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ABSTRACT Continuous advancements in deep learning are affecting various research areas, especially
research on applications in the medical sector. A computer-aided diagnosis system that utilizes deep learning
is used for classifying and detecting brain tumors in magnetic resonance imaging. Regarding brain tumors,
the main diagnostic indicators are patient symptoms and outcomes of magnetic resonance imaging. Frequent
changes in the symptoms of these tumors have raised serious concerns about potential misdiagnoses.
Implementing computer-aided diagnosis systems can support diagnostic methods that rely on the visual
assessments of physicians, potentially reducing misdiagnosis rates. In this study, we propose an enhanced
computer-aided diagnosis algorithm that is optimized for brain tumor classification. We removed noise
from the magnetic resonance imaging results by applying Gaussian filters, and we employed GridMask
to improve the generalization performances of the deep learning models. Then, we applied Patterned-
GridMask, which is a method we proposed to reduce the issue of brain tumors being obscured by standard
GridMask. Under the application of Patterned-GridMask, a performance improvement of up to 6% was
demonstrated across the four deep learning models used in the experiments: ViT-B/16, MaxViT-B, TresNet-
M, and EfficientNetV2-M, with the highest performance being represented by an accuracy and F1-score of
97.74% and 97.75%, respectively. Using the proposed computer-aided diagnosis system, improved diagnosis
results can be obtained, thereby resulting in more accurate rates of early detection, better patient outcomes,
and more appropriate treatment selection.

INDEX TERMS Brain tumor, classification, computer-aided diagnosis system, deep learning, magnetic
resonance imaging, Patterned-GridMask.

I. INTRODUCTION
The brain is a vital organ that controls the central nervous sys-
tem. It consists of six structures: the cerebrum, cerebellum,
spinal cord, medulla oblongata, midbrain, and diencephalon.
Each part of the brain regulates body movement, behavior,
and stability. Additionally, these parts are responsible for
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various functions such as cognitive reasoning, emotional reg-
ulation, memory, and learning [1].

Brain tumors are tumors that arise within the cranial
cavity. Unlike other types of cancers, brain tumors are not
classified by stage because they rarely metastasize to other
organs. Since these tumors growwithin the confined spaces of
skulls, an increase in tumor volume, which leads to elevated
pressure, is considered the most critical factor contributing
to worsening symptoms. Such elevated intracranial pressure
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initially manifests as headaches and vomiting. Further pres-
sure build-up that compresses the surrounding nerves can
result in paralysis and impaired physical activity [2], clearly
emphasizing the life-threatening nature of brain tumors and
the importance of early diagnosis and prompt treatment.

Progress in medical technologies has enabled the exten-
sion of the survival durations for various types of cancer
through various therapeutic interventions. However, in cases
where cancer persists over a prolonged period without being
resolved over a prolonged period, it frequently metastasizes
to the brain.

Additionally, as people age, they face an increasing risk of
exposure to brain tumors, which tend to occur at older ages.
According to the 2020 Cancer Registration Statistics from
the Korean Statistical Office, the incidence of brain tumors
has sharply increased from 45–49, with the highest incidence
observed in the age group of 60–64 [3]. Fig. 1 depicts the
number of brain tumor cases by age. Furthermore, cancer
statistics from the National Brain Tumor Foundation indicate
that by 2023, approximately 18,990 deathswill be attributable
to brain tumors. Significantly, brain tumor-induced deaths are
projected to be the 10th leading cause of cancer-related deaths
in all age groups [4].

FIGURE 1. Incidence of brain tumor by age group in Korea.

Advancements in deep learning technology have led to
significant increases in its application in medical imag-
ing [5]. Computer-aided diagnosis (CADx) systems, which
exhibit high accuracy and auxiliary capabilities, have greatly
aided in medical diagnoses. Additionally, they have enabled
more precise and early diagnoses of brain tumors, support-
ing preventions of tumor growth and metastasis, preserva-
tion of brain function, and avoidance of treatment-related
complications.

Research on brain tumor classification using deep learning
has been actively conducted. In their brain tumor classifi-
cation study, Zahid et al. [6] proposed a CNN-based brain
tumor classification model for classifying glioma, menin-
gioma, pituitary tumors, or the absence of a tumor. They
employed Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) in the preprocessing stage to enhance image

quality. While the reliability of the model was enhanced
through the implementation of 5-fold cross-validation.
Alsaif et al. [7] developed a brain tumor classification deep
learning network with an improved ResNet50 architecture,
incorporating data augmentation techniques such as flipping,
rotation, and translation. Abdullah et al. [8] proposed an
enhanced Fine-tuned ResNet50 and U-Net model based on
CNN for tumor segmentation in brain tumor MRI images.
Their model classifies between normal and abnormal, and
for abnormal cases, segments the tumor, achieving com-
prehensive brain tumor detection based on high accuracy.
Kumar et al. [9] propose an automatic glioma segmentation
model based on a deep neural network (DNN) using the
Double ConvNet (DCN) architecture in their brain tumor
segmentation research.

Beyond brain tumors, Murtaza et al. [10] developed the
Biopsy Microscopic Image Cancer Network model, which
utilizes feature reduction schemes to classify breast cancer
into eight different subtypes. Göreke et al. [11] proposed a
computer-aided diagnostic system using a multi-layer deep
neural network that classifies benign and malignant thyroid
nodules by extracting the region of interest of the nodules
from the radiographic images. Gopinath et al. [12] intro-
duced a lung-cancer classification model using deep learning.
They applied noise reduction through a filter application and
performed contrast enhancement to enhance the ability of
the deep learning model to detect abnormalities. Addition-
ally, they combined a generative adversarial network and
mask region-based convolutional neural network techniques.
These examples demonstrated the effective utilization of deep
learning based CADx systems in the medical field.

In this study, we propose a deep learning model-based
CADx system for classifying the magnetic resonance imag-
ing (MRI) results of brain tumors. To the best of our knowl-
edge, this is the first study to propose an CADx system that
has been specifically optimized for brain tumor classification.
We classified gliomas, meningiomas, and normal and pitu-
itary tissues. Gaussian filters were applied for noise reduction
in MRI. Experiments were conducted with various combina-
tions of kernel size (k) and standard deviation (σ ) to adjust
the blurring intensity. Then, the generalization performance
and robustness of the deep learning model were enhanced
using Patterned-GridMask, which is a method we proposed
to overcome the limitations of the standard GridMask tech-
nique. Patterned-GridMask applies a mosaic-patterned mask
to rectangular regions at 1-pixel intervals. Regarding these
two enhancement techniques, experiments were conducted
with various combinations of parameters, including d1, d2,
and ratio, which determined the size and distribution of the
rectangular areas used for information removal. Focusing
on these methods, we propose a brain tumor classification
algorithm that employs this novel enhancement technique
to improve the classification performances of different deep
learning models.

The rest of the manuscript is organized as follows.
Section II describes the dataset, performance enhancement
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techniques, and deep learning models used in the proposed
study. Then, section III presents the results of classify-
ing different tumors in brain tumor MRI using the pro-
posed technique. Finally, section IV provides the concluding
remarks.

II. MATERIALS AND METHODS
A. DATASET CONFIGURATION
In this study, the Brain Tumor MRI Dataset provided by
Nickparvar [13] was utilized. This dataset is a combina-
tion of three datasets: the ‘‘Brain Tumor’’ dataset provided
by Cheng [14] that is publicly available on Figshare, the
‘‘Brain Tumor Classification (MRI)’’ dataset provided by
Bhuvaji [15] on Kaggle, and the ‘‘Br35H: Brain Tumor
Detection 2020’’ dataset provided by Hamada [16].
It includes glioma, meningioma, normal tissue, and pituitary
tissue classes for use in brain tumor MRI scans. Overall,
the three datasets contained 7,023 images, which com-
prised 1,621, 1,645, 2,000, and 1,757 images of the glioma,
meningioma, normal tissue, and pituitary tissue classes,
respectively.

This merged dataset, which brings together three sepa-
rate sources, was carefully preprocessed prior to its use in
our study to reduce discrepancies among the datasets and
promote a more stable learning process. First, images with
resolutions below 224 × 224 px, which might not contain
sufficient information for effectively training deep learn-
ing models, were removed. Second, all the images were
converted into lossless and uncompressed BMP formats to
minimize potential information loss during dataset refine-
ment. Third, channel standardization was applied to all the
images, and sizes of the images was standardized to a reso-
lution of 224 × 224 px. In this process, image resizing was
performed using the area interpolation method to maximally
preserve information. After implementing these steps, the
distribution of the images was adjusted to achieve a balance
among all the classes.

Using the class with the lowest number of images
(1,200 normal tissue images) as a reference, 1,200 images
were randomly selected from the dataset for each of the
other classes. Consequently, each class in the constructed
dataset contained 1,200 images. This dataset was randomly
divided to create 3-fold sets with a 5:5 ratio for training and
testing. Validation data within the training set were used in an
8:2 ratio. The final composition of the dataset that was used
in this study is presented in Table 1.

B. ENHANCEMNET TECHNIQUES
1) NOISE REMOVAL FROM MRI SCANS OF BRAIN TUMORS
Since MRI utilizes a powerful magnetic field to generate
images, nonuniform magnetic fields or external noise occur-
ring around the human body during imaging can introduce
unnecessary noise into images [17]. The presence of such
noise in an MRI scan used for training deep learning models
can potentially distort the features of objects or even impact

TABLE 1. Dataset composition used in the proposed study.

the training results. This concern can be addressed by remov-
ing any noise generated during medical image acquisition,
thereby assisting deep learning models in capturing object-
specific features [18].

We applied a Gaussian filter to remove noise from MRI
scans of brain tumors. When a Gaussian filter is applied to
an image, any existing noise is reduced by minimizing the
differences between each pixel and its neighboring pixels.
Additionally, the overall image is smoothened, preventing the
deep learning model from focusing excessively on specific
areas during training. A Gaussian filter is based on a nor-
mal distribution and can be adjusted using parameters such
as kernel size (k) and standard deviation (σ ). The kernel
size (k) determines the filter dimensions, with a larger kernel
size indicating that the filter accounts for more surrounding
pixels. Regarding the standard deviation (σ ), it determines
the weight distribution of the filter, with a larger standard
deviation indicating a wider Gaussian distribution, which
results in a stronger blurring effect [19]. In this study, we con-
ducted a performance comparison under various conditions.
We applied a combination of kernel (k) values of 3, 5, and
7 along with standard deviations (σ ) ranging from 0.1 to
5.0 to obtain the optimal filter specifications for enhancing
the classification performances of deep learning models for
brain tumor MRI scans. Fig. 2 shows the blurring intensity of
the Gaussian filter, which was applied to the MRI scan of a
brain tumor, according to different kernel sizes and standard
deviations.

2) PATTERNED-GRIDMASK
GridMask was applied during the training process to enhance
the performances of the deep learning models for classifying
the MRI scans of brain tumors. This technique overcame
the limitations of conventional information deletion methods
such as random erasing, cutout, and hide-and-seek, which
either covered objects completely or eliminated only the
background [20], [21], [22], [23]. Additionally, it deleted
regions corresponding to the uniformly distributed rectan-
gular areas in an image. The deleted rectangular areas were
filled with zeros and contained no relevant information.
When trained on images obscured by the rectangular regions
of GridMask, the deep learning models could perform
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FIGURE 2. Blurring intensity of gaussian filter according to kernel size and standard deviation.

classifications even when there was any loss of image
data, resulting in them exhibiting enhanced generalization
and robustness against various patterns and transformations.
Overall, GridMask yielded a higher performance while being
more straightforward in its approach and computationally less
expensive than commonly used augmentation techniques,
exhibiting an improved generalization capability and prevent-
ing overfitting [24].

The size and density of the rectangular regions obscuring
the image were determined by the three parameters d1, d2,
and ratio. When a rectangle with one side ranging from d1 to
d2 was generated, the size and density of the obscured area
within the rectangular region were determined by the ratio
that represents the proportion of unobscured areas. Since the
performance varied based on the parameter values, the appro-
priate values needed to be applied depending on the employed
dataset. Therefore, we conducted additional experiments for
the four types based on these three parameters. We adjusted
the parameters based on the size of the rectangular area and
the nature of the distribution. For small rectangular regions
with a narrow distribution, the parameters were d1 = 14,
d2 = 28, with a ratio of 0.5. When these small regions had
a wide distribution, we set d1 to 28, d2 to 56, and the ratio to
0.75. In larger rectangular regions with a narrow distribution,
the parameters were d1 = 28, d2 = 56, with a ratio of 0.5.
When the distribution was wide in these larger regions, the
settings were adjusted to d1 = 56, d2 = 112, and a ratio of
0.75. Examples of GridMask being applied for different rect-
angular areas and distributions of images are shown in Fig. 3.

GridMask is a technique developed to achieve a reason-
able balance between deletion and reserving of training data,
drawing motivation from information deletion methods such
as cutout and hide-and-seek (HaS) [25], [26]. Fundamentally,
its aim is to enhance performance through a regulated deletion

that belongs neither to excessive deletion nor to exces-
sive reservation. However, although the rectangular areas
under standard GridMask follow a consistent distribution, the
important details of an object can sometimes be hidden. In the
context of brain tumor MRI, if the tumor is hidden, the image
will appear normal, while the label still indicates a brain
tumor. This discrepancy can cause significant loss during the
training of the deep learning model, potentially leading to
a decline in accuracy rather than improved generalization.
Therefore, in the case of medical data, where features of
specific areas are relatively important, even regulated deletion
could become excessive deletion.

Consequently, in the Patterned-GridMask approach,
instead of completely nullifying any information by filling
the rectangular region with zeros, a mosaic pattern with
1-px intervals was applied. In this approach, values alternated
between 0 and 1 at these intervals, with 0 representing the
black regions with erased information and 1 representing
the images that had retained their original features. While
this approach is based on GridMask deletion, it is not about
complete deletion. Instead, it can be seen as a distortion of
certain areas, similar to the Patch Gaussian method, which
aids in creating a more robust model [27]. This highlighted
that the method retains essential information, even when the
rectangular region obscures crucial object features. Conse-
quently, it facilitates a more durable training process for deep
learning models. The distinctions between the traditional
GridMask and Patterned-GridMask approaches are depicted
in Fig. 4.

C. DEEP LEARNING MODELS
In this study, we developed an enhanced brain tumor MRI
classification CADx system; ViT-B/16 was used as the
baseline deep learning model for performance evaluation.
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FIGURE 3. Comparison of GridMask size and distribution determined by
coverage area (ratio) and side length (d) in brain tumor MRI.

Different performance-enhancement techniques were vali-
dated across three deep learning models. The additional deep
learning models that were used included the CNN-based

FIGURE 4. Characteristics of GridMask and Patterned-GridMask.

EfficientNetV2-M and TresNet-M and the transformer-based
MaxViT-B. Overall, two CNN-based and two transformer-
based deep learning models, including ViT-B/16, were used
for performance comparison. We applied different combi-
nations of techniques to the four deep learning models to
evaluate the performance of each combination. All per-
formance evaluations were further validated with 3-fold
cross-validation for increased accuracy.

1) VIT-B/16
The vision transformer is a deep learning model that applies
the transformer architecture, which was developed for nat-
ural language processing, to the field of image processing,
in which it exhibits a remarkable classification performance.
While conventional transformers accept 1-dimensional token
embeddings as input sequences, the vision transformer pro-
cesses 3-dimensional images by converting them into patch
formats and then into 1-dimensional vectors. Additionally,
position embeddings are applied to preserve the positional
information in the images. The resulting final embedding
vectors are passed through multi-headed self-attention layers
to extract information, followed by a multilayer perceptron
for image classification. The pivotal self-attention mecha-
nism calculates attention weights by generating query, key,
and value vectors for each input sequence and computes
the similarity between the query and key. This technique
captures the interdependencies among sequences, leading to
a performance that is greater than that of conventional CNN
architectures [28].

2) MAXVIT-B
Conventional vision transformers use self-attention to learn
the interdependencies among input data and detect distinc-
tive patterns and relationships. The overall architecture of
MaxViT resembled that of ViT, with the exception of the
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block module, which comprised these three components:
MBConv, Block Attention, and Grid Attention.

MaxViT uses a novel approach called multi-axis atten-
tion, instead of the conventional self-attention mechanism,
to handle the global context more efficiently for an entire
image [29]. This approach addresses the issue of complex-
ity regarding applying self-attention across the entire space
in traditional ViT by dividing the computations into local
attention and grid attention. Notably, this method allows the
deep learning model to capture the overall image features
regardless of the image size, while ensuring that local features
are not overlooked.

3) EfficientNetV2-M
EfficientNetV2, which prioritizes a fast-training speed, is a
successor to EfficientNetV1, which was designed to be
smaller and faster. EfficientNetV2 introduces progressive
learning, fused-MBConv, and nonuniform scaling techniques
to enhance the training speed. Progressive learning gradually
increases the image size during training, thereby overcom-
ing the need for small batch sizes when training with
large images. Fused-MBConv replaces the 1 × 1 conv
and 3 × 3 depthwise conv of MBConv with a single
3 × 3 conv. Additionally, nonuniform scaling optimizes the
training speed by progressively increasing the number of
layers with stage advances, rather than uniformly scaling
all the stages. By leveraging these techniques, the Efficient-
NetV2 deep learning model achieved an optimal performance
with fewer parameters, exhibiting an ImageNet Top-1 accu-
racy of 83.9%, which indicated an efficient and effective
performance [30], [31].

4) TResNet-M
ResNet, which was designed with iterative residual blocks,
is a deep learning model that can achieve a high accuracy
despite having a deep network. TResNet, which is based on
ResNet50, aims to reduce graphical processing unit (GPU)
processing while simultaneously enhancing accuracy [32].
To achieve this, the traditional Conv7×7 stem is replacedwith
a stem composed of three Conv3×3 layers, reducing the input
resolution by four times and improving the accuracy [33].
Furthermore, to reduce the GPU memory usage and effi-
ciently increase the batch size, the BatchNorm+ReLU layer
is replaced with an Inplace-Activated BatchNorm layer. The
leaky-rectified linear unit (ReLU) activation function is used
instead of the traditional ReLU to achieve a higher accuracy
at the same level of GPU memory consumption. In the block
structure segment, BasicBlock layers with a larger receptive
field are positioned in the initial two stages of the network,
whereas bottleneck layers are placed in the last two stages to
enhance both speed and accuracy.

III. RESULTS
In this study, we used deep learning models to classify
glioma, meningioma, normal tissue, and pituitary tissue in
brain tumor MRI scans. We primarily chose ViT-B/16 for our

experiments owing to its decent performance and common
use as a baseline deep learning model for classification.
Additionally, we utilized the MaxViT-B, TresNet-M, and
EfficientNetV2-M deep learning models to accurately eval-
uate the proposed method. All the deep learning models
utilized in this study had been pretrained on ImageNet-21K.

A performance evaluation in terms of the accuracy and
F1-score was conducted using a confusion matrix.
Equations (1) and (2) mathematically represent each perfor-
mance metric:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(1)

F1 − score =
Precision× Recall

2 (Precision+ Recall)
(2)

where TP, TN, FP, and FN represent the instances where
positive samples are correctly identified as positive, negative
samples are correctly identified as negative, negative samples
are incorrectly identified as positive, and positive samples are
incorrectly identified as negative, respectively.

In this study, Gaussian filters were applied to remove noise
from brain tumor MRI scans to enhance the performance.
These filters differed in strength based on the kernel size
and standard deviation. We applied various combinations
of parameters to the brain tumor MRI scans to evaluate
their impact on performance. Table 2 presents a compre-
hensive comparison of the performances at different kernel
sizes and standard deviations. All the reported results rep-
resent averages of the 3-fold, with the best values denoted
in bold. GridMask was applied to enhance the generaliza-
tion performance of the deep learning model and improve
its adaptability across various images. The performance of
GridMask was influenced by the size and spacing of the
rectangular regions in which the mask had been applied.
We conducted four experiments in which the parameters
mentioned in section II-B2, namely the sizes d1 and d2
and the density ratio of the rectangular distribution, were
varied. GridMask was applied to the images processed by
Gaussian filtering. The experimental results were computed
as averages from the 3-fold experiments; they are presented
in Table 3, with the values in bold indicating the highest
performances.

Table 4 presents the original metrics of the ViT-B/16model
along with the performance metrics obtained after applying
the Gaussian filter, GridMask, and the proposed Patterned-
GridMask, while noting that the Patterned-GridMask was
applied independently from the GridMask. The results
revealed that applying the Gaussian filter and GridMask
had yielded significant performance improvements. When
the Gaussian filter was applied, the F1-score of 86.63 had
increased to 90.18, indicating a substantial increase of 3.55.
Moreover, the integration of GridMask with the images
preprocessed using a Gaussian filter resulted in an F1-score
of 91.93, which was 1.75 higher than the score obtained
when just the Gaussian filter had been applied. Additionally,
as shown in Table 4, combining the Gaussian filter with
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TABLE 2. Performance comparison based on the application of gaussian filter (ViT-B/16).

TABLE 3. Performance comparison based on the size and distribution of
GridMask (ViT-B/16).

TABLE 4. Comparison of brain tumor classification performance based
on applied methods (ViT-B/16).

GridMask resulted in a greater performance improvement
than that obtained when applying just GridMask. Further
experiments confirmed the same, indicating that apply-
ing both Gaussian filter and GridMask would be more
effective for brain tumor classification. Moreover, Patterned-
GridMask, which is our refined version of GridMask,
demonstrated an exceptional performance, with an F1-score
of 92.08.

To validate the effectiveness of the proposed method
for brain tumor classification, we conducted additional
experiments using CNN-based deep learning models,
including EfficientNetV2-M and TResNet-M, and the
transformer-based model MaxViT-B. These three deep learn-
ing models, which had been pre-trained on the same dataset
as that used for training ViT-B/16, were selected as the deep
learning models in the study. The overall performances of
the deep learning models after applying different methods,
including the proposed Patterned-GridMask, are presented in
Table 5, where the highest performance is indicated in bold.

Clearly, the transformer-based deep learning models,
specifically ViT-B/16 and MaxViT, exhibited greater
improvements in performance than the CNN-based deep
learning models, namely EfficientNetV2-M and TResNet-M,
did after applying the Gaussian filter. This was attributed to
the inherent attention mechanism of transformer-based deep
learning models, which leverages attention to capture the
interactions among input sequence elements, facilitating fea-
ture extraction and global information comprehension. Con-
sequently, applying a Gaussian filter was more effective in
reducing the global noise of transformer deep learning mod-
els. Regarding CNN-based deep learning models, which are
more specialized in capturing local features, they displayed
relatively modest performance enhancements, which was
attributed to the localized nature of their feature extraction.

Table 5 and Fig. 5 show that the combination of
Patterned-GridMask and the Gaussian filter produced greater
improvements in the performances of the four deep learning
models than that produced by the combination of GridMask
and the Gaussian filter. These improvements achieved by
masking portions of the image can be likened to the effect
of masked autoencoders, which train a deep learning model
to predict obscured parts by masking certain sections of
the input image [34]. Similarly, by masking certain parts
of the objects, both GridMask and Patterned-GridMask can
enable deep learning models to capture object features more
effectively, providing a form of regularization that can
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TABLE 5. Performance evaluation based on four classification models and applied methods.

FIGURE 5. Performance comparison according to classification models and applied methods.

enhance the generalization capabilities of deep learning mod-
els. Compared to the approach of the original GridMask,
which simply removes the information in rectangular pat-
terns, Patterned-GridMask offers a more detailed approach
that minimizes the loss of essential information when mask-
ing vital features, achieving a balance between maintaining
the crucial details in an image and delivering the benefits
of data augmentation. Overall, the combined application of
the Gaussian filter and GridMask was effective in enhancing
the brain tumor classification performance, and integrating
Patterned-GridMask instead of GridMask further optimized
the performance.

IV. CONCLUSION
In this study, we proposed a CADx system algorithm
optimized for brain tumor classification. The proposed
Patterned-GridMask effectively overcame the limitations
of the original GridMask, which obscured brain tumors.
Applying Patterned-GridMask increased the performance
of the baseline deep learning model (transformer-based

ViT-B/16) by over 6%. Additionally, this approach demon-
strated the highest increase in performance on all the
additional validation deep learning models. Additionally, the
effectiveness of the proposed technique was validated using
the transformer-basedMaxViT-B andCNN-based TresNet-M
and EfficientNetV2-M. Despite the high accuracy of pre-
existing models, the proposed Patterned-GridMask elicited
consistent performance enhancements across all models,
thus substantiating the effectiveness of this method. Over-
all, the proposed technique can yield excellent performance
improvements in brain tumor diagnosis, minimizing the need
for invasive procedures and improving the survival rates of
people that are afflicted with it. Furthermore, it can be used as
a reference in developing other techniques that can improve
the classification performances of deep learning models in
fields related to medical diagnosis.

Although the proposed method exhibited significant per-
formance improvements, there are still areas for further
research. To address the limitations of scarce medical data,
we plan to implement various augmentation techniques. Our
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focus will not be on basic augmentation, but on methods that
maintain the unique characteristics of brain tumor images.
Second, we intend to apply the proposedmethod to other clas-
sification models to verify its performance. Since it showed
promising results when applied to the four deep learning
models in the study, we wish to also confirm its effectiveness
when applied to other deep learning models. Finally, we plan
to verify whether our method can produce similar perfor-
mance improvements on medical datasets other than those
of brain tumors, which includes investigating the optimal
parameter values for these datasets.
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