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ABSTRACT In recent years, edge computing networks have been widely adopted to achieve low latency,
save bandwidth, and improve flexibility. However, most of the current Edge Nodes (ENs) are in semi-trusted
or untrusted environments, where interactions among users are unsafe. Therefore, providing cost-effective
protection strategies for ENs under resource limitations remains a great challenge. To cope with this,
we propose an edge computing model with ‘‘End-Edge-Cloud’’ collaborative services, and a Privacy
Preservation Strategy with Pseudo-Addresses (P2SPA) is constructed to maximize the cost-effectiveness
while protecting the location privacy of the ENs. We quantify the privacy protection preference of user
information using the Analytic Hierarchy Process (AHP) to select the optimal EN. Considering the dynamic
change in the attack frequency, a pseudo-address selection and updating strategy is constructed based on
the Stackelberg game theory; thus, the optimal pseudo-address update frequency is achieved. Numerical
estimations are performed to verify the effectiveness of the proposed P2SPA strategy. Compared with the
existing methods, P2SPA achieves a compromise service strategy with satisfactory performance on both the
defense effect and defense cost.

INDEX TERMS Edge computing, privacy protection, mobile target defense, pseudo-address, Stackelberg
game.

I. INTRODUCTION
In recent years, the rapid expansion of mobile internet
technology has led to a rapid increase in the number of
mobile devices worldwide. As a consequence, users expect
higher standards for network performance [1]. Despite the
significant computational capabilities of cloud computing,
it often fails to meet user demands for data transmission
rates, latency, and overall service quality [2]. Consequently,
Mobile Edge Computing (MEC) has emerged as a solution
[3]. MEC repositions computing and storage resources from
centralized clouds to the edges of networks. This shift enables
more efficient handling of tasks that demand high computing
power and minimal latency [4], [5], especially in applications
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such as the Internet of Vehicles (IoV) [6] and the smart cities
[7]. Unlike cloud computing, MEC places strong emphasis
on collaborative resource usage among edge devices [8].
However, this relocation of resources also exposes Edge
Nodes (ENs) to increased risks, particularly in environments
that are only partially trusted or potentially malicious [9]. For
instance, adversaries might impersonate genuine users in an
attempt to gain unauthorized access, a strategy recognized
as identity spoofing attacks. They may also endeavor
to infiltrate ENs for the purpose of acquiring sensitive
information, disrupting system operations, or assuming
control of devices—an attack category known as malware
injection. Moreover, there could be endeavors to overload
ENs, resulting in service unavailability and impacting overall
system availability; this is commonly labeled as a DDoS
attack. Nevertheless, numerous ENs currently rely on static
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and passive security measures [10], such as firewalls [11],
intrusion detection systems [12], and DDoS attack detection
[13].

The widespread adoption of 5G technology has sig-
nificantly enhanced ENs by offering greater bandwidth,
lower latency, and reduced energy consumption [14], [15].
To transition from passive to active defense strategies,
Moving Target Defense (MTD) has emerged as a primary
focus of research [16]. MTD involves continuous random
alterations to the system configurations, deliberately creating
an environment of uncertainty for potential network adver-
saries [17]. This proactive approach aims to thwart attacks
by constantly changing their surface. The rapid evolution
of network communication technology has expanded the
potential applications of MTD [18]. Research on MTD
has primarily focused on two categories: Software-Defined
Networks (SDN) and virtual IP address technology [19].
This approach involves frequent alterations to the network
attack surface, offering improved defense effectiveness but
increased costs. Hence, identifying the optimal transition fre-
quency, while ensuring robust protection for ENs, is crucial.
To maximize benefits within resource limitations, studies
have sought equilibrium points using game models. For
example, Li et al. [20] introduced a Stackelberg game model
involving multiple leaders and followers. This model aim
to identify an equilibrium solution for resource allocation
within the network slicing. Such models play a vital role
in determining the optimal resource allocation strategies
while considering various stakeholders in the network
environment.

In the face of dynamically changing attack frequencies,
to achieve economically efficient protection, we introduce
a lightweight Privacy Preservation Strategy with Pseudo-
Addresses (P2SPA). This strategy aims to identify the most
cost-effective protection solution while ensuring the security
of ENs. The primary contributions of our study can be
summarized as follows:

1) To maximize the utilization of limited protection
resources for ENs, we have designed an algorithm based
on the Analytic Hierarchy Process (AHP). This algorithm
enables the optimal offloading of tasks by considering
protection preferences, effectively reducing overhead during
the task offloading process while ensuring the desired
protection outcome.

2) Considering the need to minimize interactions with
non-trusted entities for ENs, we introduce continuously
updated pseudo-addresses as relay nodes. Based on the
Stackelberg game model, we have designed a pseudo-address
updating algorithm to determine the optimal update fre-
quency. This significantly reduces the additional overhead
generated by pseudo-address updates, while ensuring an
effective protection outcome. It represents a cost-effective
strategy for safeguarding edge nodes.

3) To demonstrate the performance of the proposed
P2SPA scheme, we conducted a comprehensive theoretical
analysis and performance evaluation encompassing privacy

protection efficacy, security overhead, and other pertinent
characteristics. The evaluative findings indicate that the
P2SPA scheme surpasses the existing solutions in terms of
both cost-effectiveness and robustness.

The remainder of this paper is organized as follows.
Section II introduces the related researches and their lim-
itations, and Section III provides the problem statement.
Section IV describes the solution and implementation of
the proposed system model. Section V presents numerical
simulation results and analyses. Finally, SectionVI concludes
the paper and presents the potential research directions.

II. RELATED WORK
To address the limitations associated with passive defense
dependency, latency, and high overhead, several schemes [21],
[22], [23], [24], [25], [26] have shifted their focus towards
active defense research. For instance, Seo et al. [21] have
presented an active moving target defense strategy for
Unmanned Aerial Vehicles (UAVs) utilizing a Partially
Observable Markov Decision Process (POMDP) threat
model. This model considers the sequence of operations both
inside and outside the UAV, raising attack costs and latency.
However, this approach exhibits limited generalizability. In a
different approach, Xu et al. [22] ensure the reliability of
transmission channels by introducing a key. They employ a
cooperative jamming scheme, imposing superimposed chan-
nel measurements on repeaters and potential eavesdroppers,
effectively safeguarding transmitted data. Nevertheless, this
method does not extend protection to the privacy of the
edge nodes themselves. Furthermore, to safeguard node
privacy, Tan et al. [23] proposed a topology spoofing scheme.
This approach reduces the risk of critical UAVs being
identified by deploying spoofing nodes to extend scanning
time and increase the attacker’s cost. Although effective in
protecting critical nodes, it introduces substantial overhead.
Xing et al. [24] introduced a double k-anonymity based
location privacy protection method. This approach conceals
user location and request information, offering extensive
protection for user location privacy. However, it comes with
significant overhead. The widespread application of deep
learning algorithms has also propelled advancements in
active defense. Specifically, Liu et al. [25] achieved diverse
distributed task migration through a counterfactual multi-
agent (COMA) reinforcement learning approach. While
enhancing the Quality of Service (QoS), this method
prioritizes minimizing latency but does not explicitly address
the protection of privacy information. Wu et al. [26]
proposed a method to enhance privacy in video streaming
through secure reversible transformation based on GAN
networks (PECAM). This approach removes some visual
details without compromising user feature accuracy, thereby
enhancing the security of user feature privacy. However, it is
associated with high overhead and may not be applicable in
resource-constrained contexts.

With the rapid evolution of information technology, the
landscape of network attacks is progressively diversifying.
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Owing to the temporal and cost-related asymmetry between
attackers and defenders, cyberspace finds itself in a security
predicament characterized as ‘‘easy to attack but difficult to
defend’’. Consequently, the emergingMoving Target Defense
(MTD) technology has garnered significant attention from
both domestic and international researchers, serving as a
revolutionary approach to address the current disadvanta-
geous position of defenders. Various schemes [27], [28],
[29], [30], [31] leverage sophisticated technologies, such
as Software-Defined Networks (SDN) and network address
transformation, to implement MTD strategies. Specifically,
Meneses et al. [27]employs SDN to manage end-to-end
traffic, significantly elevating the cost for potential attackers.
However, its applicability is primarily confined to specific
scenarios with ample resources, such as cloud comput-
ing. Other methodologies involve the randomization of IP
addresses across nodes, as demonstrated by Chang [28]
and collaborators, who randomized IP addresses for MTD.
They also synchronized IP addresses between nodes in
a networked path using hash-chain-based synchronization
signatures. However, these methods have proven insuffi-
ciently effective in defending against a broad spectrum of
attack scenarios. Yungaicela-Naula et al. [29] proposed an
SDN-based security framework that autonomously monitors,
detects, and mitigates slow DDoS attacks. Simulation results
demonstrate the framework’s effectiveness in mitigating
malicious connections and defending against multiple slow
DDoS attacks with varying numbers of attackers and victims.
Nevertheless, it exhibits limitations when confronted with
other forms of attacks. Yoon et al. [30] developed an
attack graph-based MTD technique that updates a host’s
network configuration (e.g., MAC/IP/port address) based
on the host’s criticality. This approach aims to minimize
the probability of attack success with minimal MTD cost,
yet it prioritizes critical hosts that are more susceptible
to attack, falling slightly short in terms of dynamism.
Jafarian et al. [31] enhance defense levels by determining
a range of virtual IP addresses through low-frequency
hops and selecting IP addresses through high-frequency
hops. However, this approach introduces a significant
overhead.

Through the aforementioned studies, it is evident that
achieving a balance between protection effectiveness and cost
in MEC privacy protection poses a significant challenge.
In response to this challenge, some methodologies [32],
[33], [34], [35], [36], [37] employ game-theoretic approaches
to identify equilibrium solutions. In the domain of car
charging scheduling, Zhang et al. [32] introduce a fully
distributed multi-intelligence deep reinforcement learning
method based on Stackelberg game. This approach not
only addresses privacy and communication concerns but
also significantly enhances computational efficiency and
scalability. For pricing and allocation decisions, Xie et al. [33]
model the interactions between providers and customers,
analyzing Nash equilibria involving uniform and differential
pricing strategies using a game. This enables dynamic price

adjustments for individual customers and resolves trans-
mission congestion issues. In market competition scenarios,
De Silva et al. [34] utilize the Stackelberg duopoly model to
maximize market share. Their study of two competing firms
aims to determine conditions for ‘‘winner-take-all’’ compe-
tition by characterizing strong/weak Nash equilibria in the
game. Games have also found widespread application in task
offloading. Liu et al. [35] devised an offloading method to
minimize expenditures in MEC while maximizing cloud rev-
enue and minimizing user costs. Meanwhile, Gao et al. [36]
constructed an online framework to balance access latency,
communication latency, and service exchange costs through
a game and service switching costs to enhance QoS cost-
effectively. Wu et al. [37] propose a management operation
framework, HiTDL, to make globally throughput-optimal
resource allocation decisions by solving a fairness-aware
multi-choice knapsack problem. In summary, games have
demonstrated efficacy in addressing trade-off problems when
node resources are limited. Consequently, in this paper,
we integrate the game model with MTD to determine the
optimal pseudo-address updating frequency. This integration
allows us to strike a balance between protection effectiveness
and cost when the attack frequency dynamically changes.

III. PROBLEM STATEMENT
In this section, we formally define the system model, design
goals and initialization settings.

A. SYSTEM MODEL
The system model is shown in Fig. 1, and consists of
request users, a cloud server, edge servers, a pseudo-address
generator, and edge computing nodes. Important variable
symbols and their meanings in the system model are listed
in Table 1.
Cloud Server (CS): A CS is a trusted entity with powerful

computing and storage capabilities. It can receive, allocate,
and compute task information from requesting users.
Edge Servers (ES): ES has the capability to locally process

task information received from the CS or offload it to edge
computing nodes. It is noteworthy that ES can perform task
scheduling and select the optimal edge computing node for
task offloading.
Pseudo Address Generator (PAG): The PAG can generate

pseudo-address PAh. It can also calculate the optimal update
frequency of pseudo-addresses with the goal of maximizing
defense gain.
Request User (RUi): The request user RUi uploads task

information TIi to the CS, which may be malicious.
Edge Computing Node (ENj): The edge computing node

ENj responds to the cooperation signal from the ES and
cooperates with the CS to perform task information TIi
processing.

B. DESIGN GOALS
Each TIi possesses unique conservation preferences, with
some prioritizing energy consumption, whereas others
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FIGURE 1. Edge computing model.

TABLE 1. Significant variable symbols and their meanings.

emphasize semantic privacy or specific task completion
times. Consequently, P2SPA offers more precise protection
for individual TIi instances, enabling the achievement of
the same protection effect with fewer resources. To prevent
malicious users from deducing the privacy information
of ENj, P2SPA introduces the pseudo-address PAh as an
intermediary node positioned between ENj and RUi. This
arrangement effectively prevents the direct exposure of
ENj to RUi, ensuring the relative independence of ENj.
Additionally, to mitigate the potential risks arising from
prolonged interactions, P2SPA dynamically updates the PAh.
This measure prevents the nodes from risking over extended
periods.

P2SPA is designed as a lightweight edge computing node
protection strategy to achieve optimal cost-effectiveness.
It specifically tailors precise protection for TIi based on
the protection preferences of RUi, effectively economizing
the protection resources for ENj. The ES dynamically
adjusts the update frequency fd (t) of the pseudo-addresses
in response to the interaction frequency of RUi. Ultimately,
through the pursuit of a Nash equilibrium, we ensure the
continual adoption of the locally optimal solution fd (t) which
maintains optimal cost-effectiveness.

C. INITIALIZATION SETTINGS
Definition 1: Information Weights. Each information

weight is denoted by Ui=<u1, u2, u3>, where u1, u2,and
u3 are constants in [0, 1], whose definitions correspond to
the TIi on the importance of energy consumption, semantic
privacy, and completion time, respectively.
Definition 2: Total Loss Degree. TIi’s total loss degree for

offloading to ENj can be written as Qij ={ QijE , Q
ij
mean, Q

ij
t }.

where QijE , Q
ij
mean, and Qijt represent the degree of energy

consumption loss, semantic loss degree, and task completion
time, respectively. When the CS performs task offloading,
redundant data are added to the message before offloading,
which defines the degree of semantic loss [38]:

Qijmean =
Qijr

Li + Qijr
, (1)

where Qijr represents the size of the redundant data, and Li
represents the size of the original data. The completion time
of TIi including the computing time and transmission time,
can be expressed as:

Qijt =
Ci

f jm
+
Di
B
. (2)

Parameter Ci represents the required computing resources,
and f jm denotes the computational speed of ENj, and Di
denotes the size of TIi, and B denotes the network bandwidth
of ES. Furthermore, by considering the power consumption
denoted as pcj for ENj and pE for ES, we can derive the overall
computational energy consumption of ENj as follows:

QijE = pcj
Ci

f jm
+ pE

Di
B
. (3)

Meanwhile, we can obtain the total loss degree function of
TIi for offloading to ENj is:

Qijloss = u1Q
ij
E + u2Qijmean + u3Q

ij
t . (4)

In particular, we used the Analytic Hierarchy Process
(AHP) [39] to scientifically quantify the weights. Further-
more, we assume that the pseudo-address PAh can satisfy the
transmission bandwidth requirements of TIi′. When using the
PAh, no new semantic loss degree is generated; however, the
task completion time can be expressed as

T iF = Qijt +
Di
d
, (5)
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where d denotes the size of PAh network bandwidth.
Parameter pti , representing the power of PAh, is introduced
to address the new total energy consumption, and its further
derivation is presented as follows:

E i = QijE + pti
Di
d
. (6)

It is worth noting that malicious nodes have the initiative to
act as leaders and always have a first mover advantage. The
PAG acts as a follower, which in turn creates a Stackelberg
game. The prerequisites are as follows.

1) Because the frequency of attacks is not easily observ-
able, the interaction frequency fa(t) can be with the risk factor
p is considered as the attack frequency. The risk factor p is a
constant in (0, 1], and is inversely proportional to the RUi’s
degree of trust [10].

2) The malicious node cannot know the task offloading
path and thus cannot launch a targeted attack on ENj.
Because TIi is time-sensitive, we can regard the constant T
as timeliness. If the timeliness is exceeded, the attack loses
significance [10].

3) The interaction frequency fa(t) and update frequency
fd (t) are all observable, which is consistent with the scenario
of a complete information game.

4) As the risk encountered by ENj correlates with
the duration of interaction, the communication overhead
(referred to as the interaction cost) will correspondingly
escalate over time to safeguard the security of the information
transmission phase. Consequently, the total interaction cost
can be succinctly articulated as a second-order differentiable
concave functionD (t) = θ1t2+θ2t . In the Stackelberg game
model, the cost incurred by ENj is typically considered as
the malicious node’s benefit, resulting in the malicious node’s
interaction cost being denoted as H (t) = θ0t − D(t) (where
θ0, θ1, and θ2 all signify constants representing the cost per
unit of time discounting factors).

5) Due to the first-mover advantage held by the malicious
node, ENj generates a specific degree of privacy leakage
when fa(t)>fd (t), and the magnitude of privacy leakage is
directly proportional to the disparity between fa(t) and fd (t).
Conversely, even in the absence of an attack, ENj will still
contribute to the leakage amount of x ′(t) due to its intrinsic
factors. A portion of this leakage will be acquired by the
malicious node. To quantify the privacy leakage, we introduce
the discount factor ε2, ε3, and express the privacy leakage
amount x(t) as:

x(t) = ε2[fa (t)− fd (t)] + ε3x ′(t). (7)

Meanwhile, the malicious node gain function is obtained
for the time [0, T] as:

Ra (t) = max
∫ T

0
{λ1fa (t) [pfa (t)− fd (t)] − H (t)

− ε0fa (t)+ ε1fd (t)− x(t)}e−rtdt, (8)

where λ1 and λ2 represent the discount factors for malicious
nodes and ENj respectively, and r represents the discount rate,

which is proportional to the timeliness of the information.
Similarly, the gain function of ENj is obtained as

Rd (t) = max
∫ T

0
{λ2fd (t) [fd (t)− pfa (t)] + H (t)

+ ε0fa (t)− ε1fd (t)+ x(t)}e−rtdt. (9)

IV. PROPOSED STRATEGY
This section delineates our devised protection strategy
for ENs against dynamic attacks, aiming to maximize
cost-effectiveness by integrating the AHP and Stackelberg
game models. Herein, we present the problem definition,
formula derivation, and the strategy process.

A. PROBLEM DEFINITION
From the formula, it can be observed that for a certain time
interval, the gain functions of the attacking and defending
partiesRa(t) andRd (t) both depend directly on pfa(t) and fd (t).
Under the premise of selecting the optimal ENj, a convex
optimization problem was defined. This problem can be
formulated as follows:

min
fa(t),fd (t)

−Rd (t). (10)

Satisfaction:

Qijloss ≤ Qiloss (11)

T iF ≤ Tmax (12)

E i ≤ Emax (13)

Among them, Qiloss is the minimum of the total loss degree
for TIi. Tmax , and Emax represent the maximum completion
time and energy consumption of TIi allowed, respectively.
(10) is to maximize the gain function of the PAG. (11) ensures
that the ENj with the minimum total loss degree is put into
service. (12) and (13) are used to select the T iF and E i that
meet the requirements PAh to transmit TIi′.

B. ALGORITHM DEFINITION
We define the algorithms used in this study. The main
algorithmswere the Edge computing Node Selection (ENSel)
and the Stackelberg game to find Optimal Frequency (SOF)
algorithms.
To satisfy the requirement of (11), that is, to find the

optimal EN for task offloading, an ENSel algorithm was
designed, as shown in Algorithm 1. It is noteworthy that the
procedure for generating pseudo-addresses is not the primary
focus of this research paper and is detailed in [31]. This
information will not be reiterated herein.
We need to select the pseudo-address within the ES service

area that meets the requirements of (12) and (13) as the relay
nodes for ENj to interact with RUi. Pseudo-addresses were
updated at a certain frequency. We used the SOF algorithm to
meet the goal of problem (10), as shown in Algorithm 2, and
the detailed derivation is described as follows.
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Algorithm 1 ENSel
Initialization:
Input a judgment matrix P based on the TIi (Refer to
Table. 2).
Step 1: Normalize P by columns and compute

ui =

∑n
j=1 Pij
n . Calculate its maximum

eigenvalue λmax and the largest eigenvector.
Step 2: Calculate CI =

λmax−n
n−1 ,CR =

CI
RI .(Refer to

Table. 3)
Step 3: Consistency check.

IF CR ≤ 0.1
Output u1, u2, u3.

ELSE
Retain weights that do not pass the
consistency test. The weights

Ci =
(
∏n
j=1 pij)

1
n∑n

k=1 (
∏n
j=1 pkj)

1
n
. Solve the

equation PW= λmaxW to obtain the
eigenvectors W and obtain the weights
after normalization. Final calculation of
the average and Output u1, u2, u3.

END IF
Step 4:

If there are m ENs, generating the total loss
degree of TI i is:
FOR j = 1, 2 . . .m;

Qijloss = u1Q
ij
E + u2Q

ij
mean + u3Q

ij
t .

END FOR
Finally we should select the ENj which have
smallest Qijloss for task offloading.

C. FORMULA DERIVATION
For malicious nodes, taking pfa(t)-fd (t) multiplied by the
discount factor λ1 as the payoff function, there exists a
continuously differentiable function ψ (t, x) satisfying the
Bellman equation, that is.

−ψ ′
t (t, x) = max

fa(t)
{[λ1fa (t) (pfa (t)− fd (t)) − H (t)

− ε0fa (t)+ ε1fd (t)− x (t)]e−rt

+ ψ ′
x (t, x) [ε2fa (t)+ ε3x(t) − ε2fd (t)]dt}.

(14)

By taking a partial derivation of (14) with respect to fa(t)
can obtain the optimal attack frequency f ∗

a (t) for malicious
nodes:

f ∗
a (t) =

−ε2ψ
′
x (t, x) e

rt
+ λ1fd (t)+ ε0

2λ1p
. (15)

The differential equation for PAG can be obtained in the
same way:

−φ′
t (t, x) = max

fd (t)
{[λ2fd (t) (fd (t)− pfa (t)) + H (t)

+ ε0fa (t)− ε1fd (t)+ x (t)]e−rt

Algorithm 2 SOF
Initialization:
Input: The interaction frequency fa(t) of RUi.
Step 1:The malicious node attacks with frequency of

pfa(t) and based on the TI i’s timeliness to
determine the maximum attack time T.

Step 2: The defender uses the frequency fd (t) for
updating the psseudo-address, and both sides
form their own gain functions as follow.
Malicious node (Leader):

Take the partial derivative of the gain
function with respect to fa(t), and obtain
f ∗
a (t) =

−ε2ψ
′
x (t,x)e

−rt
+λ1fd (t)+ε0

2λ1p
.

PAG (Followers):
The same reasoning leads to
f ∗
d (t) =

ε2φ
′
x (t,x)e

rt
+λ2pfa(t)+ε1
2λ2

.

Step 3: Use f ∗
a (t) and f

∗
d (t) to play the game and

back substitute with each other to obtain the
solution in the equilibrium case.

Step 4: Find the analytic solution of the implicit
function ψ (t, x) and φ (t, x).

ψ ′
x (t, x) =

−1
(r−ε3)

[1 − e(r−ε3)(t−T )]e−rt .
φ′
x (t, x) =

1
(r−ε3)

[1 − e(r−ε3)(t−T )]e−rt .
Step 5: The results of Step 4 are back substituted to

obtain the optimal pseudo-address update
frequency f ∗

d (t) .

+ φ′
x (t, x) [ε2fa (t)+ ε3x(t) − ε2fd (t)]dt}.

(16)

By taking the partial derivation of (16) with respect to fd (t),
we obtain the optimal update frequency f ∗

d (t) at this time:

f ∗
d (t) =

ε2φ
′
x (t, x) e

rt
+ λ2pfa (t)+ ε1

2λ2
. (17)

(14) is solved by constructing an analytical solution such
that

ψ (t, x) = [A (t) x + B (t)]e−rt . (18)

First-order differentiation of equation (18) with respect to
t and x respectively.

ψ ′
t (t, x) =

{[
−rA (t)+ A′ (t)

]
x +

[
−rB (t)+ B′ (t)

]}
e−rt .

(19)

ψ ′
x (t, x) = A (t) e−rt . (20)

Substituting (19) and (20) into (14), we obtain:

[rA (t) x − A′ (t) x + rB (t)− B′ (t)]e−rt

= [λ1fa (t) (pfa (t)− fd (t)) − H (t)− ε0fa(t) + ε1fd (t)

−x (t)]e−rt + A(t)e−rt [ε2fa(t) + ε3x(t) − ε2fd (t)].

(21)

(21) is simplified to give: A′ (t) = (r − ε3)A (t)+ 1.
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FIGURE 2. Flow of P2SPA strategy.

Solving the above equation, we get

A (t) =
−1

(r − ε3)

[
1 − e(r−ε3)(t−T )

]
. (22)

Bringing (22) into (20),

ψ ′
x (t, x) =

−1
(r − ε3)

[1 − e(r−ε3)(t−T )]e−rt . (23)

Similarly, constructing an analytical solution to (16) and
organizing it yields:

φ′
x (t, x) =

1
(r − ε3)

[1 − e(r−ε3)(t−T )]e−rt . (24)

The dynamic game process is to substitute (15) and (17)
back into each other and organize to obtain a the formula
containing the implicit function.

f ∗
a (t) =

−2ε2ψ ′
x (t, x) e

rt
+ 2ε0

3λ1p
+
ε2φ

′
x (t, x)e

rt
+ ε1

3λ2p
.

(25)

f ∗
d (t) =

2ε2φ′
x (t, x) e

rt
+ 2ε1

3λ2
+

−ε2ψ
′
x (t, x)e

rt
+ ε0

3λ1
.

(26)

Substituting Equations (23) and (24) into (25) and (26)
yields the optimal pseudo address update frequency as:

f ∗
a (t) =

2ε2(1 − e(r−ε3)(t−T ))
3λ1p(r − ε3)

+
2ε0
3λ1p

+
ε2(1 − e(r−ε3)(t−T ))

3λ2p(r − ε3)
+

ε1

3λ2p
. (27)

f ∗
d (t) =

2ε2(1 − e(r−ε3)(t−T ))
3λ2(r − ε3)

+
2ε1
3λ2

+
ε2(1 − e(r−ε3)(t−T ))

3λ1(r − ε3)
+

ε0

3λ1
. (28)

D. STRATEGY PROCESS OF P2SPA
This study did not address the CS to ES selection process.
Instead, it assumes that the CS conducts task offloading to
the ES. The P2SPA strategy is illustrated in Fig. 2. Below,
we present the implementation details of the key processes
within P2SPA.

TABLE 2. Scale of proportions (Horizontal factors).

TABLE 3. Reference table for RI in the AHP methodology.

1⃝ Tasks Upload. RUi sends TIi to the CS, which chooses
to process locally or offload to the ES, considering the
utilization of its own computing resources.

2⃝ Broadcast and Feedback. The ES receives TIi and
broadcasts the computational requirements to all ENj, ENj

that want to participate in the task send node feedback {QijE ,
Qijmean, Q

ij
t } to ES.

3⃝ Nodes Selection. After the ES receives all node
feedback {QijE , Q

ij
mean, Q

ij
t | j = 1, 2, . . .m}, where m

represents the number of ENs. It first normalizes the three
attributes [40]

Dji =
dji∑N
j=1 dji

, (29)

where dji represents the value of the i attribute of ENj, N
represents the total number of ENj, and Dij represents the
result of the normalization. Subsequently, judgment matrix P
is constructed with factors denoted as pji which represents the
importance of j compared to indicator i. This can be expressed
using Table.2 and its reciprocal. Finally, the optimal ENj is
selected to offload the task using the ENSel algorithm.

4⃝ Results Delivery. CS and ENj for the TIi are processed
separately. The locally processed results are directly sent back
from the CS to RUi, and the results processed at ENj send TIi
to RUi by PAh, which is generated by PAG.

5⃝ Address Update. PAh frequent interaction with RUi
poses a risk; it is necessary to useAlgorithmSOF to obtain the
optimal pseudo-address update frequency f ∗

d (t) according
to fa(t).

V. SIMULATION RESULTS
To ascertain the effectiveness of this strategy, we undertake
simulation verification within a virtual network model
comprising servers, a Pseudo Address Generator(PAG), ENs,
and request users.
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A. SIMULATION SETTINGS
Assuming the cloud server as the origin and attributing a
communication range of 10 km to it, a coordinate system
with pointers was established. In a circular area with a
radius of 10 km, a star topology was adopted to deploy four
ENs and PAG. The network speed of the ENs fell within
the range of [50Mbps, 100Mbps]. For simulation purposes,
a malicious node initiates a task message directed towards
the cloud server, which subsequently offloads this task to
an EN for computation. The simulation involves assessing
the frequency of attacks targeting this task and monitoring
the pseudo-address updating frequency over a 10-minute
period.

The relevant parameters in the simulation are as follows:
u1, u2, and u3 represent the preference degrees for energy
consumption, semantic accuracy, and time delay of task
information, respectively. These values vary for each task and
fall within the range of (0, 1). The parameter r indicates the
time discount degree, ranging from (0, 1], and is associated
with the task information’s timeliness. The gain factors λ1 and
λ2, with values in the range [1, 2], are related to the value
of the task information. The parameters θ1, θ2, and θ3, each
ranging from (0, 5], represent the cost factor per unit time
associated with the communication overhead caused by task
information. Additionally, ε0, and ε1, with values ranging
from (0, 5], represent the cost factors of attack and defense.
The factors ε2 and ε3, acting as privacy leakage factors,
are associated with the task’s intrinsic characteristics, with
values in the range (0, 1] and [r , 1], respectively. Task pro-
cessing is simulated in various scenarios by adjusting these
parameters.

B. SIMULATION RESULTS AND PERFORMANCE ANALYSIS
We conduct a comparative analysis against the low-frequency
IP hopping strategy [31] and high-frequency IP hopping strat-
egy [41] in terms of cost and protection effectiveness. P2SPA
employs pairwise attribute comparison during task offloading
and constructs a judgmentmatrix through n(n−1)

2 assessments.
This method allows for more precise protection with reduced
resource utilization. Our simulation involves 1000 tasks with
varying protection preferences, demonstrating loss degree
pairs, as shown in Fig. 3.

As shown in Fig. 3, P2SPA consistently exhibits superior
resource utilization (as indicated by smaller loss degrees)
across diverse information types with varied protection
preferences, emphasizing its cost-effective superiority over
other strategies. Following the selection of the optimal EN
for offloading, we delve into an analysis of the frequency
variations in pseudo-address updating concerning attacks of
differing frequencies.

The variance in p signifies distinct levels of trustworthiness
of malicious nodes. As illustrated in Fig. 4, a reduction in p
implies an increase in the PAG’s trust in a user, prompting the
malicious node to elevate its attack frequency in the pursuit
of greater gains. Consequently, PAG becomes more proactive

FIGURE 3. The comparison of Qloss.

FIGURE 4. Variation process of optimal attack frequency with p.

FIGURE 5. Variation process of update frequency with r.

in adjusting its privacy protection measures, resulting in a
progressively rapid convergence of attack frequencies. Over
time, the immediacy of information diminishes, leading to
a gradual decline in attack frequencies. Negative attack
frequency values denote instances in which the active
response of the PAG results in a negative gain function for the
attacker, signifying successful resistance against the attack.

Considering the varying timeliness of different task
information, we introduce the time discount rate r, which is
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FIGURE 6. Degree of fit between update and attack frequency.

directly proportional to the urgency of the task information.
Fig. 5 demonstrates an increasing trend in the optimal
pseudo-address update frequency with a higher r, indicating
a relatively rapid convergence speed. This trend stems from r
serving as a pivotal parameter in EN’s defense gain function,
significantly influencing the determination of pseudo-address
updating frequency during the dynamic game process.
A greater task urgency, denoted by a higher r correlates
with an increased need for frequent pseudo-address updates.
Conversely, as information becomes less time-sensitive
over time, its significance gradually diminishes, lead-
ing to convergence in the number of pseudo-address
updates.

To further substantiate the superiority of P2SPA, we con-
ducted a comparative analysis against the strategies from [33]
and [41]. The differentiation between low and high attack
frequencies is established relative to the attack frequency
pfa(t), where low frequency refers to instances where
fd (t)<fa(t) and high frequency denotes scenarios where
fd (t) significantly surpasses fa(t) (i.e., fd (t)>2fa(t)) [10].
We quantified the cost of protection based on the alignment
of fd (t) with pfa(t), using r = 0.2. By employing the original
parameters, we calculated the mean values of fa(t) and fd (t)
for each strategy across multiple simulations. The reason are
shown in Fig. 6.

Fig. 6 clearly demonstrates that the update frequency fd (t)
proposed by our strategy dynamically adjusts in response
to fluctuations in the attack frequency pfa(t). Not only does
fd (t) consistently surpass pfa(t), but it also exhibits a superior
closeness effect. This indicates that the efficiency of the edge
server cost-saving defense strategy without compromising
defense efficacy. In contrast, the strategies presented in [31]
and [41] maintain relatively fixed update frequencies, lack-
ing adaptive adjustments corresponding to changes in the
attack frequency. Consequently, these strategies struggle to
effectively fend off attacks or lead to wastage of resources.
Moreover, we conducted a comparative analysis between
P2SPA, [31] and [41], evaluating the defense cost based on
the generated number of pseudo-addresses. The simulation
results are shown in Fig. 7.

FIGURE 7. Comparison of the number of addresses.

FIGURE 8. Comparison of the defense returns over a 10 minutes period.

Fig. 7 illustrates that [31] consistently updates pseudo-
addresses at a high frequency, achieving a commendable
defense effect but incurring significant wastage of the ENs’
limited protection resources. Conversely, while [41] exhibits
a lower cost, it faces vulnerability when the attack frequency
surpasses its IP address set because of infrequent updates.
This situation provides malicious nodes with ample time for
packet analysis and potential intrusions. P2SPA presented a
balanced approach, offering effective protection at a lower
cost, making it more suitable for ENs operating within
constrained resources. It is worth noting that [31], although
not directly tailored for edge networks, demonstrates superior
defense effectiveness for ENs. Therefore, we conducted a
comparative analysis between P2SPA and [41] in terms of
defense effectiveness.

As shown in Fig. 8, [41] initially demonstrated a high
defense benefit owing to its low defense cost. However,
over time, an attacker progressively deciphers its defense
characteristics, leading to a gradual decline in its defense
gain. This deterioration culminates in EN breach, resulting in
a negative defense effect. Conversely, in P2SPA, the attacker
fails to achieve the anticipated gain, prompting the attack
to stabilize. Consequently, the corresponding defense gain
exhibited a similar trend.
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VI. CONCLUSION
In the context of future MEC facilitating secure task offload-
ing to ENs for reduced latency, this study delves into ENs
location privacy protection. Addressing the constraints of the
ENs’ limited resources, P2SPA is devised. This strategy opti-
mally selects EN based on the varying protection preferences
of the task information. Employing pseudo-addresses for user
interactions, P2SPA determines optimal update frequencies
through Stackelberg game dynamics to safeguard the ENs.
Comparative evaluations against existing methods highlight
P2SPA’s favorable balance between defense effects and cost-
effectiveness. The numerical estimations affirm P2SPA’s
proficiency in achieving a compromise service strategy with
a satisfactory cost-effective performance. Overall, it is a
lightweight and robust protection strategy for ENs, and future
research will explore information transmission across non-
secure channels.
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