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ABSTRACT Advanced assistive devices developed for activities of daily living use machine learning (ML)
for motion intention detection using wearable sensors. Trunk assistive devices provide safety, balance, and
independence for wheelchair users individuals who spend prolonged hours in sitting positions. We used
ML for trunk movement intention detection with a trunk orthosis. Sensor fusion technique with four
electromyography (EMG) and one inertial measurement unit (IMU) sensor signals are used to develop
a three-level classification system. Forty participants engaged in seated trunk movement trials wearing
the orthosis. The trials comprised 30 movements involving trunk flexion/extension, lateral bending, and
axial rotation. The wrapper method was used to reduce essential EMG features. Ensemble (ES), k-nearest
neighbors (KNN), and support vector machine ML classifiers were used. Twenty-six features (five EMG
for each of four muscles and six for IMU) were used to develop ten individual ML models, resulting in an
average accuracy of 95.44%. Eight models achieved the highest accuracy with the ES and two with KNN.
The models were then cascaded to form a trunk motion detection system that achieved a test accuracy of
87.0%. The promising result of this study can be implemented for trunk motion recognition with active trunk
orthosis.

INDEX TERMS Electromyography (EMG), fall, IMU, intention, machine learning, movement, seated,
sensor fusion, trunk.

I. INTRODUCTION
Prolonged sitting of more than ten hours on a daily basis is
common among wheelchair users [1]. To prevent the devel-
opment of pressure sores, this prolonged sitting requires
frequent trunk movements for posture adjustment to shift the
person’s weight multiple times per hour [2]. The trunk is an
essential part of the kinematic chain that facilitates upper limb
movements for individuals in a seated position [3]. Therefore,
the daily life activities of wheelchair users rely on seated
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trunk movements as an indispensable component of their
functional mobility. An unstable trunk leads to lower func-
tional independence and a higher risk of accidental falls in
seated reaching movements from a wheelchair [4], [5]. Trunk
instability can be present in the elderly for whom movement
disorders are common [6], [7], [8] especially because of their
reduced control and strength during reaching movements [9],
as well as in people with neuromuscular disorders because of
their underlying condition [10].

Various trunk assistive devices can be used to enhance
the seated mobility [11], [12], [13], [14]. However, these
devices are limited in their ability to adjust the assistive force
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dynamically according to user needs. To provide dynamic
assistance and efficient interaction between the human and
the device, it is important to be able to detect motion
intention. Machine learning (ML) is a powerful tool that
can be utilized to detect trunk motion and predict useful
parameters. Trunk related studies that utilize ML techniques
include those for fall prediction in the elderly [15], trunk
muscle fatigue prediction [16], automatic detection of trunk
compensatory movements during seated tasks [17], [18], sco-
liosis classification [19], low back pain classification and
risk assessment [20], [21], [22], [23], and performance in
sports [24].

A few studies involve the use of ML for the control
of seated trunk assistive devices using electromyography
(EMG) and inertial measurement unit (IMU) sensors. Two
ML algorithms, the quadratic discriminant analysis and sup-
port vector machine (SVM), were used to classify 16 trunk
movements [25]. An active postural support brace was worn
while the participants made these seated trunk movements.
Data from the IMU sensors was used to detect the movement
intentions with accuracies of over 95%. Another study imple-
mented ML on EMG data to identify trunk movements for
the control of a spinal orthosis. The random forest, k-nearest
neighbors (KNN), and SVM ML algorithms were used to
distinguish between four daily movements and achieved
accuracies of more than 88% [26]. Additionally, the sensor
fusion technique [27] for combining EMG and IMU sensor
data is known to improve the performance of ML predic-
tions [28]. While it is commonly used for assistive devices
of the upper [29] and lower limbs [30], [31], sensor fusion
has not been applied to trunk assistive devices.

Therefore, this study aimed to utilize the sensor fusion
technique with data from EMG and IMU sensors for
trunk movement intention detection with the chair-mounted
passive trunk orthosis (CMPTO). The objectives were
to identify discriminative features, apply ML algorithms,
select suitable ML models, and develop a predictive
system that could classify 30 seated trunk movements.
This system can be implemented in an active version of
CMPTO that can assist trunk movements according to user
intentions.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Forty young, healthy males with an average age of 21.81 ±

3.13 SD years and an average body mass index of 22.92 ±

4.68 kg/m2 participated in this assessment. The research
adhered to the principles of the Declaration of Helsinki and
was approved by the Research Ethics Committee at the NED
University of Engineering & Technology. Additionally, it fol-
lowed specific exclusion criteria to account for the potential
impact of the neurological or neuromuscular systems on
movement. All participants provided written consent and
were informed about the study’ s design.

FIGURE 1. (a) Visual representation of the front and side views of the
chair-mounted passive trunk orthosis. (b) The sequence of stages in each
task: Extend, Reach, and Return.

B. EXPERIMENTAL PROCEDURE
Participants were fitted with the CMPTO (Figure 1a) while
seated [32]. They were asked to perform ten distinct tasks that
involved trunk flexion-extension (FE), lateral bending (LB),
and axial rotation (AR). Each task involved three stages:
(i) Extend, in which the upper limb extended towards the tar-
get with an unsupported upright trunk; (ii) Reach, involving
maximal trunk sway from the neutral upright posture; and
(iii) Return, involving returning to the resting upright position
(Figure 1b).

All tasks were performed in a seated position across five
horizontal orientations (0◦, 45◦, 90◦, 135◦, 180◦) using both
right and left upper limbs (Figure 2a). The tasks were carried
out in a random order to avoid influencing the results and
each participant conducted three trials, with a delay provided
according to their preference to mitigate fatigue effects. The
participants were given a familiarization session with the
experimental procedure and were instructed to perform each
movement to their maximum capability.

C. DATA COLLECTION
Figure 2b shows the IMU and EMG sensors on a participant’s
trunk. The IMU system (sampling frequency: 100 Hz; model:
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FIGURE 2. (a) Experimental setup (top view) showing the five horizontal
orientations of target locations (0◦, 45◦, 90◦, 135◦, 180◦) with respect to
the subject’s chair and the movements performed at each target with the
right and left upper limbs. (b) Placement of one IMU (white) and four
EMG (black) sensors on the participant’s trunk (rear-view). The EMG
sensors are labelled as RTES: Right Thoracic Erector Spinae, LTES: Left
Thoracic Erector Spinae, RLES: Right Lumbar Erector Spinae, LLES: Left
Lumbar Erector Spinae.

Awinda; manufacturer: Xsens, Enschede, The Netherlands;
manufacture year: 2019) was used to capture kinematic
data. A single IMU sensor was placed on the trunk mid-
line at the T9 spinous process. Moreover, the EMG system
(sampling frequency: 2048 Hz; model: Mobi; manufacturer:
Twente Medical Systems International (TMSi), Oldenzaal,
The Netherlands, manufacture year: 2016) was used to cap-
ture themuscle activity. The data from IMU and EMG sensors
were synchronized in time, thus allowing for fusion of both
sensor’s data representing concurrent movement and muscle
activity. The four muscles studied were the bilateral (right and
left) thoracic erector spinae (TES) muscles, and the bilateral
(right and left) lumbar erector spinae (LES) muscles. The
electrodes for the TES muscles were located 3 cm bilaterally
to the T9 spinous process and those for the LESmuscles were
located 3 cm bilaterally to the L4 spinous process. The ground
electrode was placed over the right iliac crest, following the
SENIAM guidelines.

D. DATA PREPROCESSING
We used a third-order Butterworth band-pass infinite impulse
response filter for the preprocessing of EMG signals to elim-
inate the electrocardiography noise (at 30 Hz) and power

frequency (at 50 Hz). The desired EMG signal was obtained
with a band-pass filter with cutoff frequencies of 20 Hz and
450 Hz. The EMG traces from all tasks were segmented into
three stages of 4 s each. Recognizing the stochastic nature of
EMG signals, we employed an analysis window rather than
relying on instantaneous values [33]. A 100 ms fixed-width
sliding window featuring a 50% overlap (205 samples per
window, totaling 40 windows) was used to calculate the
time-domain features for each stage.

The IMU sensor recorded 3-dimensional acceleration and
gyroscopic data at a frequency of 100 Hz. Each stage of the
task had a total duration of 4 s, accumulating 400 samples.
To make the IMU data consistent with the EMG data, these
400 samples were divided into 40 non-overlapping windows
containing 10 samples to obtain average values. All the data
were organized systematically so that for each participant,
there were 3600 data points (40 windows x 5 orientations x
2 limbs x 3 stages x 3 trials) of EMG and IMU data. Unfor-
tunately, because of a reduction in kinematic data readings
from the IMU sensor for two participants, the corresponding
EMG data had to be omitted. All data processing was carried
out using the MATLAB R2021a software (The Math Works
Inc., 2021).

E. MACHINE LEARNING AND FEATURE SELECTION
In this study, a comparative analysis of three classifiers is
conducted to develop robust machine learning (ML) models.
SVM [34], KNN [35], and ES [36] classifiers are chosen for
their widespread usage in EMG signal classification across
various applications, especially in neuromuscular and reha-
bilitation research. Through evaluating SVM, KNN, and ES
classifiers, we aim to identify the optimal classifiers for our
ML task.

It is essential to identify the most discriminating features
from the sensor data prior to applying sensor fusion and
ML classification. The six IMU features included were:
three accelerations, i.e., the mean acceleration in the x-axis
(mAccX), y-axis (mAccY), and z-axis (mAccZ) direction;
and three angular rotations, i.e., the mean rotation about the
x-axis (mGyrX), y-axis (mGyrY), and z-axis (mGyrZ). For
EMG data, the time domain features demonstrate a greater
degree of consistency in performance over an extended dura-
tion, and allow simple computation, low time consumption
compared to other domains, and better prediction accuracy
in clinical and rehabilitation applications [37], [38], [39].
Table 1 lists fifteen (15) EMG time domain features, along
with their mathematical equations, that were extracted from
each muscles’ EMG signal [39], [40]. This resulted in a
60-feature vector of EMG data. For feature reduction, the
wrapper method was applied to select the features having
the greatest effect on recognition. Each of the fifteen EMG
features from all four muscles were used for classification of
movement via our selected classifiers of ES, KNN, and SVM.
Table 1 also lists the accuracies obtained for each feature
with each of the three classifiers, as well as their average
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TABLE 1. EMG feature reduction with wrapper method. The names of
15 features along with their mathematical equations are given. The
accuracies obtained for them with the three classifiers support vector
machine (SVM), k-nearest neighbors (KNN), and ensemble (ES) are
shown. The five features that had the highest average accuracies were
selected, as shown in bold. Abbreviations: enhanced mean absolute value
(EMAV), enhanced waveform length (EWL), zero crossing (ZC), slope sign
change (SSC), root mean square (RMS), average amplitude change (ACC),
difference absolute standard deviation value (DASDV), log detector (LG),
modified mean absolute value 1 (MMAV1), modified mean absolute
value 2 (MMAV2), myopulse percentage rate (MYOP), simple square
integral (SSI), variance of EMG (VAR), Willison amplitude (WA), and
maximum fractal length (MFL).

TABLE 1. (Continued.) EMG feature reduction with wrapper method. The
names of 15 features along with their mathematical equations are given.
The accuracies obtained for them with the three classifiers support vector
machine (SVM), k-nearest neighbors (KNN), and ensemble (ES) are
shown. The five features that had the highest average accuracies were
selected, as shown in bold. Abbreviations: enhanced mean absolute value
(EMAV), enhanced waveform length (EWL), zero crossing (ZC), slope sign
change (SSC), root mean square (RMS), average amplitude change (ACC),
difference absolute standard deviation value (DASDV), log detector (LG),
modified mean absolute value 1 (MMAV1), modified mean absolute
value 2 (MMAV2), myopulse percentage rate (MYOP), simple square
integral (SSI), variance of EMG (VAR), Willison amplitude (WA), and
maximum fractal length (MFL).

accuracies. The features yielding an average accuracy of
greater than 50% across the three classifiers were chosen to
be used in sensor fusion. The five selected features selected
from the wrapper method were enhanced mean absolute
value, enhanced waveform length, average amplitude change,
difference absolute standard deviation value, and maximum
fractal length. The sensor fusion methodology consisted of
incorporating these five EMG features for each of the four
muscles and the six IMU features, resulting in a 26-feature
vector for classification.

F. CLASSIFICATION
A supervised ML approach was used to identify the patterns
within the IMU and EMG data for 30 different trunk move-
ments using the 26-feature sensor fusion vector. Figure 3
shows the ML models for the three-level classification per-
formed in order to obtain a better overall accuracy [25].
Each level of classification represents a unique aspect of
the movement, while together, the levels in can identify the
complete seated trunk movement. The first level determines
the stage of the trunk movement, and classifies data into the
three stages, Extend, Reach, and Return, using the Ex/Re/Rt
model. The second level determines the choice of upper
limb during the movement; therefore, the data is further
categorized into right or left upper limb movement using the
Ex-R/L, Re-R/L, and Rt-R/L models for the Extend, Reach,
and Return stages, respectively. The third level determines
the orientation of the movement, using six-ML models to
classify the data into orientations of 0◦, 45◦, 90◦, 135◦, and
180◦. All of the ten models in the three levels were trained
with each of the three ML classifiers (ES, KNN, and SVM)
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to obtain the optimum model exhibiting best classification
accuracy.

FIGURE 3. The three-level classification system. Level 1 classifies motions
into stages of extend, reach, and return; and has one model. Level 2
distinguishes between movements with the right or left upper limbs; and
has three models. Level 3 categorizes each movement into five
orientations; and has six models. The name of each model is highlighted
in black.

To evaluate the classification performance of these mod-
els, confusion matrices were used to depict the actual and
predicted classification results obtained with the three clas-
sifiers. The total dataset was segregated as 80% for training
the ML models and 20% for testing the best performing
models. To reduce overfitting in training the ML models,
a five-fold cross-validation method was used on the training
dataset using the Classification Learner App in MATLAB.
Themodels were trained to refine their performance and iden-
tify the optimal combination of hyperparameters to minimize
classification errors. The performance metrics obtained for
all ML algorithms were accuracy, precision, recall, and F1
score metrics, computed according to equations (1), (2), (3),
and (4), respectively. These metrics are averaged over the five
folds of training data subsets and are associated with true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN).

Accuracy =
TP+ TN

TP+ FP+ FN + TN
× 100% (1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 score = 2 ×
precisionxrecall
precision+ recall

(4)

In these equations, Accuracy is the comprehensive classi-
fication rate, assessing how effectively the classifier predicts
classes; Precision is the rate of accurately predicted classes;
and Recall is the proportion of correctly categorized positive
classes. The F1 score is the harmonic mean of precision
and recall, scaled by 2. This metric is particularly useful
for assessing prediction quality in scenarios with imbalanced
class distributions.

III. RESULTS
A. MODELS FOR THREE-LEVEL CLASSIFICATION
The models constructed in this study exhibited high levels of
accuracy, with average accuracies among the best-performing
ML classifiers being 90.89% for level 1, 98.53% for level 2,
and 96.90% for level 3. The average accuracy among all ten
models of all levels comes to 95.44%.

Figure 4 shows heatmaps for the four metrics obtained
for each of the three classifiers for each of the ten models.
The columns in heatmaps represent the classifier used, while
the rows represent each model. The color bar on the right
side gives the scale of the colors. A darker color represents
a higher metric value. The scale for ‘‘Accuracy’’ goes from
88% to 100%, while it is from 0.88 to 1.0 for the rest.

In the Level 1 classification, the Extend, Reach, and Return
stages are distinguished through model Ex/Re/Rt. The KNN
produced the best metrics for this model, with the precision,
recall, and F1 score metrics of 0.909. Figure 5 shows the
confusion matrix for this classification. The values along the
diagonal are the true positive rates (TPR), and the sums of
the misclassifications in each row are the false negative rates
(FNR). The color bar gives the range of colors for values
from 0 to 100%. The level 1 model had a TPR of 88.84% for
Extend, 95.06% for Reach, and 88.76% for Return. Notably,
the misclassification rates were lowest for the Reach stage,
with an FNR of 4.943% (3.915% + 1.028%), followed by
11.155% for the Extend stage and 11.238% for the Return
stage.

In the Level 2 classification, the movements of the right
or left upper limb were distinguished. Therefore, we had
three models at this level that represented the further classi-
fication of movements in Extend, Reach, and Return stages
as models Ex-R/L, Re-R/L, and Rt-R/L, respectively. All
three classifiers had excellent accuracies that are very close,
however, ES had the best metrics of all three models. The
best accuracies achieved were 97.85% for model Ex-R/L,
98.93% for model Re-R/L, and 98.81% for model Rt-R/L.
Their precision, recall, and F1 scores were the same across
the models, i.e., 0.979 for model Ex-R/L, 0.989 for model
Re-R/L, and 0.988 for model Rt-R/L. Figure 6 shows the
confusion matrices of this level, where Ex-R/L effectively
achieved TPRs of 98.1% and 97.59%, with misclassifications
represented by FNRs of 1.902% and 2.41% for the right
and left limbs, respectively. Likewise, model Re-R/L attained
TPRs of 99.33% and 98.54%, with misclassifying repre-
sented by FNRs of 0.6684% and 1.46% for the right and left
limb, respectively. Lastly, for the Return stage model Rt-R/L,
the TPRs were 98.88% and 98.75%, with misclassifications
represented by FNRs of 1.123% and 1.251% for the right and
left limbs, respectively.

In the Level 3 classification, the five orientations were
distinguished as 0◦, 45◦, 90◦, 135◦, and 180◦. Since there
were three stages and two upper limb cases, this led to six
combinations, and therefore, we had six classification models
at this level. The Ex-R-Ori, Ex-L-Ori, Re-R-Ori, Re-L-Ori,
Rt-R-Ori, and Rt-L-Ori models achieved highest accuracies
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FIGURE 4. Heat maps of classification metrics for all ten models for each of the three classifiers: (a) accuracy, (b) recall, (c) precision, and
(d) F1 Score.

FIGURE 5. Level 1 confusion matrix for Ex/Re/Rt model with SVM
classifier. The color bar range is 0 to 100%.

of 93.56%, 98.93%, 97.10%, 96.09%, 98.10%, and 97.59%,
respectively. Model Ex-R-Ori had the best performance with
KNN, while model Ex-L-Ori had a tie between ES and KNN.

The remaining models had the best performance with the ES
classifier.

The precisions, recall, and F1 scores were the same across
the models as 0.935, 0.989, 0.971, 0.961, 0.981, and 0.976 for
models Ex-R-Ori, Ex-L-Ori, Re-R-Ori, Re-L-Ori, Rt-R-Ori,
and Rt-L-Ori, respectively. Figure 7 shows the confusion
matrices of all the level 3 models, where the color bar rep-
resents the color range of 0 to 100% for each model.

B. CASCADED CLASSIFICATION
The cascaded classification refers to the utilization of the
three-level classification system, as depicted in Figure 3,
in order to fully identify the seated trunk movement. The ten
selected models having highest individual accuracies are put
together to test the data classification accuracy. Table 2 shows
the hyperparameters of the ten selected models along with
their relevant parameters. Two models used KNN, while the
other eight models used ES.

The testing was done using the initially segregated 20%
testing data from the original dataset. Thus, testing is done
on new data that is not used in training. In cascaded
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FIGURE 6. Level 2 confusion matrices for models (a) Ex-R/L, (b) Re-R/L,
and (c) Rt-R/L. Each model used the ES classifier. The color bar range is
0 to 100%.

classification, all data passes through three models, i.e., one
in each level of classification. Level 1 is comprised of a single
model; therefore, every data passes this model. Based on the
classification output of level 1 model, the data passes through
one of the level 2 models. Similarly, based on classification
output in level 2, the data passes through one of the level 3
models. Finally, the movement is identified based on the
classification outputs of all three levels.

The overall accuracy achieved in the cascaded classifica-
tion was found to be 87.0%. Figure 8 shows the confusion
matrix for cascaded classification. The vertical and hori-
zontal lines separate the stages for better understanding.
The boxes in the diagonal of the figure show the true

TABLE 2. Hyperparameter settings for various classification models.

classification, whereas other boxes represent misclassifica-
tions. Misclassifications that form diagonal pattern, show
stage misclassifications, while those close to the central diag-
onal result from orientation misclassification.

IV. DISCUSSION
The present study aimed to develop a system for automati-
cally detectingmotion intention in seated individuals utilizing
a trunk orthosis CMPTO. EMG and IMU sensor data were
used to represent muscle activity and motion kinematics,
respectively. The findings of this study have promising impli-
cations for the development and implementation of an active
orthosis for enhancing seated trunk movements and prevent-
ing falls.

A. PERFORMANCE OF MODELS
A comprehensive ML approach was adapted in this study,
from the selection of suitable data features to the selection of
suitable classifier with sensor fusion, and finally, the cascad-
ing of models to develop a seated trunk movement detection
system. The models constructed in this study achieved high
levels of accuracy, with performance metrics comparable to
those observed in previous studies [18], [26]. The ES was the
most common classifier with the best performance metrics.
Similar findings are reported in tremor identification study
on patients [41]. Interestingly, all level 2 models used the
same ES classifier. Among the ES classifiers, both bagging
and boosting methods performed well individually without
combining with any other classifiers [36]. Comparing KNN
and SVM, we note that using higher k values, as in our
case, leads to better performance of KNN [35], whereas the
opposite is true for lower k values [26].
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FIGURE 7. Level 3 confusion matrices for models (a) Ex-R-Ori with KNN, (b) Ex-L-Ori with SVM, (c) Re-R-Ori with ES, (d) Re-L-Ori with ES,
(e) Rt-R-Ori with ES, and (f) Rt-L-Ori with ES classifiers. The color bar range is 0 to 100%.

Classification accuracies are known to decrease when there
are numerous classes to be distinguished [42]. Therefore,
the ML models were divided into a three-level classifica-
tion scheme. Level 1 classification is differentiated among
degrees of trunk movement. Level 2 classification identified

the upper limb used in the movement, as the trunk rotation
is different depending on the movement done by either upper
limb at different degrees [43]. Level 3 classification identi-
fied the orientation of the movement and was important to
encompassing a wide reachable workspace.
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FIGURE 8. The confusion matrix obtained for the cascaded classification to predict the 30 trunk movements. The
horizontal and vertical lines separate the stages in true and predicted class, respectively. The number in each cell
represents the accuracy percentage for prediction. The color bar range is 0 to 100%.

Interestingly, the classification accuracies did not depend
on the number of classes in the classifier models. Among
the three levels, the highest accuracies were seen in Level 2,
followed by Level 3 and Level 1, where the number of
classes were two, five, and three, respectively. Moreover,
the Level 2 classification had the highest accuracy in the
model for the Reach stage, followed by the Return, and
Extend stages. This difference may be because, as the trunk
muscle activity varies with the nature of the task [44], higher
muscle activity is expected for the Reach stage because of
its fatiguing nature [32]. This could have led to more distinct
feature values in this stage, and therefore, the highest accu-
racy. This also suggests that spectral features of EMG, which
change with fatigue, should also be considered to improve
classification accuracy [16].

We classified 30 trunk movements with a cascaded scheme
for a trunk motion intention detection system incorporating
ten individual models. While this cascaded system yielded
commendable accuracy, it is essential to address a few areas
of misclassification. Some misclassifications were observed
in adjacent orientations. This could be due to an overlap in the
training data, as highly similar postures make it challenging
to separate overlapping in the feature space [45]. In addition,
participants with different body mass indices may have had
different strategies for movements [46]. As a result, some
adjacent movements may have had very similar feature values
that led to ambiguity in detecting the intended orientation.

Motion assistance can take into account user demographics
so that customized support is made available for people with
varying degrees of trunk stability [47]. Moreover, incorporat-
ing frequency and time-frequency domain features for EMG
analysis can capture spectral characteristics and provide
robust classification of dynamic movements. These features

can also recognize muscle fatigue from changes in frequency
content over time [48]. Additional optimization techniques
such as data scaling may enhance accuracies for SVM and
KNN [49]. Furthermore, deep learning techniques have been
proven to achieve high classification accuracies [50]. There-
fore, these techniques could be used for feature engineering
and selection to extract relevant trunk movement intention
information from EMG and IMU data in future studies.

Similar to our findings, the sensor fusion combining IMU
and EMG sensor data for prediction has also been applied
to motion intention detection of lower limb movement and
gait, achieving classification accuracies above 90% [51],
[52], [53]. It can be argued that some gait analysis studies
used a single IMU [54] whereas we have used two sensors,
however, it is important to note that unlike human gait, seated
trunk movement is not cyclical. Consequently, the symmetric
seated movements can be challenging to distinguish with
a single IMU sensor. Moreover, even though the gait stud-
ies have used a single sensor for movement identification,
there is little consensus on the optimum location of sensor
placement. On the contrary, considering the segmental trunk
movement [55], the ideal IMU sensor location for seated
trunk movement is further from the base (seat).

B. ENHANCING SAFETY AND INDEPENDENCE
This study introduces the concept of an active trunk orthosis
that could be designed for wheelchair users to assist in their
seated daily life activities. The incorporation of a machine
learning framework can recognize the motion intention of
users and provide real-time adjustment of assistance during
movements [56]. The development of this promising technol-
ogy has the potential to prevent falls, improve stability, and
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user autonomy, thereby enhancing the quality of life for those
with compromised trunk control [57]. This paves the way
for future assistive technologies that can adapt in real-time
to the unique requirements of users, potentially improving
efficacy and user satisfaction. Future design iterations could
incorporate additional measurements such as seating pressure
to allow users to perform a broader range of activities with
greater ease. Additionally, future developments could focus
on further refining the predictive capabilities of machine
learning algorithms to anticipate and mitigate potential risks
in real-time, thereby reducing the likelihood of accidents and
injuries.

C. LIMITATION OF THE STUDY
In order to facilitate controlled experimentation and valida-
tion of our framework, the study involved participants without
trunk movement impairment. This approach allowed for rig-
orous testing and validation of our system. However, it is
important to emphasize that while our results offer valuable
insights and proof-of-concept, further validationwith individ-
uals who have trunk impairment is warranted. Such validation
would enhance the robustness and applicability of our system
in clinical settings, ensuring its effectiveness across diverse
user populations.

Our study primarily focused on identifying thirty horizon-
tal plane seated trunk movements. While these were more
than those identified previously, future studies could further
strengthen our findings by including movements in addi-
tional planes, particularly targeting tasks at varying heights.
Furthermore, considering daily activities that involve com-
binations of movements across different planes would be
beneficial for validating the machine learning models devel-
oped in this study. This expansion would not only enhance
the comprehensiveness of our approach but also increase the
applicability of our findings to a wider range of real-world
scenarios.

Finally, future studies can expand the patient demographics
and incorporate it in developing the ML models. This can
enable the classification system to additionally determine
personalized assistance based on the user’s specific needs and
abilities for performing trunk movements in various postures.

V. CONCLUSION
The study made substantial progress toward the development
of an active orthosis for individuals with unstable trunk con-
trol. The incorporation of EMG and IMU data, along with
a unique three-level classification system, yielded promis-
ing results. Further research in feature selection and model
optimization has the potential to enhance outcomes, fostering
greater independence and well-being for wheelchair users.
This work lays a strong foundation for future assistive tech-
nology in trunk rehabilitation.
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