. These parameters are considered lexical variables
that are categorized as significant, moderate, and minimal.
During the Fuzzification process, the fuzzifier consideres
all input parameters and evaluates them using the Fuzzy
Membership Functions specified in the Fuzzy Knowledge
Base (FKB). The linguistic values for each fuzzy input are
identified using membership functions. As shown in Figure 4,
four membership functions were created based on three
specifications (significant, moderate, and minimal) and four
task requirements.

In addition, the input parameters werw processed via an
Inference Engine. This engine creates fuzzy rules that com-
prise a sequence of if-else conditions containing all potential
system probabilities and application requirements [30]. For
example, a fuzzy rule in inferences can be stated as follows.
If the size of the task, computational demand, communication
demand, and deadline sensitivity are all minimal, the task
should be processed locally. The total number of fuzzy rules
is n=3* = 81 based on four membership functions, each
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consisting of three linguistic terms. Some examples of fuzzy
rules are given in Table 4. Subsequently, Defuzzification
was executed to convert the fuzzy rules into appropriate
values according to the membership functions, as depicted in
Figure 5. Further explanations of how fuzzy logic operates in
decision-making can be found in [24] and [31].

Algorithm 2 delineates the steps for identifying the
most efficient layer for offloading the user tasks. Initially,
data generated tasks from the IoT application are col-
lected, including the size of the task, computational task
demand, communication demand, and deadline requirements.
The algorithm employs a fuzzy logic function to convert
each fuzzy variable into a quantifiable linguistic term.
Subsequently, a fuzzy rules-based approach is utilized to
identify the optimal target layer for each computation task,
whether it is locally at the IoT layer, collaborative fog node,
or cloud server.

B. FOG LAYER: DQN TO SELECT OPTIMAL OFFLOADING
FOG NODE

This Layer processes tasks that have moderate computing and
communication capacities with moderate delays and require
moderate resources and computing capacity for servicing.
At this stage, the proposed approach uses the K-means
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TABLE 4. Fuzzy logic rules.

Algorithm 2 Offloading Decisions Using Fuzzy Logic
Algorithm

. Offloading
Fuzzy inputs decisions
Task Size Computational Elot::l:liltmlcatmn Delay Target
Intensity Y tolerance Layer
Minimal Minimal Minimal Minimal locally
Minimal Minimal Minimal Moderate locally
Minimal Minimal Moderate Significant locally
Minimal Minimal Moderate Minimal locally
Minimal Moderate Significant Moderate C(;llaboratlve
og nodes
Minimal Moderate Significant Significant Collaborative
fog nodes
Minimal Moderate Minimal Minimal Collaborative
fog nodes
Minimal Moderate Minimal Moderate Collaborative
fog nodes
Moderate Significant Moderate Significant Cloud
Moderate Significant Moderate Minimal Collaborative
fog nodes
Moderate Significant Significant Moderate Collaborative
fog nodes
Moderate Significant Significant Significant Cloud
Moderate Minimal Minimal Minimal locally
Moderate Minimal Minimal Moderate locally
Moderate Minimal Moderate Significant qulaboratlve
fog nodes
Moderate Minimal Moderate Minimal Collaborative
fog nodes
Significant Moderate Significant Moderate Collaborative
fog nodes
Significant Moderate Significant Significant Cloud
Significant Moderate Minimal Minimal Collaborative
fog nodes
Significant Moderate Minimal Moderate Collaborative
fog nodes
Significant Significant Moderate Significant Cloud
Significant Significant Moderate Minimal Collaborative
fog nodes
Significant Significant Significant Moderate Cloud
Significant Significant Significant Significant Cloud

clustering algorithm to cluster fog nodes into different
clusters. For example, the distance between two fog nodes
(x1, x2) and f(y1,y2) is computed by Euclidean distance as
in(1):

\/(x2—xl)2+(y2—yl)2 (1)

According to [32], the K-means clustering process can be
described as follows:

Step 1: Select the number of clusters (k)

Step 2: Randomly choose k data points to serve as initial
centroids for the clusters.

Step 3: Assign each data point to the cluster with the closest
centroid.

Step 4: Calculate new centroids for each cluster based on
the assigned data points.

Step 5: Repeat steps 3 and 4 until convergence, meaning
that the centroids no longer change.

Each cluster has one fog cluster controller (represented
in yellow color) that is responsible for managing resources
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Input: Application’ Task T; with parameters
(Task Size, Computational Demand, Communication
Demand and Delay Constraint), number of
computing nodes CN;
Output: Optimal Offloading decision (Locally,
Collaborative fog, Cloud)
1: For allTasks in T; do
2: F=FuzzyLogicSystem(TaskSize,
ComputationalDemand,
CommunicationDemand, and delayConstraint)

3: If F< Fyp,,, then

4: Allocate Ti on IoT layer

5 else

6: If F< Fmediumthen

7: Allocate Ti on collaborative fog
8: Start Algorithm 4

9: else

10: Allocate Ti on cloud

11: End if

12: End if

13:  End for

across the fog cluster and effectively distributing the work-
load across the cluster. The fog cluster controller is also
responsible for determining which fog node can process the
incoming request. Every fog node in a cluster communicates
with a fog cluster controller (FCC). The fog controller (FC)
is responsible for linking all FCCs of the Fog layer. In the
process of task offloading, if a particular cluster in a fog layer
is unable to handle a task because of processing requirements,
the fog controller checks whether the task can be sent to a
different cluster. The task is then forwarded to the alternative
cluster if the response is positive; otherwise, it moves to the
cloud layer.

The use of DQN can help in making intelligent decisions
for task offloading and balancing the workload, considering
factors such as the processing capabilities of fog servers,
network conditions, and task requirements. A deep Q-
network (DQN) is a widely employed reinforcement learning
technique that extends the Q-learning paradigm by leveraging
neural networks to approximate Q-values. This method has
been used to solve several scheduling and allocation problems
in fog computing environment [33]. Instead of a Q-table,
DQN utilizes a Q network and a target network to enhance
learning stability [34].

According to [35] and [36], the steps of DQN involve: (1)
setting up the environment by defining the states, actions,
and rewards. In this case, the state can represent information
regarding the current task and current fog node status. The
action can represent the allocation of a task to the best
fog node among collaborative fog nodes, and the reward
can represent the performance metric (e.g., minimizing

VOLUME 12, 2024



D. H. Abdulazeez, S. K. Askar: Novel Offloading Mechanism Leveraging Fuzzy Logic and DRL

IEEE Access

processing time) associated with task execution. (2) Initialize
the DQN agent with random weights for both the main neural
network (Q-network) and target network. (3) interact with
the environment to collect data on the current state, available
tasks, and capabilities of each fog server. These data can be
used to calculate the Q-values for each state-action pair and
to store experiences in an experience replay memory. (4) The
collected data were used to estimate the Q-values for each
state-action pair in the Q-network.

(5) The target network is updated by copying weights
from the main neural network. (6) Calculate the loss function
based on the difference between the target Q-values and the
Q-values estimated from the Q-network. (7) trains the Q-
network to minimize the loss function by adjusting its weight.
This can be achived using a gradient descent algorithem or
other optimization algorithms. (8) Based on the Q-values
estimated by the Q-network, the best action (i.e., the most
powerful fog server) is selected to execute, incorporating an
epsilon-greedy policy for exploration and exploitation. (9)
Execute the selected action, and update the environmental
state accordingly. (10) Repeat steps 3-9 until the desired level
of performance is achieved or the environment reaches a
stable state. The dataset, in this context, is generated through
the agent’s interactions with the environment during the
training process. It consists of the experiences (state, action,
reward, next state) stored in the experience replay buffer.

Throughout this process, the DQN agent learns to choose
the most powerful fog server and achieves load distribution
among the fog servers by minimizing the loss function and
updating the Q-network. This approach can help optimize
task placement and resource allocation in fog computing
environments, by considering factors such as the processing
capabilities of fog servers, network conditions, and task
requirements.

In the context of a DQN, the update mechanism of Q-
learning relies on the Bellman equation, seeking to minimize
the temporal difference error. The Q-value for a state-
action pair is updated towards the target Q-value, which
is a combination of the immediate reward and maximum
estimated Q-value for the next state. The Bellman equation
is as follows:

Qrarget(s, a) = r + ymaxd'Q (s', d’; 6—) )

Here, Qtarget (s, a) refers to the target Q-value. The
variable r signifies the immediate reward received after acting
in states, y is the discount factor, indicating the significance
of future rewards (usually between 0 and 1), s’ is the resulting
state, a’ is the action in the subsequent state, and maxa’ Q
(s',a’;60—) represents the maximum estimated Q-value for the
next state over all possible actions a’, where 8 — denotes the
weights of the target Q-network.

The loss function used to update the Q-network is typically
the Mean Squared Error (MSE) loss between the predicted Q-
values Q(s,a;0)) and target Q-values Qtarget(s,a). The overall
training objective was to reduce the MSE loss by modifying
the weights (6) of the Q-network. The loss function used for
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training the Q-network in a DQN is defined as:

MSE Loss = % Zjvzl (Q (si, aj; ) — Qtarget (s;, cz,-))2
(3)

Here, N is the batch size, and (s;, aj, ri,rl.’) represents the
state, action, reward, and next state in the i-th experience
sampled from the replay buffer.

Action selection is facilitated through an epsilon-greedy
policy that offeres a nuanced balance between exploration
and exploitation. Utilizing an e-greedy policy, the selection
of the action a; is defined as follows:

With a probability of €, a random action is chosen.

Otherwise, a; is determined as

argmax,Q(¢(st), a; 0) “4)

Once at is established, the agent executes the action in the
environment, observes the resulting reward Rt, and transitions
to the subsequent state S;1. This experience tuple (S;, Ay,
R:, Si+1) is diligently stored in the experience replay buffer,
which is a crucial storage space for the historical Q-value
data used to update the Q-network from the target Q-network.
This meticulous process enhances the stability and efficiency,
allowing the agent to make informed decisions in dynamic
environments.

The pseudo-code of the algorithm for optimal fog node
selection, using the Deep Q-Network (DQN) method involves
a step-by-step approach in training and testing for efficient
task offloading in a fog computing environment, as presented
in Algorithm 3. Initially, tasks and fog nodes are organized
based on their features, laying the groundwork for priori-
tization and efficient allocation. The DQN parameters and
networks were set up, and a replay buffer was created to store
the experience. In the training phase, the algorithm contin-
uously explores and performs actions, adjusting Q-network
weights according to observed rewards, and periodically
syncing a target network. This continual refinement enables
the algorithm to make better decisions as it learns. During
testing, the algorithm used the acquired Q-values to optimally
assign tasks to fog nodes, showcasing its learned insights. The
distinct training and testing phases ensure that the algorithm
learns from the environment and then applies the acquired
knowledge for efficient fog node assignment. The trained
agent is evaluated on our offloading scenarios to assess its
ability to make effective task-offloading decisions, which
integrate exploration, experience replay, and target network
synchronization to enhance decision-making in dynamic fog
computing scenarios.

Finally, if the task is not executed locally or by a
collaborative fog node owing to limited resource capacity, the
task will be offloaded to the powerful computational resource
layer 3 which is the Cloud Layer.

C. CLOUD LAYER

In Layer 3, if the task is not executed locally or the
collaborative fog node is due to the input load, it decides to
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Algorithm 3 Optimal Fog Node Selection Using DQN Method

Input:Set of Task T; and Set of Fog Node F;

Output: Assignment of Tasks Ti to Optimal Fog Devices Fi based on learned Q-values

Initialization

A ol

Set update_counter = 0
Steps for Training Phase
8: For episode = I to numEpisodes do

Sort Task in ascending order based on Minimum Required Delay

Sort Fog Node in descending order based on computational capacity

Initialize DON parameters (numEpisodes, learningRate, discountFactor, epsilon, etc.)

Initialize Q-network with random weights (W_Q) and Target network with weights (W_Target = W_Q)
Initialize experience replay buffer to store tuples (state, action, reward, next state)

Set update_interval for updating the Target network weights periodically

9: For each incoming Task in Ti do

10: Initialize the current state S

11: For state = 1 to LastState do

12: Put the current state S into the target network and obtain the Q values for all fog nodes: Q_values =
Q_target(S; 6_target)

13: Select the best action (a) using epsilon-greedy policy based on Q-values from Q-network for the current
state (S) with probability epsilonTrain, or choose randomly with probability 1 — epsilonTrain

14: Execute actionA; in the environment, observe reward R;, and transition to the new state Sy+1

15: Save the experience (S;,A; ,R; ,S1+1)}) in the replay memory D

16: Sample a random batch from the experience replay buffer

17: Update Q-network weights (W_Q) to minimize the Mean Squared Error loss

18: Increment update_counter

19: If update_counter is divisible by update_interval, update Target network weights (W_Target) by copying
the Q-network weights (W_Q)

20: Set current state S to the next state S’

21: End for

22: End for
23;  End for
Testing Phase
24: [Initialize task assignments: TaskAssignments = []

25: [Initialize Q_values for all tasks: Q_values_all_tasks = []

26: For each Task in Ti do

27: Put the current state S into the Q network and obtain the learned Q-values for all fog nodes Q_values =
Q_target(S; 6_target), Append Q_values to Q_values_all_tasks
28: Select the fog node with the highest Q-value as the optimal destination for the task: optimal_fog_node, Add

(OptimalTasks, FogNodes) to TaskAssignments
29: Transfer current state S to the next state S’
30: End for
Return TaskAssignments list

offload the computational task to the remote cloud. All tasks
in cloud computing are executed using the Lowest Delay First
Scheduling algorithm, prioritizing tasks based on minimizing
their expected delays. This approach ensures efficient task
processing with a focus on meeting latency requirements and
optimizing overall system performance.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
offloading schema by comparing it with benchmark schemes.
The evaluation considers performance metrics including
(1) average reduction delay time, (2) average energy
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consumption, (3) network usage, (4) throughput, and (5)
offloading rate.

A. CASE STUDY

The scenario under study involves multiple IoT devices, such
as smart CCTV systems, self-driving cars, and smartphones.
These devices have various applications in the fields of
transportation, manufacturing, healthcare, and security. The
requirements of such applications include massive data
processing and low delays. Within each application, various
tasks exist. For instance, smart CCTV applications involve
tasks such as motion detection and facial recognition. These
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tasks differ significantly in their specifications, including
size, computational demands, communication requirements,
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10T Devices

TABLE 5. System configuration.

Smart

getaway4 ;
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10T Devices

. e .. Parameter Value
and delay. Given these task-specific characteristics and ' _ _
the availability of resources, they can be deployed and Simulation tool iFogSim
executed across various computing resources such as locally, 0s Windows 11 (64-bit)
collaborative fog nodes or the cloud. Further details CPU an Intel i7 2.40 GHz
regarding the proposed architectural modes are described Memory 16 GB RAM
in Section III. Language Java
IDE NetBeans 18
B. SIMULATION SETTINGS Development kit JDK-20.0.2
The e.ffectllveness of the propo§ed strategy assessed using the TABLE 6. Simulation parameters.
Ifogsim simulator. The experiments were conducted on an
Intel i7 2.4 GHz PC with 16 GB RAM, running Windows. Parameter Value
The parameters considered for the experiments are listed in Cloud data center 1
©pa s conside N . ‘pe ents ar d . Number of fog nodes 32 (8*4)
TABLE 5, 6,7,8,9, and 10. The iFogSim network topology is Number of smart gateways 4 nodes
illustrated in Figure 6. (intermediate nodes)
Number of tasks 100

C. BENCHMARK SCHEMES

To demonstrate the efficacy of the proposed strategy,
we compare it with the following baseline approaches:
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1. NON-OFFLOAD: In this approach, the execution of user
tasks occurs locally. Thus, the tasks are not offloaded to
either the fog nodes or cloud.
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TABLE 7. Configurations of computational resources.

8 fog
Fog node nodes in Smart
Property Cloud Controller each gateway
cluster
1500- 750-
MIPS 44,800 2800 2000 1400
1500- 750-
RAM 40,000 4000 3000 1400
Upload
Bandwidth 10,000 3000 e [
(Mbps)
Download
Bandwidth 10,000 3000 e [
(Mbps)
Level 0 1 2 3
TABLE 8. Configurations of hosts.
Parameter Value
oS Linux
Architecture %86
BW 10,000 B/S
Storage 1,000,000 B
Time zone 10
VM model Xen
Cost 3
Cost per storage 0.01
Cost per memory 0.05
TABLE 9. Tasks’ property.
Tasks’ Property ~ Minimal Moderate Significant
Task size 0-5000 5000-10000  (10000-
15000
Computational 500-2000 2000-3000 3000-500
demand (MIPS)
Communication 10- 20 20-30 30-50
demand (Mbps)
delay Ims-50ms  50ms- 200ms-
200ms 500ms

2. FIRST FIT (FF): In this method, the determination of
the destination of the task relies on the order of the fog
nodes or cloud in the network [37]. The selection process
involved checking the suitability of the first fog node for
offloading; if it was considered appropriate, it was chosen.
Otherwise, the algorithm evaluates the second fog node,
and this sequential evaluation continues until the final fog
node is considered, followed by the cloud.

3. GASDEO (GREEDY AUTO-SCALING DEEP REIN-
FORCEMENT LEARNING-BASED OFFLOADIN): In
this approach, a Deep Reinforcement Learning (DRL)
algorithm is employed to select the suitable destination
for task execution. In the GASDEO strategy, an offload
decision is made to minimize the average delay. The
proposed method involves the initial local evaluation
of fog nodes using a greedy technique, prioritizing
sibling nodes before considering the parent node. In the
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TABLE 10. DQN ‘s parameters.

Parameter Description Value

numEpisodes Maximum number of 100
episodes for training

learning Rate Learning rate for the 0.2
optimizer

Discount Factor Discount factor for future 0.99
rewards

update_interval Frequency of updating the 20
Target network weights
Counter to track when to (Initialized to

update the Target network ~ 0)

update_counter

weights
Ww_Q Weights of the Q-network  (Randomly
initialized)
W_Target Weights of the Target (Initialized
network (initialized with with W_Q)
W_Q)
Ther size of Size of the experience 1000
Experience replay replay buffer
memory Replay
Epsilon Exploration-exploitation 0.1
trade-off parameter
(probability of choosing a
random action)
epsilonTrain Probability for choosing 0.8
the best action during
training using epsilon-
greedy policy
Batch Size Number of experiences 30

sampled from the replay

buffer in each update step

Loss function used to train ~ Mean

the Q-network Squared
Error

Loss Function

next step, the best destination for task execution was
determined using Deep Reinforcement Learning (DRL),
as detailed [16].

4. NAFITO-FLA (A NOVEL APPROACH FOR IOT
TASKS OFFLOADING BASED FUZZY LOGIC ALGO-
RITHEM): In this method, fuzzy logic has been used to
identify the suitable location of the offloading tasks. For
more details, please refer to the method described in [20].

D. PERFORMANCE METRICS
In this section, performance parameters and their mathemat-
ical formulations are defined.

1) DELAY

A delay or latency occurs when a task is sent to a
corresponding layer for processing. Thus, the delay rate
differs for each task type based on its specific characteristics.
For example, the time required to process and offload a task
locally differs from that required to process and execute tasks
remotely. The delay can be estimated in milliseconds and
is crucial for evaluating the performance of fog computing
systems. Various studies have focused on minimizing delay
in fog computing environments, particularly in the context
of latency-sensitive applications. The delayl evel associated
with a task offloaded by an IoT device is influenced by
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four factors: queuing delay (Qy), transmission delay (7y),
propagation delay (Prog), and processing delay (P;). The
total delay was calculated using Equation (5).

Delay = Q4 + T4 + Prog + Py 5)

2) ENERGY CONSUMPTION

The energy consumption is computed for the entire network
topology using equation (5), which considers the current
energy consumption (E¢), current time (7},), last utilization
update time (, 7y, ), and host power at the last utilization
update (Pp). Various studies have focused on developing
energy-efficient models for fog computing in the context of
the Internet of Things (IoT). These models aim to reduce
electric energy consumption of the nodes in the IoT and
address the challenges of power consumption and delay in
fog computing networks.

E=Ec+ (T, —Tn) * Py (6)

3) NETWORK USAGE

The utilization of network usage depends on the size of the
transferred task at a specific time, multiplied by latency. The
network usage is calculated using Equation (7).

Network usage = Latency * tupleSize @)

4) THROUGHPUT
Throughput generally refers to the amount of data or
information that can be processed within a given period. It is
measured in bits per second (bps). This can be mathematically
written as follows:

N,
TH = -2 (8)
i
where, Ny, is the total number of tasks that were successfully
transmitted. And 7; is the time taken for the transfer tasks.

5) OFFLOADING RATE

It is defined as the rate at which tasks or workloads
are offloaded or transferred from a local device to a fog
node, cloud, or another collaborative fog node. The primary
objective of offloading rate is to optimize resource utilization
and reduce the computational burden on local devices by
transferring tasks to more powerful or available resources in
a network. To mathematically represent the offloading rate,
you can use the following formula:

Ty
OFR = — % 100 ©)]
N

where:, Ty is the total number of tasks that have been
successfully offloaded or transferred and N is the total
number of tasks including both local and offloaded tasks.

E. RESULTS AND DISCUSSION

In this section, the result and discussion of the proposed
schema to evaluate the performance parameters are discussed.
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FIGURE 7. Delay vs tasks.

1) DELAY

Firstly, we consider the average delay per task that occurs as a
result of task offloading. Figure 7 illustrates the performance
of the proposed approach in comparison to benchmark
schemes. The figure indicates that with a growth in the
number of tasks, there is a corresponding increase in the
average delay. This outcome is expected as the increase
in offloaded tasks creates more load on the fog nodes,
resulting in queuing delay and increased demand for network
bandwidth.

Furthermore, we note that the proposed technique demon-
strates superior performance compared to the benchmarks in
each case. Specifically, the proposed system can decrease
the latency by 53%, 34%, 32%, and 23 %, compared to
the Non-Offload FF, GASDEO, and NAFITO-FLA schemes,
respectively. The baseline scheme does not consider the
optimal fog node to process tasks which leads to decreased
service latency. Nevertheless, the Non-Offload approach
experiences the highest delay because of the local processing
tasks.

Energy Consumption
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FIGURE 8. Energy consumption vs tasks.

2) ENERGY CONSUMPTION

Figure 8 illustrates the efficiency of the proposed approach in
comparison to the existing approaches, specifically in terms
of the average energy consumption during task offloading.
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The figure indicates that energy consumption increases
almost linearly with an increase in the number of tasks.
In particular, the suggested method can decrease energy usage
by 45%, 37%, 21%, and 12%, compared to Non-Offload FF,
GASDEO, and NAFITO-FLA schemes, respectively.

This is because our suggested architecture employs an
innovative method for job execution and task scheduling.
An optimal scheduling method is necessary to minimize
energy consumption. In addition, it offloads tasks to more
powerful fog nodes when necessary. This can reduce energy
consumption on less capable nodes and improve overall effi-
ciency. Moreover, effective task scheduling and computation
offloading strategies can help minimize energy consumption
by determining the most efficient processing location for
tasks. However, the highest level of energy consumption can
be observed in the non-offload method due to local processing
tasks. Moreover, The FF scheme chooses the destination of
the offloading tasks by considering the sequence of fog nodes
or cloud in the network and thus, suffers from increased
energy. Then, the NAFITO-FLA scheme based fuzzy logic
chooses to offload tasks based only on task characteristics
without considering the best destination for devices for
offloading. Therefore, GASDEO suffers from higher energy
consumption as a result of inadequate task scheduling.

Network Usage
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FIGURE 9. Network usage vs tasks.

3) NETWORK USAGE

When the size is an increase in traffic on the cloud server,
only cloud resources are utilized. Heightened traffic on the
cloud server contributes to improved network usage. When
it comes to servers that are geographically distributed, each
fog node is allocated to a specific geographical area to handle
requests from that region. Consequently, network usage
decreases in such scenarios. Figure 9 illustrates the outcomes
of the network usage comparison. The Non-Offload approach
fails to utilize network resources. However, the FF and
GASDEO methods had almost similar results to NAFITO-
FLA. Consequently, the proposed approach outperformed
the other three strategies in terms of the network usage.
An increase in network size will require more resources,
but, the proposed strategy remains more effective than the
alternatives. Our Smart computation offloading strategies
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can help minimize network usage by determining the most
efficient processing location for tasks, whether at the edge,
in the fog, or in the cloud. Moreover, efficient load-balancing
techniques can distribute tasks and data processing across fog
nodes, thereby preventing network congestion and reducing
network usage.
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FIGURE 10. Throughput vs tasks.

F. THROUGHPUT

Figure 10 shows the performance of the average throughput
versus the number of tasks. It can be seen that the proposed
schema performs best in terms of the average throughput
compared with the other methods. This is because the
proposed approach distributes more tasks across multiple
nodes and servers. Therefore. The proposed method allows
multiple tasks can be executed simultaneously on different
resources by determining the most efficient processing
location for tasks. This can lead to a faster task execution and
improved throughput. Furthermore, efficient load balancing
techniques can distribute tasks and data processing across fog
nodes, thereby preventing network congestion and increasing
throughput. NAFITO-FLA outperforms GASDEO and FF in
terms of average throughput because it makes better task
offloading decisions to improve the average throughput.

G. OFFLOADING RATE

It is defined as the rate at which tasks or workloads are
offloaded or transferred from a local device to a fog node,
cloud, or other collaborative fog node. The primary objective
of the offloading rate is to optimize resource utilization
and reduce the computational burden on local devices by
transferring tasks to more powerful available resources in a
network. Figure 11 shows the performance of the average
offloading rate versus several tasks. An offloading rate can
be considered to provide better performance than other
approaches. The reason is that the proposed algorithm
efficiently utilizes the resources. When tasks are offloaded
from local devices to more powerful remote resources (e.g.,
fog nodes or cloud servers), better resource utilization can be
achieved. This, in turn, can result in improved performance,
as tasks are executed on resources that can handle them
more efficiently. Implement efficient scheduling algorithms
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that can quickly prioritize and allocate tasks to fog nodes.
This ensures that tasks are offloaded promptly, increasing
the offloading rate. A high offloading rate means that a
significant proportion of computational tasks are offloaded
from a local device to more powerful resources in the
network. This can lead to an improved performance on the
local device, reduced energy consumption, and efficient use
of resources.
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FIGURE 11. Offloading rate vs tasks.

H. LIMITATIONS

This section clarifies the constraints associated with the
proposed fog computing methodology, particularly in the
realms of static topology, security, and privacy. These
limitations are crucial considerations that underscore the
challenges and scope of our approach within the context of
a fixed network topology.

1) STAIC TOPOLOGY

One limitation of our offloading methodology is its reliance
on a static topology, assuming fixed positions for IoT devices
and fog nodes. It’s worth noting that real-world IoT scenarios
often feature mobile nodes in operation, thus introducing a
dynamic element that our study does not explicitly account
for.

2) SECURITY AND PRIVACY

Fog-cloud systems involve the transmission and processing
of sensitive data, raising concerns regarding the security and
privacy of information. Inadequate security measures can
lead to unauthorized access, data breaches, privacy violations,
eroding user trust and system reliability. To mitigate these
risks, strong encryption protocols should be implemented
for data transmission to protect against eavesdropping and
unauthorized access. Robust access control mechanisms must
be in place to ensure that only authorized entities can access
and modify critical system components. Privacy-preserving
techniques, such as differential privacy, should be explored to
safeguard user data during processing. Compliance with data
protection regulations and standards is crucial to address the
legal and ethical aspects of data handling. Integrating security
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measures throughout the entire architecture, involving regular
security audits, and engaging stakeholders are essential
components of a comprehensive security strategy.

VI. CONCLUSION

In this study, we propose a novel offloading strategy to
enhance IoT application performance in fog environments.
The main idea of the proposed schema involves the process-
ing of sensed data generated from IoT devices in different
layers of the fog computing architecture. Fuzzy logic
algorithms were used to make optimal decisions regarding
task offloading to the target processing layer, whether at
local fog nodes, collaborative fog nodes, or the cloud while
considering four different task requirements. Subsequently,
DQN method-based deep reinforcement learning was used
to select the optimal fog node among the collaborative
fog nodes to offload tasks. Subsequently, we proposed a
lowest deadline-first scheduling method to schedule tasks
for all computational resources. Finally, we compared the
simulation outcomes across several performance metrics and
demonstrated that our proposed offloading strategy in fog
architecture outperforms other existing methods.

In future work, we will focus on task offloading without
considering security parameters. For example, what will hap-
pen if we offload a task to a compromised fog node? We are
currently considering this feature for future implementation.
Additionally, the study employed a static topology, assuming
fixed positions for IoT devices and fog nodes. Real-world
Internet of Things scenarios may involve mobile nodes in
operation. As a result, we aim to further investigate the impact
of dynamic topology on the efficiency of the offloading
scheme in the next stage of this research.
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