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ABSTRACT Random noise attenuation plays a vital step in seismic signal processing. Numerous attenuation
algorithms have been developed to separate and remove the random noise; nevertheless, they have failed
to attain high precision. In this work, a hybrid framework based on an optimal adaptive neuro-fuzzy
inference system (OANFIS) and a recent wavelet thresholding (WT), specifically OANFIS WT, is proposed
to attenuate the random noise present in the seismic signals. In the suggested OANFIS WT method, the
OANFIS extract the relevant seismic signal information from the contaminated signal using the premise and
consequence parameters of ANFIS. These parameters are determined optimally using the Honey badger
algorithm with mean square error value as an objective function. Here, OANFIS acts as an adaptive
self-tuning filter that extracts the appropriate seismic signal information without any knowledge of the
amount of noise in the contaminated signal. Therefore, some noise may be present in the output of OANFIS.
Thus, the WT is applied to the extracted signal, with different values of the adjusting parameters in the
thresholding function, to attenuate the noise effectually. Lastly, the experimental results on the synthetic and
real seismic signals reveal that the proposed OANFIS WT method is more effective in reducing random
noise and preserving relevant signal information than other contrastive methods.

INDEX TERMS Adaptive noise cancellation (ANC), honey badger algorithm (HBA), optimal adaptive
neuro-fuzzy inference system (OANFIS), random noise, seismic signal, wavelet thresholding (WT).

I. INTRODUCTION
In seismic exploration, recorded seismic signals are corrupted
with random noise from diverse sources like wind, instru-
ments, and geophones [1]. This background noise implies
difficulty in the subsequent processing and analysis of seis-
mic signals. Hence, it is imperative to develop a noise
attenuation method in order to enhance the signal-to-noise
ratio (SNR) of the seismic signal.

Over the past few decades, numerous techniques have been
developed to minimize the random noise in seismic signals.
The most commonly used method is the prediction-filter-
based approach, assuming the seismic signal to be a local
superposition of the linear events in the f-x domain [2]. Next,
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the sparse transform-based method transfers the corrupted
seismic signal into the transform domain and then filters the
noise in the transform domain. The sparse transform-based
methods such as the curvelet transform [3], dreamlet trans-
form [4], seislet transform [5], andwavelet transform [6] have
been applied in seismic signals to effectively minimize the
noise. The rank reductionmethod [7] is another type of sparse
representation method that relies on the rank of the matrix.
These methods are based on the assumption that a noise-free
signal can be transformed into a low-rank matrix. Also,
the denoising approaches based on decomposition methods
like singular value decomposition (SVD), empirical mode
decomposition (EMD), ensemble EMD (EEMD), complete
EEMD (CEEMD), empirical wavelet transform (EWT), and
variational mode decomposition (VMD) techniques have
been employed to reduce the noise in the recorded signal.
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Several researchers have suggested hybrid techniques [8],
[9], [10], [11], [12], [13], [14], [15] to eradicate the noise
using decomposition-based methods. Also, some filtering
approaches, including Weiner filtering [16], Kalman filter-
ing [17], mathematical morphological filtering (MMF) [18],
non-local means (NLM) filtering [19], and others, are con-
tinually investigated to attenuate random noise in the signal.
The combination of such approaches leads to the magnificent
interpretation of seismic signals.

Usually, researchers use some known filters to eradicate
unwanted noise and retain the data information. However, the
design of such filters should be optimal, and the filters used
there can be fixed or adaptive [20]. The adaptive filters can
automatically vary their parameters and can be designed with
little or no prior knowledge of noise and signal attributes.
Therefore, an adaptive filter is used as an adaptive noise
canceller (ANC) to remove the unknown noise in the signal.
Recently, adaptive filters have been used to remove artifacts
in biomedical signal processing [21], [22]. Similarly, adaptive
filters have been employed in seismic applications to reduce
noise in the signal [23]. The author [24] has developed a
hybrid combination of CEEMD with recursive least squares
(RLS) to extract the time-varying wavelet magnitude spec-
trum of the seismic signal. The important aspects of adaptive
filter estimation are convergence, steady-state tracking abil-
ity, and steady-state error. The step size holds a significant
importance in adaptive filters. A larger step size value results
in faster convergence and raises the steady-state mean square
error (MSE). On the other hand, if the steady-state MSE is
reduced by selecting a smaller step size, the convergence
speed is relatively slow. Further, adaptive filter algorithms
with the highest filter order outperform one another, poten-
tially leading to complicated filter architectures. However,
for the non-linear phenomenon, the linear filter performance
seems to be poor, and it is necessary to develop non-linear
filters to attenuate the noise in the signal [25]. Therefore,
applying neural networks in adaptive signal processing has
become popular because of their non-linear learning ability
and the fact that they do not require prior knowledge of signal
and noise attributes [26].

In the past decades, soft computing gained popularity in
the study of geophysical [27]. The machine learning field has
a variety of frameworks based on adaptability, learning rate,
versatility, and complexity. Many researchers suggested tech-
niques such as fuzzy logic, artificial neural networks (ANN),
random forest, support vector regressors (SVR), regression
and optimization algorithms to attain their goals. The hybrid
of the above techniques has been developed in such a way as
to overcome the deficiencies and also attain robustness [28].
A noise reduction method was developed using neural net-
works to remove the noise in real and synthetic seismic
records [29]. Lin et al. [30] used a fuzzy clustering process
with time-frequency peak filtering to suppress the unwanted
noise. A semi-automatic procedure that consists of ANN and
wavelet packets was developed to eradicate the undesirable

noise in real, synthetic, and common offset sorted gath-
ers [31]. A denoising method was suggested to enhance the
SNR of the seismic reflection data by eradicating the noise
using the Weiner and adaptive neuro-fuzzy inference system
(ANFIS) filtering techniques [32]. This paper calculates and
sorts the adaptive Weiner filter output values and standard
deviation of the signal. The points with the highest standard
deviation could be examined as noise attributes and given as
input to train the ANFIS. A simple ANC structure was devel-
oped based on the normalized least mean square error [33]
and RLS algorithm [34] to attenuate the narrow band noise
(sinusoidal noise) and broadband noise present in the signal.

Generally, the seismic signal is affected by random noise
(broadband interference) [35], and no external noise-free sig-
nal is available to execute the ANC process. It seems that the
ANC cannot be used to remove the noise from the corrupted
seismic signal. In such cases, ANC can act as an adaptive
self-tuning filter [20], capable of retrieving the filtered signal
from the contaminated signal. Therefore, based on error, non-
linear characteristics, convergence speed, accuracy, and filter
structure, many researchers have used the ANFIS as an ANC
to remove the unknown noise in the signal.

ANFIS [36] is a five-layered neural network structure
with a fuzzy inference system (FIS). ANFIS combines ele-
ments of neural networks and fuzzy systems, achieving low
MSE, high speed, and high prediction. ANFIS determines
the premise and consequent parameters, where fuzzy if-then
rules can relate these parameters together. In general, the
membership function parameters denote the system behavior
of ANFIS, and these parameters could be updated using
hybrid and backpropagation methods. However, these meth-
ods directly impact the FIS membership functions, output,
and input. These methods use gradient descent (GD) to
estimate the premise parameters and least square estima-
tion (LSE) to calculate the consequence parameters. Since
these algorithms are derivative-based, there is a chance of
trapping at the local minimum [37]. Due to such reasons,
some metaheuristic optimization algorithms may be used
to optimize the membership function parameters (premise
and consequence parameters) to enhance the performance
of ANFIS. Therefore, in this article, we have proposed an
optimal ANFIS (OANFIS) that regulates the premise and
consequence parameters using the Honey Badger algorithm
(HBA). In addition, since the amount of noise in the signal
is uncertain, in this work, the OANFIS acts as a proficient
adaptive self-tuning filter, extracting the seismic signal infor-
mation from the contaminated signal. However, there might
be some noise in the extracted signal. Hence, the noise in
the extracted signal can be attenuated effectually by applying
the wavelet thresholding (WT) technique [38]. Because in
WT, the adjusting parameters are essential for fine-tuning the
speed and growth rate of the thresholding function. Therefore,
the use of OANFIS andWTmotivates the proposal of a hybrid
denoising approach (OANFIS WT) to reduce the noise in the
signal.
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The contributions of the work are summarized as follows:
1) We proposed an OANFIS to determine the premise and

consequence parameters of ANFIS. We used the HBA
with mean square error (MSE) as an objective func-
tion to determine the appropriate membership function
parameters. Besides, the noise level of the recorded
seismic signal can be pretty unpredictable; the OANFIS
performs as an effective adaptive self-tuning filter. Its
purpose is to obtain the signal information from the
contaminated signal without knowing the amount of
noise in the signal.

2) Further, theWT is applied to the extracted signal, where
threshold calculation is carried out at each wavelet
decomposition level, effectively leading to random
noise attenuation.

3) Then, we validate the effectiveness of the proposed
technique (OANFIS WT) with EMD DWT [8] and
VMDDWT [10] for both the synthetic and real seismic
signals.

The sections of the article are organized in the following
manner. In Section II, the proposed methodology is outlined.
In Section III, the results of the proposed algorithm are dis-
cussed and compared with the existing algorithm. Section IV
provides a detailed discussion, while Section V presents the
conclusions derived from our work.

II. METHODOLOGY OF THE PROPOSED METHOD
In this article, we proposed a hybrid framework that employs
an OANFIS andWT to attenuate the noise from the corrupted
signal. Fig. 1 shows the block diagram of our proposed
algorithm. Here, OANFIS acts as an adaptive self-tuning
filter which extracts the seismic signal information without
knowing the amount of noise present in the signal. Hence,
in the rest of the section, we first use ANC as an adaptive
self-tuning filter. Then, we present the ANFIS, optimization
algorithm and WT, which are the prototypes of our proposed
model. Later, we describe the structure and workflow of our
proposed OANFIS WT model in detail.

FIGURE 1. Block diagram of our proposed algorithm.

A. ADAPTIVE NOISE CANCELLER
An ANC usually requires two inputs: a primary signal cor-
rupted with noise and a reference signal that contains the

noise associated with the primary signal. In many circum-
stances, the seismic signal is contaminated by random noise
(broadband interference) [35], and the noise level is unknown
to perform the ANC process. If this is the scenario, a prede-
termined delay is introduced in the reference input, which is
taken from the primary input [20], as shown in Fig. 2. Here,
ANC acts as an adaptive self-tuning filter (the output is taken
from the adaptive filter), which can extract the relevant signal
from the corrupted data. In this work, we used ANFIS as an
ANC to eradicate the noise in the signal.

FIGURE 2. Schematic sketch of adaptive noise canceller as an adaptive
self-tuning filter using ANFIS.

B. OPTIMAL ANFIS
1) ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
The ANFIS is a hybrid of fuzzy systems and AI networks
that incorporates the advantages of both processes. The
fuzzy if-then rules module establishes a link between inputs
and outputs, and the neural network algorithms resolve the
parameters connected to the membership part.

Therefore, ANFIS integrates the neural network learning
capabilities with the potential of a FIS. This system gener-
ates and achieves a non-linear relationship between inputs
and outputs based on linguistic perceptions. The ANFIS
structure is determined based on the input data, member-
ship degree, rules, and output membership function. Fig. 3
illustrates a five-layer fuzzy neural network built with two
rules using the ANFIS algorithm. An ANFIS was designed
using a first-order Sugeno framework fuzzy model with

FIGURE 3. 2- input and type 3 ANFIS with two rules.
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IF-THEN rules [36].

Rule 1: if m is P1 and n is Q1, then F1= u1 m+ v1 n+ w1.

Rule 2: if m is P2 and n is Q2, then F2= u2 m+ v2 n+ w2.

where m and n denote the inputs, Pi and Qi denote the fuzzy
sets, ui, vi, and wi are the design parameters, and Fi denotes
the outputs well defined by the fuzzy rule.We use circular and
square nodes in the ANFIS framework to represent distinct
adaptive capabilities. In ANFIS, a square node, also known
as an adaptive node, requires parameter updates, while the
circle node, or fixed node, does not need any parameter
updates to enhance performance. The ANFIS structure has
two parameter sets: consequent parameters (u1, u2, v1, v2,
w1, and w2) and premise parameters denoting the output and
input membership functions. These parameters are restruc-
tured based on the training information and learning process
described below.
Layer 1 – Fuzzification Layer: The nodes i in layer 1 are

adaptive and are controlled by a node function.

O1
i = µPi (m) (1)

where m signifies the input node i,µPi represents the mem-
bership function of Pi The Gaussian membership function is
selected and represented as

µPi (m) = exp

(
− (m− c)2

2σ 2

)
(2)

where c and σ denote the mean and standard deviation, called
premise parameters.
Layer 2 – Rule layer: Each node in Layer 2 functions as

a fixed node whose output is obtained by multiplying all the
signals and determining the rule’s firing strength.

O2
i = ωi = µPi (m) × µQi (m) , i = 1, 2 (3)

Layer 3 – Normalized layer: Every node in this layer esti-
mates the ratio of the ith firing rule to the sum of all the firing
rules.

O3
i = ω̄i =

ωi

ω1 + ω2
, i = 1, 2 (4)

Layer 4 – Defuzzification layer: The output of Layer 4 is
determined by the product of a first-order polynomial and
firing strength, which has been normalized. Each node in the
layer functions adaptively. The parameters in this layer are
referred to as consequence parameters {ui, vi,and wi}.

O4
i = ω̄iFi = ω̄i (uim+ vin+ wi) , i = 1, 2 (5)

Layer 5 –Output layer: The single node in this layer estimates
the output by adding all incoming signals.

O5
i = output =

∑
i
(ω̄iFi) =

∑
i ωiFi∑
i ωi

(6)

Fig. 3 illustrates a 2-input, type 3 ANFIS with two rules. The
input space is separated into two fuzzy subspaces, each con-
trolled by fuzzy if-then rules and two membership functions

are connected to each input. The premise of a rule states a
fuzzy subspace, and the consequent component defines the
output within that fuzzy subspace.

2) TRAINING ANFIS USING OPTIMIZATION ALGORITHM
The ANFIS is trained to determine its premise and conse-
quence parameters using a hybrid optimization technique.
Premise parameters {c, σ} are the members of the func-
tions on the first layer, and consequent parameters {ui, vi,
and wi} are the parameters on the fourth layer of the first-
order polynomial. A hybrid learning approach was used to
train the classical ANFIS. The GD algorithm was used in this
learning approach to identify premise parameters, while the
LSE method was used to determine consequence parameters.
However, thesemethods rely on derivatives, which introduces
the possibility of getting struck at the local minimum [37].
As a result, employing metaheuristic approaches rather than
derivative-based algorithms yields more efficient results.
Therefore, an optimal model is developed by fine-tuning the
ANFIS parameters using ametaheuristic algorithm to achieve
the minimum differences between the actual and the expected
outcomes derived by ANFIS. In this work, we have used the
HBA optimization process to determine the ANFIS parame-
ters optimally in order to achieve adequate performance.

3) HONEY BADGER ALGORITHM (HBA)
The HBA was developed on the long lifespan of honey bad-
gers [39]. The honey badger follows the honeyguide bird
or uses its sense of smell to locate and excavate food. The
initial stage is the digging phase, followed by the honey
phase. It uses its smelling skills to locate the prey during the
early phase. When it arrives, it examines the surroundings
above the prey to determine the optimal solution. Finally,
a honeyguide bird assists in locating the beehive. In addition,
the HBA incorporates three control factors: density, flag, and
intensity factors. The HBA demonstrates exceptional exper-
tise in local search capabilities through its effective honey
attraction mechanism, enabling candidates to optimize their
values within the search space. The density factor assists the
algorithm in exploring a wide range of possibilities, avoid-
ing getting stuck in a local solution. The complete HBA
method has been thoroughly explained in [39]. The initial-
izing parameters required to run the HBA algorithm are the
search agents (set as 50), the maximum iteration (set as 300),
the lower bound and upper bound (should be specified), the
dimension (set as 14) and the objective function as MSE.

4) EVALUATE THE ANFIS USING FITNESS FUNCTION
In this work, we used the fuzzy c-means clustering (FCM)
method to process the FIS inANFIS. The FCMhas the benefit
of not restricting cluster boundaries, which permits elements
to be involved in multiple groups rather than just one group.
In addition, it has good speed-boosting intelligence [40].
Here, we have employed the HBA optimization process to
enhance the performance of ANFIS. The OANFIS groups
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all of the membership function parameters into a vector;
then, using an HBA method, the optimal values of premise
and consequence parameters are determined with minimum
fitness value. The fitness function is represented as,

min
θ

Error =
1
M

∑n

i=1
e2i (7)

ei = ti − yi (8)

where M represents the number of ANFIS inputs, ei denotes
the error, θ represents the ANFIS parameters, ti represents the
target value and yi denotes the ANFIS output.

C. WAVELET THRESHOLDING FUNCTION
Researcher often utilize soft thresholding (ST) and hard
thresholding (HT) functions for filtering the wavelet coef-
ficients. Nevertheless, issues with discontinuity in HT can
lead to oscillation during reconstruction, and the constant
deviation problems in soft thresholding can negatively impact
the quality of the signal. Many researchers have developed
different wavelet thresholding functions to address the limi-
tations of traditional thresholding. Li et al. [38] proposed a
continuous and differentiable WT function that can defeat
the problems of discontinuity and deviation. In this work,
we have used the WT function proposed by Li et al. [38],
which is represented as,

ω̃k,j =


ωk,j −

λj

α
(
ωk,j − λj

)β
+ 1

, ωk,j > λj

0,
∣∣ωk,j∣∣ ≤ λj

ωk,j +
λj

α
(
−ωk,j − λj

)β
+ 1

, ωk,j < −λj

(9)

where β and α represent the shape adjustment factors,
ωk,j denotes the wavelet coefficient, ω̃k,j denotes the wavelet
coefficient processed by the threshold value and λj represents
the threshold value. The threshold calculation is represented
as,

λj =
δj
√
2lnNj
j+1
√
j

=
median

(∣∣ωk,j∣∣)√2lnNj
0.6745 j+1

√
j

(10)

where j denotes the decomposition level and Nj represents
the dimension of the wavelet coefficient. Here, the level
of the wavelet coefficient can adaptively evaluate the noise
amplitude and effectually eradicate the noise.

D. STEPS TO PERFORM THE PROPOSED METHODOLOGY
Our suggested method exhibits the use of the HBA-based
ANFIS technique with the WT algorithm to denoise the cor-
rupted seismic signal. Fig. 4 demonstrates the flowchart, and
Table 1 presents the pseudocode of our proposed algorithm.
It has three phases:
Phase 1- Determine the premise and consequence param-

eters of ANFIS using the HBA algorithm.
The objective is to optimally determine the two parameter

sets (premise and consequence) to enhance the performance

FIGURE 4. Flow chart of our proposed method (OANFIS WT).

TABLE 1. Pseudocode of OANFIS WT (proposed method).

of ANFIS. Thus, these parameters are obtained using the
HBA optimization process. In this work, we used the FCM
method and two membership parameters to create the FIS
and then extracted the range of two parameter sets as upper
and lower bounds to perform the HBA optimization process.
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The optimization algorithm evaluates the output using MSE
as an objective function.
Phase 2 – Denoising using optimized two parameter sets

of ANFIS.
The optimized two parameter sets (premise and conse-

quence) are used to set the new FIS. Then, the corrupted
seismic signal is applied to OANFIS to extract the filtered
seismic signal. However, some noise may persist in the
OANFIS output.
Phase 3 – Filtering using the WT technique.
The output from the optimal ANFIS is filtered using

four-level wavelet decomposition with sym11 as a mother
wavelet. In this work, we have used the wavelet threshold-
ing function and threshold value calculation proposed by
Li et al. [38], represented in Eq. (9) and Eq. (10). This wavelet
thresholding function can overcome the discontinuity and
deviation problems. Also, each level of wavelet coefficient
may effectively remove the noise in the signal.

III. NUMERICAL EXPERIMENTS
In this section, we test the denoising performance of the
suggested OANFIS WT method based on real and syn-
thetic signals. Meanwhile, to validate the effectiveness of
our proposed method, we compare our OANFIS WT method
with two contrastive denoising methods, i.e. EMD DWT [8]
and VMD DWT [10]. In addition, to compare the denois-
ing capability of each method quantitatively, we choose the
signal-to-noise ratio out (SNROUT), the mean square error
(MSE), the root mean square error (RMSE), the percentage
root mean square differences (PRD), and correlation coeffi-
cient (CC) as a quantitative measure, defined as

SNROUT = 10log

( ∑
n s

2(n)∑
n [s (n) − s(n)]2

)
(11)

MSE =
1
N

∑
n

[
s (n) − ŝ(n)

]2 (12)

RMSE =

√∑
n
[
s (n) − ŝ(n)

]2
N

(13)

PRD = 100 ∗

√√√√∑
n
[
s (n) − ŝ(n)

]2∑
n s

2(n)
(14)

CC=
N
(∑

s (n) ŝ(n)
)
−(
∑
s(n))(

∑
ŝ(n))√[

N
∑
s(n)2−

(∑
s(n)

)2][N∑ ŝ(n)2
]
−(
∑
ŝ(n))2

∗ 100 (15)

where s(n) is the noise-free signal, N is the length of the
sample, and ŝ(n) represents the filtered signal.

A. SYNTHETIC SIGNAL
We first examine the performance of our proposed approach
and the contrastive methods using synthetic signals. Fig. 5(a)
illustrates the synthetic signal, which comprises two
zero-phase Ricker wavelets with different dominant frequen-
cies, 15 and 20 Hz at 0.4 and 0.8 s. Fig. 5(b) shows a noisy

FIGURE 5. (a) Synthetic signal (b) Noisy synthetic signal.

seismic signal with an SNR of 4 dB obtained by adding
additive white Gaussian noise (AWGN) to the synthetic
seismic signal. Evidently, the relevant information in seismic
signals is immersed with background noise, which makes it
challenging to remove noise in seismic signals.

The proposed OANFIS WT method does not require a ref-
erence signal (consisting of only noise attributes) to process
the ANFIS. Since ANFIS acts as an adaptive self-tuning filter,
the corrupted seismic signal with an inevitable delay can be
given as a reference signal. As stated, we employ the FCM
method with two membership functions to evaluate the FIS
in ANFIS. The standard ANFIS was trained using a hybrid
learning approach, and this approach may be trapped at a
local minimum [37], which may reduce the performance of
ANFIS. Thus, the HBA is utilized in this work to determine
the two-parameter sets optimally. Here, we limit the HBA to
300 iterations and 50 search agents for our analysis. Fig. 6
illustrates the convergence curve for the synthetic signal,

FIGURE 6. Convergence curve of HBA and PSO algorithms for synthetic
signal.
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comparing the HBA and particle swarm optimization (PSO)
methods. After analyzing the outcomes, it is evident that HBA
outperforms PSO regarding fitness value. HBA achieves its
best fitness value at the 80th iteration, while PSO takes
longer and attains its best fitness value at the 273rd iteration.
Thus, HBA aids the ANFIS in obtaining the best values
of two parameter sets of ANFIS with a fast convergence
curve.

Furthermore, when comparing PSO and HBA, it is worth
noting that HBA achieves a significantly lower MSE value
of 0.126629. The most suitable premise and consequence
parameters of ANFIS are identified through a comprehensive
analysis of the data. Then, these parameters are used to estab-
lish an optimal FIS, which effectively extracts the seismic
signal from the corrupted data.

Using the optimized parameters, we execute the OANFIS
algorithm to extract the seismic signal at the output of ANFIS,
as depicted in Fig. 1 and Fig. 2. Since the relevant information
is extracted without knowing the level of noise present in
the contaminated signal, it is possible that some noise may
exist in the extracted signal. Therefore, the WT technique
is utilized to filter out the remaining noise in the extracted
signal. By executing the thresholding process at each DWT
level and identifying the appropriate threshold values, the
WT can attenuate the unwanted noise and reconstruct a fil-
tered version of the signal. The seismic noise attenuation
results of the three methods are shown in Fig. 7. The EMD
DWT and VMD DWT denoising methods have the ability
to minimize the noise, but they are inadequately efficient.
After comparing the denoising method as illustrated in Fig. 7,
the subsequent points are mainly observed: 1) compared with
the EMDDWTmethod, the VMDDWTmethod enhances the
denoising capability but falls short of choosing the parameters
of VMD adaptively and also struggles to balance noise sup-
pression and signal reconstruction. As a consequence, valid
seismic signals may be lost in the process. 2) Despite the
improvement in the denoising performance with OANFIS,

FIGURE 7. Denoised outputs of various methods in the synthetic signal.
(a) EMD DWT. (b) VMD DWT. (c) Proposed method (OANFIS WT).

some noise may exist in the signal, and 3) The suggested
method has diverse benefits in the extraction of signal ampli-
tude due to the selection of ANFIS parameters optimally
and the magnificent flexibility of WT. Therefore, the pro-
posed OANFIS WT has achieved outstanding performance
compared with the other existing approaches, as shown
in Fig. 7.

TABLE 2. Denoising evaluation parameters of the synthetic signal.

Table 2 compares the noise attenuation impact and signal
preservation capability among different denoising algorithms
based on the evaluation parameters. It is clear that the
proposed denoising approach outperforms other contrac-
tive denoising methods to achieve maximum SNROUT and
minimum MSE value. As part of our analysis, we have
compared the SNROUT of three denoising approaches at
various SNR levels to determine the effectiveness of the
proposed technique. Fig. 8 demonstrates the comparison of
SNROUT across different SNR levels. A lower SNRmakes the
synthetic signal susceptible to more random noise. As shown
in Fig. 8, the SNROUT value demonstrates a positive correla-
tion with the SNR levels across all three denoising methods.
We have observed that the proposed method attains better
denoising capability and extracted the signal information
efficiently.

B. REAL SIGNAL
For the real seismic signal, we chose the real data from
the Pacific Earthquake Engineering Research Center (PEER)
ground motion database [41], as shown in Fig. 9(a). Seismic
data can have varying levels of SNR due to factors like
acquisition methods, geological conditions, and processing

FIGURE 8. Comparison of SNROUT with different SNR levels for the
synthetic signal.
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techniques. Thus, incorporating the AWGN into the real
signal yields a noisy seismic signal with an SNR of 4 dB,
illustrated in Fig. 9 (b). Reducing noise in seismic signals
can be challenging due to background noise obscuring the
valuable signal information.

FIGURE 9. (a) Real signal (b) contaminated with AWGN noise.

Fig. 10 demonstrates the convergence curve for the real
signal, presenting a comparison between the HBA and PSO
methods. After thoroughly analyzing the results, it becomes
clear that HBA surpasses PSO regarding fitness value. It is
evident that HBA reaches its optimal fitness value at the
10th iteration, whereas PSO achieves its best fitness value at
the 40th iteration.
Additionally, it is important to highlight that HBA out-

performs PSO with a significantly lower MSE value of
0.0421854. The most appropriate premise and consequence
parameters of ANFIS are determined through a comprehen-

FIGURE 10. Convergence curve of HBA and PSO algorithms for the real
signal.

sive analysis of the data. Thus, an optimal FIS is established
through a thorough analysis, allowing for the extraction
of the seismic signal from the corrupted data with great
effectiveness.

In the proposedmethod, we varied themother wavelets and
quantitatively compared their denoising capabilities in real
signals. The quantitative measures tabulated in Table 3 show
that the sym wavelet attains a higher SNROUT and minimum
MSE than the other mother wavelet. Also, the symwavelet has
been chosen for its superior symmetrical properties compared
to the db wavelet [42].

TABLE 3. Evaluation parameters for various mother wavelets for the real
signal.

Therefore, the symwavelet is chosen as the mother wavelet
for the decomposition process. Similarly, the level of decom-
position is varied and the quantitative measures are presented
in Table 4, indicating that the fourth level decomposition level
achieves the lowest MSE and higher CC compared to other
decomposition levels.

TABLE 4. Evaluation parameters for various levels of decomposition for
the real signal.

Similarly, HT and ST are applied and the results are
compared with the Li et al. [38] thresholding function. The
denoised results are presented in Table 5, demonstrating that
the OANFIS WT achieves higher SNROUT and low MSE
compared to the HT and ST methods.

TABLE 5. Denoising evaluation parameters of the real signal with hard
and soft thresholding.

Since, we found that the sym11 mother wavelet and
fourth level of decomposition achieve superior denoising
capabilities than the other counterparts. Therefore, we used
the same in the proposed OANFIS WT approach.

Further, to validate the efficacy of our proposed method,
we compare our methodwith two contrastive denoisingmeth-
ods [8], [10]. The results of different approaches are displayed
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in Fig. 11. It is evident that the contrastive methods elimi-
nate the random noise. However, this process also disrupts
some relevant signals and causes the inadequate indications to
appear inaccurate. A thorough analysis of the results indicates
that the proposed OANFISWTmethod surpasses the existing
methods in processing real seismic signals. It is particularly
notable in its ability to effectively attenuate the random noise
and preserve the relevant signal information, as illustrated
in Fig. 11.

FIGURE 11. Denoised outputs of various methods in the real signal.
(a) EMD DWT. (b) VMD DWT. (C) Proposed method (OANFIS WT).

Furthermore, Table 6 shows the comparative analysis of
various denoisingmethods for the real signal using evaluation
parameters. It is noted that the proposed technique attains a
minimum MSE value and higher SNROUT than the existing
methods. Also, it is evident that the SNROUT value is posi-
tively correlated with the SNR levels for all three denoising
methods, as depicted in Fig. 12. We found that our proposed
method is robust and effective in mitigating the random noise
in the seismic signal.

TABLE 6. Denoising evaluation parameters of the real signal.

IV. DISCUSSION
One important aspect to consider when evaluating adaptive
filter methods is their ability to track changes, the level of
steady-state error, and the speed at which they converge.
However, the step size is a crucial parameter in an adaptive
filter. The adaptive algorithms with the highest filter order
outperform each other, resulting in intricate filter structures.
Additionally, the computational complexity of updating the
step size with respect to time is quite high, as it requires sev-
eral parameters. Thus, many researchers have employedANC

FIGURE 12. Comparison of SNROUT with different SNR levels for the real
signal.

based on ANFIS to suppress the noise in the signal. In this
work, we have proposed OANFIS to address the challenge
of unwanted noise in seismic signals. The premise and con-
sequence parameters of ANFIS are determined optimally to
improve the denoising performance using the HBA optimiza-
tion process. Since the extracted signal from OANFIS might
have some noise due to an unknown level of noise attributes
in the contaminated seismic signal, it may be beneficial
to employ wavelet thresholding techniques to remove the
noise. Thus, we have put forward a hybrid framework (OAN-
FIS WT) to address the issue of random noise in seismic
signals.

We will discuss the key points of the proposed method
from four different perspectives. First, in this work, ANFIS
acts as an adaptive self-tuning filter which does not require
the noise attributes signal as a reference signal to extract the
relevant information from the corrupted seismic signal. Here,
the corrupted seismic signal with a necessary delay is pro-
vided as a reference signal to the ANFIS in order to acquire
the relevant signal. Second, it is important to note that the
ANFIS algorithm requires premise and consequence param-
eters. However, it is worth mentioning that these parameters
are of a derivative type, which can potentially lead to getting
stuck at a local minimum. Thus, we have optimized the
two parameter sets using HBA optimization. Third, the WT
eliminates the remaining noise in the signal extracted by
OANFIS. In WT, two adjusting parameters, α and β, play
a crucial role in fine-tuning the overall speed and growth
rate of the thresholding function. This improved thresh-
olding function allows for easily adjusting the adjustable
parameters between the traditional thresholding functions.
Finally, through a meticulous examination of various meth-
ods, the OANFIS WT method has proved to be highly
effective in preserving signal information and reducing ran-
dom noise. Thus, the proposed method successfully achieves
adequate denoising outcomes by effectively reducing random
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noise while preserving the important details of seismic
signals.

V. CONCLUSION
In this article, we proposed a hybrid workflow that effec-
tively attenuates the random noise using OANFIS and WT.
We initially enacted the ANFIS as an ANC to acquire perti-
nent information from the contaminated signal. Here, ANFIS
operates as an adaptive self-tuning filter because it determines
the appropriate signal information without prior knowledge
of the noise in the contaminated signal. Next, the premise and
consequence parameters of ANFIS were determined based
on the noise attributes using HBA optimization because the
standard hybrid process in ANFIS may be trapped at a local
minimum, which may fail to approximate the signal informa-
tion. Then, we applied OANFIS to determine the appropriate
signal information. However, some residual noise might still
be present in the extracted signal. Thus, we employed WT
to process the extracted signal using different values for
the thresholding functions’’ adjusting parameters to reduce
random noise effectively. It should be mentioned that the pro-
posed hybrid workflow adopted two parameter sets optimally
and applied WT to remove the random noise and preserve
valid seismic information. This approach prevents ineffective
denoising by not relying entirely on one adjustable parameter.
Based on the experimental outcomes on both the synthetic
and real seismic signals, it can be concluded that the pro-
posed workflow is highly effective in reducing random noise
and preserving relevant signal information, surpassing other
contrastive methods.
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