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ABSTRACT The security and stability of the power grid are directly affected by the accuracy of power
load forecasting. Additionally, it plays an important role in power system planning. In order to enhance
forecasting accuracy, a combined forecasting model is proposed in this paper. Firstly, preprocessing of the
original data is conducted through improved singular spectrum analysis. Subsequently, load data prediction
is carried out by the adaptive evolutionary extreme learning machine (SaDE-ELM). Additionally, load data
prediction is performed using the support vector machine model(SVM), which is optimized by the chaotic
adaptive whale algorithm based on the firefly disturbance strategy (FA-CAWOA-LSSVM). In the final
step, the weight coefficients of the two prediction models are calculated by the chaotic sparrow search
algorithm (CSSA). The load prediction results are obtained through the weighted summation of the two
predictions. Superior performance is demonstrated by the combined prediction model compared with other
single prediction models. The data preprocessing method, based on improved singular spectrum analysis,
effectively enhances prediction accuracy.

INDEX TERMS Singular spectrum analysis, combinatorial forecasting model, power load forecasting.

I. INTRODUCTION
The development of the power system is crucially impacted
by power load forecasting. Accurate load forecasts for dif-
ferent future times are relied upon for the stable operation of
the power system. A key aspect of power load forecasting is
represented by the analysis of factors affecting power load.
A mathematical model representing the intrinsic relationship
between influencing factors and load changes is established.
The power development trend and load data for the coming
period are forecasted additionally.

At present, many achievements have been made in the
direction of power load forecasting by experts and schol-
ars at home and abroad. Common forecasting models,
such as artificial neural networks(ANN), support vector
machines(SVM), extreme learning machines(ELM), and so
on, are employed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

A dynamic neural network for daily load prediction was
proposed by Literature [1]. Improved accuracy and effi-
ciencywere achieved compared to traditional methodswidely
used in this field. A short-term load forecasting model
based on a Bayesian Neural Network (BNN) learned by
the Hybrid Monte Carlo Algorithm (HMC) was introduced
by Literature [2]. The results indicated better performance
than traditional networks and a strong generalization ability,
addressing the overfitting problem. An architectural model
for power load forecasting based on ANN was presented
by Literature [3]. Short-term power loads are forecasted,
offering a simple structure with a certain degree of reli-
ability in forecasting accuracy. A regression model using
large-scale linear programming support vector machines for
short-term power load forecasting was proposed by Lit-
erature [4]. Experimental results show a relatively small
prediction error. A recursive support vector machine based on
genetic algorithm (RSVMG) for power load forecasting was
introduced by Literature [5]. The penalty factor and kernel
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parameters of the SVM are determined by genetic algorithm
(GA). Empirical results show superiority over SVM, ANN,
and regressionmodels. A power load forecastingmodel based
on ACF-GCLSSVM was proposed by Literature [6]. ACF
is used to select useful feature vectors, and then Gray Wolf
Optimization Algorithm (GWO) and cross-validation (CV)
are employed to optimize parameters of least squares support
vector machines (LSSVM). Validation demonstrates its effec-
tiveness in significantly improving forecasting accuracy.’’

Swarm intelligence optimization algorithms have been
developed. Some optimization algorithms are utilized to
optimize the parameters of prediction models, such as
ANN, SVM, and ELM by experts and scholars. Com-
mon swarm intelligence optimization algorithms, including
particle swarm algorithm (PSO) [7], ant colony optimiza-
tion algorithm (ACO) [8], fruit fly optimization algorithm
(FOA) [9], whale optimization algorithm (WOA) [10],
sparrow search algorithm (SSA) [11], Harris Hawk Opti-
mization Algorithm (HHO) [12], and other new opti-
mization algorithms with good performance, have been
applied.

A prediction model was proposed in Literature [13],
utilizing a PSO to optimize the Gaussian kernel function
and penalty factor C in the LSSVM. The model was then
employed to forecast future short-term loads, demonstrating
good convergence, prediction accuracy, and training speed.
A power load forecasting model based on SVM andACOwas
introduced in Literature [14]. A feature selection mechanism
based on ACO optimization was established to select features
for the original data, and future load data were predicted with
the SVM. Compared with single SVM and BP neural network
(BPNN) in short-term load forecasting, this model exhibited
much higher prediction accuracy. In Literature [15], a short-
term power load forecasting model that combines Elman
neural network (ENN) and PSO was proposed. It mainly
searched for the optimal learning rate of ENN with the PSO
algorithm, showing certain effectiveness and reliability in
short-term load forecasting. A wavelet least squares support
vector machine (W-LSSVM) model using the Improved Fruit
Fly Optimization Algorithm (IFOA) was introduced in Liter-
ature [16]. Themodel utilized the Cauchy variation process to
make fruit fly individual variation, replaced the Gaussian ker-
nel function of the LSSVM with the wavelet kernel function,
and optimized the W-LSSVM with IFOA to seek the optimal
parameter and achieve prediction accuracy. The results ver-
ified the model’s strong validity and feasibility in medium-
and long-term power load forecasting. In Literature [17], the
initial weights and thresholds of an ELM were proposed to
be optimized with the Chaotic Sparrow Search Algorithm
(CSSA) and improved by the Firefly Algorithm (FA). It over-
came early local convergence with the chaotic strategy and
enhanced the algorithm’s global optimality-seeking ability
with the Firefly perturbation strategy. The results showed
that the model was superior to some other single models,
exhibiting better accuracy and stability.

Various characteristic factors affect the load, and these
factors are characterized by randomness and volatility. The
importance of load data preprocessing for improving pre-
diction accuracy is emphasized. Currently, commonly used
preprocessing techniques include wavelet transform(WT)
[18], empirical modal decomposition(EMD) [19], varia-
tional modal decomposition(VMD) [20], singular spectrum
analysis [21], and more.
With the development of society, load data is increasingly

influenced by complex factors. The intrinsic information of
the data is difficult to fully uncover with the traditional single
model. Its prediction performance is limited by some inherent
shortcomings. However, the drawbacks of a single prediction
method are compensated for by the combination of prediction
models. Better stability and prediction accuracy are achieved
by this approach.

In literature [22], a combined prediction model, based
on three single prediction models, was proposed. The
raw data underwent preprocessing using VMD-singular
spectrum analysis. Subsequently, the ELM prediction
model (CAWOA-ELM), the LSSVM prediction model
(EOBL-CSSA-LSSVM), and the Elman prediction model
were individually applied to predict future load data. Finally,
the simulated annealing algorithm was used to calculate
weighting coefficients for the three prediction models, and
their weighted sum was obtained for the prediction results.
The experiments demonstrated that the shortcomings of
single models were overcome by the combined forecasting
model, which exhibited superior forecasting performance.
In literature [23], a power load forecasting model based on
LSSVM, ELM, and a generalized regression neural network
(GRNN) was proposed. The weight coefficients for the three
forecasting models were calculated using the WOA, and a
weighted summation of their results was performed. Exper-
imental comparisons indicated that the model showed good
forecasting performance in both short-term load forecasting
and electricity price forecasting.

In conclusion, combined forecasting models outperform
single forecasting models, and they are played by a crucial
role with significant development potential in present and
future electric load forecasting.

In this paper, a new combined prediction model is pro-
posed, which is mainly composed of two single models,
SaDE-ELM and FA-CAWOA-LSSVM, in which SaDE-ELM
is suitable for large-scale samples as well as meeting the
real-time prediction, while FA-CAWOA-LSSVM is suitable
for dealing with high-dimensional data with strong gen-
eralization ability. They complement each other in load
forecasting and can meet the forecasting requirements of
various types of data and scenarios. Therefore, this paper
uses these two single models to form a combined pre-
diction model, which combines the advantages of the two
single models, has better robustness and generalization per-
formance, and has better applicability in the field of load
forecasting.
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The combined prediction model proposed in this paper is
described as follows: firstly, we use the improved singular
spectrum analysis method to reduce the noise of the original
data, then we use SaDE-ELM and FA-CAWOA-LSSVM to
predict the future load values, and finally, we use CSSA to
calculate the weight coefficients of the two models, and then
we weight and sum the prediction results of the two models.
We use the real load data of a region as experimental data
and compare the five single models with this model, and the
results show that this model has better prediction accuracy
and stability.

II. MATERIALS AND METHODS
A. SINGULAR SPECTRUM ANALYSIS
Singular spectrum analysis is considered a popular and effec-
tive tool for studying nonlinear time series and extracting
useful information. A one-dimensional time series is consid-
ered, and its trajectory matrix is shown in equation (1).

H =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

... · · ·
...

xM x1 · · · xN

 (1)

where N is the sequence length andM is the window length,
K = N − M + 1, calculate HHT and perform singular
value decomposition to get M singular values σ1 ≥ σ2 ≥

· · · ≥ σM ≥ 0, then extract the useful information, i.e.,
select the first r larger singular values. Finally, the signal is
reconstructed.

B. A NOISE REDUCTION METHOD BASED ON IMPROVED
SINGULAR SPECTRUM ANALYSIS
Singular spectrum analysis is considered a popular and effec-
tive tool for studying nonlinear time series and extracting
useful information. Its mathematical basis is matrix decom-
position theory, which mainly builds the original data into
Toeplitz-type matrices, and then performs singular value
decomposition (SVD) on the matrices to obtain the eigenvec-
tors and singular values, and then reconstructs the sequences
by selecting the singular values, which ultimately achieves
the denoising purpose. The optimization focuses on calculat-
ing the fourth root of the variance of the singular values [24].

P(n) =

(
1
n

∑n

i=1
(σi − σ̄ )4

) 1
4

(2)

where n is the number of singular values, σi is the ith singular
value, and σ̄ is the average of all singular values.

In order for the matrix to better resolve the information in
the time series and suppress the noise, P(n) should be max-
imized. Therefore, the maximum window length is shown
in (3).

nbest = argmax [P(n)] (3)

A differential spectral threshold method is employed
to choose the appropriate singular value for signal

FIGURE 1. Flowchart of the algorithm to improve the singular spectrum
analysis method.

reconstruction. The difference spectrum expression is given
by (4).

bi = σi − σi+1(i = 1, 2, · · · , r − 1) (4)

where σi is the singular value and r is the number of singular
values.

The singular value threshold is:

T = ρ(M − m) + m (5)

where ρ is the threshold weighting coefficient in the interval
[0, 1], M is the maximum value of the difference spectrum,
and m is the minimum value of the difference spectrum.

We use the threshold T to extract useful information from
the time series by selecting the singular values.

δ = i|bi < T and bi+1 < T and bi+2 < T i = 1, 2, · · · ,r-3
(6)

where T is the singular value threshold, the singular values
are ranked from largest to smallest, and the first δ singular
values are selected to reconstruct the time series.

The detailed steps of the singular spectrum noise reduction
method are summarized as follows:

1) The only hyperparameter in the improved singularity
spectrum, the weight coefficient, is defined.

41872 VOLUME 12, 2024



Z. Wang et al.: Power Load Forecasting Model of Combined SaDE-ELM and FA-CAWOA-SVM

2) The time series is input f (t), the appropriate window is
selected using (2) and (3), and then the trajectory matrix (1)
is built.

3) The eigenvalues and eigenvectors of HHT are calcu-
lated, and then the left singular vectorU and the right singular
vector V are calculated.

4) The threshold of the singular value is calculated
using (4) and (5), the appropriate singular value is selected
using (6), and then the useful information is extracted.
5) Matrix reconstruction is performed with the extracted

singular values, the reconstructed singular matrix is R, and
the diagonally reconstructed signals are averaged to finally
obtain the time series after noise removal.

The algorithmic flow of the improved singular spectrum
analysis method is shown in Fig. 1.

C. ELM
The initial weights and thresholds of ELM, a single hidden-
layer neural network, are randomly determined, and the
weights of the output layer are computed using inverse matrix
theory. The derivation theory of the ELM network is as
follows.

The output of the hidden layer of the ELMnetwork hi(x) is:

hi(x) = g (wix + bi) (7)

where x is the network input,wi is the input layer weight, bi is
the input layer threshold, and g (·) is the activation function.
The output fL of the output layer of the ELM network is

given by:

fL(x) =

∑L

i=1
βihi(x) = H (x) β (8)

where β = [β1, · · · βL]T is the output layer weight matrix,
H (x) = [h1(x), · · · , hL(x)] is the hidden layer output matrix,
and L is the number of nodes in the hidden layer.
During network training, wi and bi are determined ran-

domly, and the hidden layer output is obtained from (7),
where H = [h1, h2, · · · , hL].

T = Hβ (9)

where, T is the network output and is the output layer weight
matrix. Then:

β̂ = H+T (10)

where β̂ is the optimal output weight of the network and H+

is the generalized inverse matrix of H .

D. SADE-ELM
The optimization of input weights and thresholds of the
extreme learning machine by the SaDE-ELM is achieved
through the use of an adaptive differential evolutionary
algorithm for output layer weights [25]. The introduction of
the SaDE-ELM is characterized by the following steps.

1) The population is initialized by randomly generating
parameters for the hidden layer nodes of the extreme learning

machine, forming the first generation ofN individual vectors.

θk,G = [aT1,(k,G), · · · , aTL,(k,G), b1,(k,G), · · · , bL,(k,G)] (11)

where aj and bj (j = 1, · · · ,L) are randomly generated input
weights and thresholds, L represents the number of hidden
layer nodes of the extreme learning machine, G represents
the number of times the population has evolved, and k =

1, 2, · · · ,N .
2) The fitness function is determined, and the network

output weights β can be obtained from (10). The calcula-
tion of the fitness function is performed using the following
equation.

fitnessk,G =

√√√√∑N
i=1

∥∥∥∑L
j=1 βjg

(
aj,(k,G), bj,(k,G), xi

)
− yi

∥∥∥
N

(12)

where xi is the input to the training set and yi is the actual
target value of the training set.

3) Mutation and crossover are performed, and for each tar-
get vector in the current generation, the test vector generation
strategy is selected from the candidate pool constructed from
the four strategies.

Use pl,G to represent the probability of strategy l being
selected in the G generation (l = 1, 2, 3, 4), set the learning
period to LP, and let pl,G be updated according to the follow-
ing rules.

If G > LP and each strategy has an equal probability of
being chosen, then pl,G = 1/

4
If G > LP, then pl,G = St,G

/∑4
l=1 St,G, and St,G =∑G−l

g=G−LP nSl,g
/(∑G−l

g=G−LP nSl,g +
∑G−l

g=G−LP nfl,g
)

+ ε

where nSl,g and nfl,g, respectively, represent the number of
experimental vectors generated by strategy l of the generation
g population entering the next generation evolutionary popu-
lation and the number discarded, ε = 0.001, to prevent a zero
success rate.

Select the variant strategy with the highest probability
in the strategy pool to generate the variant vector vk,G, gen-
erate the experimental vector after crossover as uk,G, then
calculate the fitness values of the experimental vector and
the original vector, and select the vector with the best fitness
value as the individual of generation G+ 1.

The generation rule for the experimental vect uk,G is:

ujk,G =

{
vjk,G, if (randj ≤ CR)or (j = jrand )

θ
j
k,G, otherwise

(13)

where CR is the cross-factor of the control perturbation
parameter obeying a normal distribution with values in [0,
1], randj is a random number in [0, 1], and jrand is a random
positive integer in [1,G].
4) The result obtained in step 3 is used as the input weights

and hidden layer bias of the ELM.
5) A portion from the load data dataset is selected as a

training set, and its network optimal input weights and biases
are computed using steps 1-4.
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FIGURE 2. SaDE-ELM prediction model.

6) The remaining data sequences are used as a test set, and
their corresponding results are output based on the weight
update rule.

The intuitive process of the SaDE-ELM prediction model
is depicted in Fig 2.

E. LSSVM MODEL
Themodel known as the LSSVM is used for classification and
regression, with its basic idea being to infer the corresponding
output value y from any input sample x. For a given set of
training data samples, set (xi, yi), where i = 1, 2, 3, · · · , l,
Its prediction model expression is as follows:

y = f (x) = ωφ(x) + b (14)

where ω is the weights; b is the bias term, taken as a constant;
and φ(x) is the kernel function, which represents a nonlinear
mapping from a low-dimensional space to a high dimensional
space.

The expression and constraints of its optimization objec-
tive are formulated as follows.

min
1
2

∥ω∥ + C
∑N

i=1
(δi + δ′

i)

s.t. yi −
(
ωT xi + b

)
≤ ε + δi(

ωT xi + b
)

− yi ≤ ε + δ′
i

δi, δ
′
i ≥ 0 (15)

Its dyadic form is expressed as follows:

max−
1
2

N∑
i=1

N∑
j=1

(
αi − α′

i
) (

αj − α′
j

)
xTi xj

−

N∑
i=1

[
(ε − yi) αi + (ε + yi) α′

i
]

TABLE 1. Kernel functions of support vector machines.

s.t.
N∑
i=1

(
αi − α′

i
)

= 0

0 ≤ αi, α
′
i ≤ C, i = 1, 2, · · · ,N (16)

where C is the penalty factor, δi and δ′
i are the relaxation

factors and ε is the loss function.
In the prediction of nonlinear samples, the data is typically

converted from low-dimensional to high-dimensional using a
kernel function. The selection of the kernel function is crucial,
and the commonly used kernel functions are shown in Table 1.
After determining the kernel function, the penalty factor C

and the kernel parameter g are determined. In this paper, these
two parameters are mainly optimized using the improved
whale optimization algorithm.

F. WOA ALGORITHM
The feeding behavior of whale groups is simulated by the
whale algorithm. It is a concise and easy-to-implement
heuristic optimization algorithm. Loose requirements on the
objective function conditions and less parameter control
characterize the algorithm. However, it has the disadvan-
tages of low solution accuracy and being prone to local
optimization [26].

The position of each whale in the D-dimensional space is:

X = (x1, x2, · · · , xD) (17)

1) SURROUNDING THE PREY
Swimming towards the optimal position, the position update
equation is as follows:

X t+1
i = X tbest − A

∣∣C ∗ X tbest − X ti
∣∣ (18)

A = 2ar1 − a (19)

a = 2 −
2t
T

(20)

C = 2r2 (21)

where X tbest is the current optimal whale position, r1, r2 is a
random number of [0, 1], t denotes the current number of
iterations, and T denotes the maximum number of iterations.

Swimming towards the location of a random whale, the
location of this whale is updated as follows:

X t+1
i = X trand − A

∣∣C ∗ X trand − X ti
∣∣ (22)
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FIGURE 3. Tent chaotic mapping ((a) The Distribution Map of Tent Chaotic
Maps; (b) Illustrations of Tent Chaotic Maps).

where X trand is the position of a randomly selected whale in
the current population. When |A < 1|, the whale chooses to
swim toward the optimal individual. When |A ≥ 1|, the whale
chooses to swim toward the random individual.

2) BUBBLE NET
During this phase, the whale’s position is updated with the
following formula:

X t+1
i =

∣∣X tbest − X ti
∣∣ ∗ ebl ∗ cos(2π l) + X tbest (23)

where b is a constant and l is a random number uniformly
distributed in [−1, 1].

Before each action, a strategy is chosen at random by the
whale.

G. FA-CAWOA ALGORITHM
To address the issue of the algorithm easily falling into a local
optimum, improvements to WOA are proposed in this paper.

1) TENT CHAOS MAPPING STRATEGY
Tent chaotic mapping has the characteristics of randomness,
periodicity, and regularity, so we use the Tent chaotic map-
ping strategy for population initialization. The distribution

map and bifurcation map of Tent chaotic mapping are shown
in Fig. 3. The mathematical model of tent chaos is defined as
follows:

zk+1 =

{
zk
/
β zk ∈ (0, β]

(1 − zk)
/
(1 − β) zk ∈ (β, 1]

(24)

2) NONLINEAR CONVERGENCE FACTOR
The original algorithm convergence factor an is linearly
reduced from 2 to 0, so that the global search and local search
of the algorithm are difficult to balance, and it is easy to make
the algorithm fall into the local optimum when it converges.
In this paper, we propose a nonlinear convergence factor with
the following expression:

a = 1 + cos(µ
t
T

π + ϕ) (25)

where t is the current iteration number, T is the maximum
iteration number, and the two parametersµ and ϕ are selected
as µ = 1 and ϕ = 0 respectively.

3) ADAPTIVE WEIGHTS AND ADAPTIVE THRESHOLDS
Local optimization is often encountered by the whale
algorithm in later iterations. To improve optimization seek-
ing efficiency, adaptive weights and adaptive thresholds are
introduced in this paper.

The following adaptive weight expression is proposed in
this paper.

w = e−(t/T )4 (26)

The following optimization strategy is employed.

X t+1
i = ωX tbest − A

∣∣C ∗ X tbest − X ti
∣∣ (27)

X t+1
i = ωX trand − A

∣∣C ∗ X trand − X ti
∣∣ (28)

X t+1
i =

∣∣X tbest − X ti
∣∣ ∗ ebl ∗ cos(2π l) + ωX tbest (29)

In this paper, the constant threshold in the original whale
algorithm is replaced by the adaptive threshold strategy. The
expression is given as follows.

p′
= 1 − log2

(
1 +

2t
T

)
(30)

4) FIREFLY OPTIMIZATION ALGORITHM
In the Firefly Algorithm (FA), individuals are attracted by
the light emitted by other fireflies. Three hypothetical states
exist: 1) mutual attraction among all fireflies; 2) attraction
directly proportional to their individual brightness, causing
fireflies to be actively drawn towards those brighter than
themselves; brightness and attraction both decrease with dis-
tance. 3) If there are no fireflies brighter than a specific one,
it will move randomly [27].

The relative fluorescence brightness of fireflies is given by:

I = I0 ∗ e−γ ri,j (31)

where I0 is the maximum fluorescence brightness of the
firefly, and the better the value of the objective function, the
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FIGURE 4. A prediction model based on FA-CAWOA-LSSVM.

higher its own brightness; γ is the light intensity absorption
coefficient; and ri,j is the Euclidean distance between fireflies
i and j.

The formula for the attraction of a firefly is given by:

β = β0 ∗ e−γ r2i,j (32)

where β0 is the maximum degree of attraction.
The formula for updating the firefly location is given by:

xi = xi + β × (xj − xi) + α × (rand − 0.5) (33)

where xi and xj are the positions of fireflies i and j, respec-
tively; α ∈ [0, 1] is the step factor; and rand is a random
number on [0, 1] obeying a normal distribution.

H. FA-CAWOA BASED LSSVM PREDICTIVE MODELING
A prediction model is proposed in this paper, utilizing
FA-CAWOA to optimize the penalty factor C and ker-
nel parameter g of LSSVM. Improvements are made by
FA-CAWOA, enhancing the prediction performance of the
model based on WOA. The algorithmic flow of the model
is outlined as follows.

1) The raw data is normalized, and a dataset is generated,
divided into a test set and a training set.

2) The population is initialized, and tent chaotic mapping
is employed to generate an initial population spread globally.
The iteration number of the whale algorithm, the number of
the initial population, the parameter of the nonlinear conver-
gence factor, the kernel parameter C of the support vector
machine, and the range of the penalty factor g are set.

3) The optimal weight value is found. The weight factors
ω1 and ω2 of the two prediction models are determined using
CSSA.

4) The convergence factor, weight, and threshold of the
whale algorithm are updated using the nonlinear convergence
factor, adaptive weight, and adaptive threshold formulas.

5) The individual whale position is updated according to
the whale algorithm position update strategy.

6) The position of individual whales is perturbed using the
firefly perturbation strategy to prevent the algorithm from
falling into a local optimum.

7) It is judged whether the stopping condition is satisfied
according to the iteration value and accuracy requirement; if
the condition is satisfied, proceed to step 8; otherwise, go to
step 3.

8) The optimal value is obtained, and the optimized param-
eters C and g are used to build the FA-CAWOA-SVM
prediction model.

Fig. 4 displays the SVM prediction model based on
FA-CAWOA.

I. CSSA ALGORITHM
The sparrow search algorithm (SSA) is a newly introduced
swarm intelligence optimization algorithm. Strong optimiza-
tion ability and fast convergence speed are possessed by it.
However, a drawback exists in its susceptibility to falling into
local optima [11]. In this paper, the population is initialized
using tent chaotic mapping to enhance the algorithm’s global
optimality seeking ability.

Among sparrows, discoverers and followers are found.
The responsibility of searching for the food source lies with
the discoverer. The followers are provided with the location
of the food source by the discoverer. The location update
expression is as follows:

X t+1
i,j =

X ti,j · exp
(

−i
α ·M

)
R2 < ST

X ti,j + Q · L R2 ≥ ST
(34)

where t is the current number of iterations, X tij is the position
of the i-th sparrow in the j-th dimension, M is the maximum
number of iterations, α is a [0, 1] random number, Q is a
random number obeying the normal distribution, R2 ∈ [0, 1]
and ST ∈ [0.5, 1] are respectively are the early warning value
and safety value, and L is a 1 × j matrix with values all 1.

X t+1
i,j =


Q · exp

(
x twj − x tij

i2

)
i >

n
2

X t+1
p +

∣∣∣X tij − X t+1
pj

∣∣∣ · A+
· L other

(35)

where Xpj is the t + 1 iteration optimal position, Xwj is the t
iteration global worst position, A is a 1× jmatrix of −1 or 1,
and A+

= AT (AAT )−1.
In each generation, vigilantes are assigned to check the

foraging area for danger. An alarm is signaled when danger
is encountered. Their position is moved using the position

41876 VOLUME 12, 2024



Z. Wang et al.: Power Load Forecasting Model of Combined SaDE-ELM and FA-CAWOA-SVM

FIGURE 5. The specific process of the proposed combined prediction
model in this paper.

update expression.

X tij =


X tbj + β

(
X tij − X tbj

)
fi > fg

X tij + k ·

(
X tij − X tbj

(fi − fw) + ξ

)
fi = fg

(36)

where Xbj is the global optimal position. β is the step control
parameter. k ∈ [0, 1]. ξ is the very small real number. fg and
fw are the current sparrow’s optimal and worst fitness values,
respectively.

J. CSSA-BASED PREDICTION MODEL OF SADE-ELM WITH
FA-CAWOA-SVM
A combined prediction model is introduced in this paper.
It integrates data noise reductionmethods, swarm intelligence
optimization algorithms, and machine learning algorithms.
The specific steps of the proposed model are as follows:

1) Data preprocessing is performed, employing improved
singular spectrum analysis for noise reduction of the raw data.

2) A forecasting model is established using SaDE-ELM
and FA-CAWOA-LSSVM for the combined prediction
model.

3) Optimal weights are determined using CSSA for the two
prediction models.

FIGURE 6. Raw data on electrical loads.

FIGURE 7. Box plot of seven sets of data subsets.

TABLE 2. Model performance evaluation criteria.

4) Model prediction is conducted using SaDE-ELM and
FA-CAWOA-LSSVM to obtain the prediction results Y1 and
Y2, respectively.

5) The prediction results of the two models are waited and
summed to obtain the final prediction result, denoted as Y =

ω1Y1 + ω2Y2.
The prediction process of the predictionmodel in this paper

is depicted in Fig. 5.

III. SIMULATION EXPERIMENT
A. DIVISION OF THE DATA SET
Eight weeks of actual electric power load data were selected
for simulation experiments, spanning from July 6, 2018, 0:00,
to August 30, 2018, 24:00, in a region. Data, totaling 96 sets
daily and resulting in 5376 sets of experimental data, were
measured every fifteen minutes during the day. The train-
ing set utilized the first seven weeks, comprising 4704 data
sets, while the test set used the eighth week, consisting of
672 data sets. All data were categorized into 7 subsets based
on Monday to Sunday types to build and verify the proposed
prediction model separately for each subset. The raw data
trend is depicted in Fig. 6, revealing a discernible pattern in
data distribution. The weekly power consumption pattern is
illustrated by box plots in Fig. 7, with the highest on Monday,
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TABLE 3. Predictive modeling based on raw data (MAPE).

TABLE 4. Predictive modeling based on improved singular spectrum
analysis (MAPE).

TABLE 5. FA-CAWOA-LSSVM prediction accuracy and optimal parameters.

the lowest on Saturday and Sunday, and weekdays showing a
more balanced consumption. It is evident that Monday’s data
is more scattered, while Sunday’s data is more concentrated.

B. MODEL PERFORMANCE EVALUATION
To verify the reliability of the proposed model in this arti-
cle, evaluation criteria for model accuracy, including root
mean square error (RMSE), mean absolute percentage error
(MAPE), and mean absolute error (MAE), were selected. The
expression of these criteria is shown in Table 2.

C. PRE-PROCESSING EXPERIMENTS FOR POWER LOAD
DATA
Electricity load data is influenced by various factors, and
there is significant noise in the data. The accuracy of
load forecasting is greatly reduced when raw data is used
directly. An improved method of singular spectrum analysis
is proposed in this paper to preprocess raw load data, thereby
enhancing prediction accuracy.

TABLE 6. Selection of hidden layer units in SaDE-ELM.

TABLE 7. Hidden layer cell selection for SaDE-ELM.

To verify the effectiveness of the denoising method,
a comparison is made with five single models: CRNN,
BP, FA-CAWOA-LSSVM, WOA-LSSVM, and SaDE-ELM.
MAPE is employed as the evaluation criterion for the models
proposed in this paper.

Model prediction results based on the original data and
improved singular spectrum analysis are displayed in Tables 3
and 4, respectively. Varied reductions in MAPEs for com-
bined models, ranging from the highest at 29.34% to the
lowest at 1.71%, with an average reduction of 16.13%, are
revealed through comparative analysis. The average reduc-
tion of MAPEs for the four single models is 7.03%, 6.75%,
15.13%, 12.67%, and 18.17%. Significant noise reduction
is observed in the Tuesday, Wednesday, and Sunday sub-
sets among the seven data subsets. Evident improvement in
prediction accuracy is observed for SaDE-ELM in the six
models. This verifies that the model’s prediction accuracy
is effectively enhanced by the improved singular spectrum
denoising method.

D. ANALYSIS OF FA-CAWOA-LSSVM PREDICTION RESULTS
The radial basis function is employed as the kernel function
in some LSSVM parameter choices. The optimization of
penalty factors and kernel parameters is carried out using
FA-CAWOA. To test the effectiveness of the model in
predicting detail components, it is applied to predict each
of the seven data subsets. The optimization process for both
parameters, using MAPE as the measure, is presented in
Table 5.
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FIGURE 8. Actual values versus six model predictions in each 15-minute
power load data set ((a) predictions in the Monday subset; (b) predictions
in the Tuesday subset; (c) predictions in the Wednesday subset;
(d) predictions in the Thursday subset; (e) predictions in the Friday
subset; (f) predictions in the Saturday subset; and (g) predictions in the
Week 7 subset).

FIGURE 9. Evaluation metrics of different forecasting models
((a) comparison of RMSE of different forecasting models; (b) comparison
of MAE of different forecasting models; (c) comparison of MAPE of
different forecasting models).

E. ANALYSIS OF SADE-ELM PREDICTION RESULTS
The input layer weights and hidden layer bias of the ELM
are determined randomly. Optimal prediction performance
for the ELM can be hindered by this randomness. The optimal
input layer weights and hidden layer bias of the ELM are
found using SaDE. To test the effectiveness of the model for
load prediction, seven subsets of data are predicted separately.
For the selection of hidden layer units, as shown in Table 6,
MAPE is used as a measure of the model.

F. CSSA OPTIMIZES THE WEIGHTING FACTORS OF TWO
PREDICTION MODELS
The weight factor of each model in the proposed combination
model is found using the CSSA algorithm. Different char-
acteristics are possessed by each model; a poorer prediction
effect may be observed in a single model. Various advantages
of a single model are combined in the prediction effect of the
combination model, resulting in a stronger prediction effect.
During the training process, appropriate contribution weights

for the two models are determined. Finally, the final result
is obtained by combining the prediction results of the two
models through the weights. For weighted optimization using
CSSA, we set the warning value ST = 0.6; the proportion of
discoverers PD = 0.7; and the proportion of joiners SD =

0.2. The weight of FA-CAWOA-LSSVM is defined as W1,
and the weight of SaDE-ELM is defined as W2. The optimal
weights of the two models are shown in Table 7.

IV. SIMULATION EXPERIMENT ANALYSIS
To effectively illustrate the good performance of the proposed
model, predictions for each of the seven data subsets are made
using the combined model and five single models. The five
single models, namely GRNN, BP, FA-CAWOA-LSSVM,
WOA-LSSVM, and SaDE-ELM, are employed. The compar-
ison of model trends is displayed in Fig. 8, and the zoomed-in
graph is included in Appendix.

The proposed combinationmodel was comparedwith other
single models in Fig. 7. It can be observed that the data is
fitted closer to the true value by the combination model. Fol-
lowing closely are FA-CAWOA-LSSVMandWOA-LSSVM.
Poorer prediction results from Friday to Sunday are exhibited
by SaDE-ELM, but better results are observed from Monday
to Thursday. In terms of accuracy, theMAPE of our combined
model is superior to the other five models for all subsets
except Thursday. For Thursday, our combined model is the
same as FA-WOA-LSSVM.

To highlight the superiority of the combined prediction
models proposed in this paper, the RMSE, MAE, and MAPE
for the six predictionmodels in the seven data subsets are sep-
arately calculated. The results are presented in Table 8. The
predictive performance of the models is visually compared
in bar charts, as depicted in Figure 9. When combined, it is
found that the proposed combined model outperforms other
single models in the prediction results of all seven data sets.
Its prediction stability is also found to be higher than that of
other single models. Even in the face of poor data, such as the
subset of data on Sundays, high stability is demonstrated by
the combined prediction model, which combines the advan-
tages of a single prediction model and ultimately achieves
better prediction results than other single models.

It is found that the FA-CAWOA-LSSVM proposed in this
paper yields better prediction results than theWOA-LSSVM.
This improvement is achieved by employing the firefly
perturbation strategy with chaotic initialization population
to enhance the global optimality searching ability of the
WOA. Furthermore, the local and global searching ability
of the WOA is enhanced by using the nonlinear conver-
gence factor with adaptive weights and adaptive thresholds.
This enables the WOA to search for better LSSVM parame-
ters, ultimately leading to an improvement in the prediction
performance of the support vector machine. It is also
observed that, except for Tuesday, the RMSE, MAE, and
MAPE of FA-CAWOA-LSSVM are smaller than those of
WOA-LSSVM, highlighting the superior prediction ability of
FA-CAWOA-LSSVM.
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TABLE 8. Comparison of the prediction accuracy of different prediction
models in seven data sets.

V. CONCLUSION
A combined power load forecasting model is investigated
in this paper, which integrates a power load preprocessing

method, swarm intelligence optimization algorithm, and
machine learning. The improved singular spectrum method
is used to preprocess the raw data. Two distinct forecasting
models, FA-CAWOA-LSSVMand SaDE-ELM, are proposed
for the prediction of future loads. Weighting coefficients for
the twomodels are calculated using the CSSA algorithm. The
results of the two models are then weighted and summed for
prediction. The advantages of individual forecasting models
are leveraged by the combined forecastingmodel presented in
this paper. Superior performance, compared to a single fore-
casting model, is demonstrated. The following conclusions
are yielded by specific prediction experiments on seven data
subsets

1) Upon comparing Tables 3 and 4, it is observed that
load forecasting accuracy is effectively enhanced by the
proposed improved singular spectrum data preprocessing
method. An average MAPE reduction of 16.13% is achieved
by the combined forecasting model, with notable reductions
of 29.34% on Tuesday and 26.15% on Wednesday.

2) The comparison in Table 8 reveals that WOA-LSSVM
is outperformed by FA-CAWOA-LSSVM in terms of RMSE,
MAE, andMAPE. The average reductions are 7.33%, 7.61%,
and 7.41%, respectively, demonstrating the superiority of the
proposed FA-CAWOA-LSSVM.

3) The comparison in Table 8 reveals that higher forecast-
ing accuracy is achieved by the combined forecasting model
proposed in this paper compared to the single model. The
RMSE decreases by at least 1.32% and at most 70.84% from
week 1 to Sunday. The MAE decreases by at least 1% and at
most 70.81%, and the MAPE decreases by at least 0.94% and
at most 71.14%.

The combined prediction model proposed in this paper
outperforms a single prediction model. The prediction accu-
racy is significantly enhanced by the data noise reduction
method based on improved singular spectrum analysis.
Notably, the prediction effect of FA-CAWOA-LSSVM is
greatly improved, validating the reliability of the proposed
FA-CAWOA optimization algorithm.

Although the combined prediction model proposed in this
paper has high accuracy, it also has some limitations, such
as 1) higher complexity of the operation, which requires
larger computational resources and time. 2) model selection,
if the single model selected is not accurate enough or can-
not complement each other’s advantages, it may affect the
final prediction results. In future research, we can reduce the
training time by setting the appropriate number of training
times so that the model can be trained without affecting
the prediction accuracy, and we can also choose a more
appropriate single model or improve the hyperparameters
of the model, which will in turn improve the prediction
accuracy of the combined prediction model. In addition, this
paper is limited by using fewer input features and ignor-
ing factors such as the correlation between historical load
data and holidays. In future power load forecasting, we will
try to collect more feature data to obtain more accurate
results.
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