
Received 9 February 2024, accepted 9 March 2024, date of publication 13 March 2024, date of current version 19 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376630

Design and Implementation of a Configurable
Fully Compliant DVB-S2 LDPC Encoder for
High Data-Rate Downlink Payload
PIETRO NANNIPIERI 1, (Member, IEEE), GIACOMO BARTOLACCI 1, MATTEO BERTOLUCCI 2,
AND LUCA FANUCCI 1, (Fellow, IEEE)
1Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
2IngeniArs S.r.l., 56121 Pisa, Italy

Corresponding author: Pietro Nannipieri (pietro.nannipieri@unipi.it)

This work was supported in part by Italian Ministry of Education and Research (MUR) in the Framework of the FoReLab Project
(Departments of Excellence), and in part by IngeniArs s.r.l.

ABSTRACT This work centres on designing and implementing a Low-Density Parity-Check (LDPC)
Encoder on a Xilinx Field Programmable Gate Array (FPGA). The encoder will be part of the Digital
Video Broadcasting Satellite 2nd generation (DVB-S2) Transmitter Intellectual Property (IP) for a High
Data-Rate Downlink Telemetry System in the context of Earth Exploration Satellite Service. The objective
is to design an LDPC encoder with three main features. First, the design will prioritize maximizing data
processing speed to ensure the efficient transmission and reception of the payload. Second, the encoder will
comply with the DVB-S2 Standard for all possible data rates. This will optimize transmission efficiency
by adapting to varying channel conditions, utilizing Adaptive Coding and Modulation (ACM) and Variable
Coding and Modulation (VCM) techniques. Lastly, the input and output interfaces of the LDPC Encoder
will be designed for high reconfigurability, allowing easy adaptation to different operational requirements
and facilitating seamless integration into diverse systems. AXI Stream Pipelined Architecture: The LDPC
Encoder will utilize anAXI Stream Pipelined architecture. This architecture choice will enhance data transfer
efficiency between different functional blocks within the FPGA design, minimizing latency and maximizing
overall system performance.

INDEX TERMS DVB-S2, LDPC, low-density parity check, satellite, telemetry transmitter, high throughput,
FPGA, parallel processing, PDT, reconfigurable datapath.

I. INTRODUCTION
A. SATELLITE TELECOMMUNICATION SYSTEMS AND
EARTH EXPLORATION SATELLITES
In the field of Satellite communication systems, Earth
Exploration Satellite Services (EESS) play a significant role
in enabling the monitoring, understanding, and management
of our planet’s environment and resources. One of the
most challenging tasks for a satellite is the transmission of
science data, also called Payload Data Telemetry (PDT).
Considering the limited bandwidth, this involves downlinking
sensor data collected by the satellite’s instruments to Earth

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

stations containing valuable information about the Earth’s
environment, such as images, measurements, and other
scientific observations. Currently, Earth Observation (EO)
systems in Europe typically utilise the S-band (which
spans from 2 to 4 Ghz) and the X-band (which spans
from 8 - to 12 GHz) for downloading satellite data to ground
stations. However, due to increased PDT data rates and
increased demands and congestion in lower bands, agencies
worldwide have been exploring higher bands, as they
(generally) can accommodate a higher bandwidth. The K
band, with a bandwidth of 1.5 GHz available between
25.5 and 27 GHz, is considered the following option for
higher throughput. Extensive research has been conducted
on using the K band for Low Earth Orbit (LEO) satellites,

39204

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-2538-5440
https://orcid.org/0009-0008-5500-5147
https://orcid.org/0000-0003-1537-2520
https://orcid.org/0000-0001-5426-4974
https://orcid.org/0000-0001-8062-3301

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

asmentioned in [1]. Notably, the EUMETSATMetOp Second
Generation (MetOp-SG) and the Meteosat Third Generation
(MTG) are expected to leverage K-band frequencies for
their communication links [2]. High-order digital modulation
schemes are required for better spectral efficiency to reach
higher data rates. They need a higher signal-to-noise ratio
(SNR) and power to maintain the same Bit Error Rate (BER)
as lower-order modulation schemes. Commonly used modu-
lation schemes include QPSK, 8-PSK, 16-APSK, 32-APSK
and 64-APSK. In DVB-S2X (the extension of the DVB-S2
standard), modulation order can go as high as 256-APSK [3].
As downlink data rates and the use of higher frequency
bands increase, some environmental effects that influence
the propagation of radio signals in the telecommunication
links between earth stations and EESS observation satellites
become more demanding. Above 10 GHz, precipitation,
especially rain, causes absorption and scattering of radio
waves that can lead to severe signal attenuation [4]. Two
methods usually cope with the challenges of High Data
Rate Payload Data Transmission. The first uses Forward
Error Correction (FEC) Codes, accomplished by adding
redundancy to the transmitted information with a Channel
FEC Encoder using a predetermined algorithm, allowing the
receiver to correct errors without retransmission or feedback
to the sender. The second technique is Adaptive Coding and
Modulation: when the satellite-to-ground distance decreases
as the satellite elevation angle increases, the free-space
loss, which represents the attenuation of the signal during
propagation, also decreases. This improvement in the link
distance results in a more favourable link budget, stemming
from the reduced free-space loss, and provides an opportunity
to utilise more spectrally efficient modulation schemes and
higher coding rates. The distance change can be predicted for
each pass, and the transmission can be planned to change the
modulation and the coding rate when the link budget is more
favourable to increase the helpful bit rate. If the distance can
be easily anticipated, some tropospheric propagation events
may be more difficult to predict. The impact of these events
on the link budget may be very significant when using the
highest frequencies (such asKa-band EESS). TheACMmode
can cope with these events at the highest frequencies. This
ACM mode consists of updating the modulation and the
coding rate to the best operating tuning in quasi-real time
based on the received signal-to-noise ratio measurement by
the receiver.

B. EUROPEAN TELECOMMUNICATIONS STANDARDS
INSTITUTE (ETSI) DVB-S2 STANDARD
The DVB-S2 [5] system is a versatile toolkit and can
accommodate various application areas without signifi-
cantly increasing the complexity of the single-chip decoder.
Consultative Committee for Space Data System (CCSDS)
set out to develop a standard [6] mainly to provide a
formalisation of the interface between CCSDS and DVB-S2
for interoperability issues, taking full advantage of the fact
that DVB-S2 is defined as a flexible ‘‘toolkit’’ system.

The system exhibits the following characteristics:

• An adaptable input stream adapter that can handle single
or multiple input streams in various formats.

• A robust FEC system that combines Low-Density Par-
ity Check (LPDC) and Bose-Chaudhuri-Hocquenghem
(BCH) codes.

• A wide range of code rates, ranging from 1/4 to 9/10,
providing flexibility in data rate and error correction
capabilities.

• Four constellations available: QPSK, 8PSK, 16APSK,
and 32APSK, offering different levels of spectrum effi-
ciency, ranging from 2 bit/s/Hz for QPSK to 5 bit/s/Hz
for 32APSK.

• Three spectrum shapeswith roll-off factors of 0.35, 0.25,
and 0.20, allowing adaptation to different bandwidth and
interference scenarios.

• ACM functionality.

Signal generation is based on four framing structure levels:

• BBFRAME at base-band (BB) level, carrying a variety
of signalling bits, to configure the receiver flexibly
according to the application scenario;

• FECFRAME, comprised of BBFRAME with the addi-
tion of redundancy from the FEC Encoding for a
total length of Nldpc bits (64800 for standard frames,
16200 for short frames)

• XFECFRAME, or complex FECFRAME, is the output
of the constellation mapper, which identifies complex
symbols in the (I, Q) plane, with the modulation
efficiency

• PLFRAME at the physical layer (PL) level, carrying a
few highly protected signalling bits to provide robust
synchronisation and signalling at the physical layer.

The FEC, together with the modulation, is the critical
subsystem that achieves excellent performance by satellite
in the presence of high noise and interference levels. The
effectiveness of the FEC Encoder is primarily attributed
to the performance of the inner LDPC codes. However,
LDPC codes suffer from error floors at low error rates. This
phenomenon can be characterised as an abrupt decrease in the
slope of a code’s performance curve from the moderate-SNR
waterfall region to the high-SNR floor region [7]. Since error
floor rates are challenging to measure accurately and may
lead to decoding failures, concatenated BCH outer codes are
introduced. These BCH codes have the same block length
as the LDPC code and offer an error correction capability
of 8 to 12 bits, ideal for covering the error floor region
in LDPC. The combined BCH and LDPC FEC Encoder
output is called FECFRAME and comprises the BBFRAME,
to which the BCHFEC and LDPCFEC fields are appended.
Finally, bit interleaving is applied to FEC-coded bits in 8PSK,
16APSK, and 32APSK. The row-column interleaver helps to
improve signal robustness against burst errors that occur in
transmission: if, for example, an impulsive disturb corrupts
the symbols at the top of the frame and no interleaving has

VOLUME 12, 2024 39205

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

been adopted, only the check bits symbols are corrupted, and
no FEC would be possible at the receiver.

C. STATE-OF-THE-ART DVB-S2 LDPC ENCODERS
The developers are generally focused on the decoder archi-
tectures and implementation, as it is the most complicated
transceiver digital part. The encoding operation may appear
not only on the transmitter but also on the receiver. The
LDPC encoder may be needed in the receiver recovery loops
for adaptive processing and processing under poor jamming
environments. Thus, the compact and fast encoder can also
play an essential role in the receiver design. In [8], the
proposed encoder coding rate reaches 125 Mbps given the
maximum clock frequency of 125 MHz but still needs to
achieve full DVB-S2 compliance as it supports only one
code rate for the 16200 bits code length and 3/5 code
rate. A pipelined approach is mentioned, but more detail is
needed regarding its actual implementation. Similarly, the
architecture in [9] supports only 13 (out of 21) code rates
and has a high resource consumption per code rate. In [10],
an encoder compliant with DVB-S2 and its extension DVB-
S2X is proposed. The output is limited to one bit per cycle
in the natural order. Due to a maximum clock frequency
of 350 MHz, the throughput is restricted to a maximum
of 350 Mbps. The encoder circuit proposed in [11] for DVB-
S2 is fully compatible with all LDPC codes defined in the
standard. It takes advantage of the features of the codes,
presenting a fast-encoding algorithm based on parallelism
of 360 bits, and addresses the critical issue of realising low
complexity quasi-cyclic encoder using RAMs instead of shift
registers. It works on a 50 MHz clock on an Altera Stratix
EPI S80 with a maximum throughput of up to 400 Mbps.
The I/O interfaces are also programmable but need to be more
suitable for higher-order output parallelism; the system was
tested only for continuous byte-wise input/output interfaces.
The work [12] proposes an FPGA implementation of a FEC
encoder core supporting all different DVB-S2 codes in LEO
satellite-ground communications. The architecture utilises
parallel computation but reaches only a maximum throughput
of 1.19 Gbps. Furthermore, this architecture does offer the
flexibility to reconfigure the I/O datapath, even on the fly.
Still, once again, this is limited to the set 2, 3, 4, 5 of small
input and output parallelism values, which have been selected
to match the modulation efficiency. The highly influential
paper in reference [13] also implements an LDPC Encoder
Core based on a fixed 360 bits parallelism (as in [11], but with
a different approach), showcasing a fast-encoding algorithm
that takes advantage of the structure of the LDPC code
and allowing them to reach a high throughput of 10 Gbps
at 135 MHz clock frequency. Interestingly, this architecture
does not save the entire input message; the input 360 bits
participate immediately in the encoding process. This allows
for better memory utilisation and lower latency. However,
latency is not usually an issue in practical applications,
as the ACM configuration varies very slowly (even under

TABLE 1. State of the art DVB-S2 LDPC encoders.

prohibitive weather phenomena, it may take a few seconds
to change the ACM configuration). This comes at the cost
of throughput: when the input circuitry has provided the last
360 bits of the input message, it must wait until the encoder
has finished the entire encoding process to give the first
360 parity bits. Furthermore, the output 360 parity check bits
are not in the natural and correct order, as defined in the DVB-
S2 standard: the authors say that an interleaver can resolve
this issue. Still, they do not describe its structure nor its impact
in terms of resources, which is expected to be high if the
fixed parallelism of 360 is to be maintained at the output
of such an interleaver. Another design, [14], has a similar
structure to [15], exhibiting a high data rate of 10 Gbps for
the relatively low clock frequency of 100 MHz. However,
more information about the number of resources usedmust be
shown. Finally, researchers in [16] have developed a highly
innovative encoding algorithm and architecture based on a
Recursive Encoder Core tailored to one specific code rate
and frame length combination. They have shown that up to
an outstanding 48.5 Gbps throughput can be achieved with
a 270 MHz clock. However, full compliance with DVB-S2
is only partially achievable. One Recursive Encoder Core is
based on (nldpc−kldpc) registers, one register per parity check
bit, and an optimised number of adders. Since 21 Recursive
Encoder Cores should be utilised parallel to cover the entire
DVB-S2 functionality, more than 300,000 FFs would be
necessary. A summary of the main characteristics of the state-
of-the-art DVB-S2 LDPC encoder is shown in Table 1.

D. OBJECTIVES
This work focuses on designing and implementing a
DVB-S2 LDPC Encoder on a Xilinx Radiation Tolerant
Kintex UltraScale XQRKU060 FPGA, a high-performance
monolithic FPGA focusing on performance. The selected
hardware provides high Digital Signal Processing (DSP)
and block Random Access Memory (RAM)-to-logic ratios,
next-generation transceivers, and space-grade packaging for
vibration and handling requirements during launch and

39206 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

operation. It targets applications like on-board processing,
digital payloads, remote sensing, and many more. The
innovation of the proposed LDPC encoder architecture is
the support of the following features in a unique solution,
providing an encoder with configurable parallelism and
unmatched flexibility and performance:

• Full Compliance with DVB-S2 Standard: The encoder
will adhere to the DVB-S2 Standard, ensuring compati-
bility across various coding rates and frame lengths. This
will enable the utilization of ACM andVCM techniques,
optimizing transmission efficiency by adapting to vary-
ing channel conditions.

• Highly Reconfigurable I/O Interfaces: The input and
output interfaces of the LDPC Encoder will be designed
with high reconfigurability, allowing easy adaptation
to different operational requirements and seamless
integration into diverse systems. A wide range of input
and output parallelism options will offer flexibility and
scalability.

• High Throughput: The design will prioritize high data
processing speed to enable efficient payload transmis-
sion and reception while maintaining optimal resource
utilization. The encoder will deliver parity check bits at
up to approximately 20Gbps, making it one of the fastest
DVB-S2 LDPC Encoders available.

The rest of this work will explore these design challenges,
structured in the following chapters. Chapter II analyses the
specific LDPC code and the encoding algorithms utilized
in the LDPC code specified by the DVB-S2 Standard,
as they form the foundation for comprehending the subse-
quent Register Transfer Level (RTL) Design. Chapter III
comprehensively describes the proposed architecture, high-
lighting the flexibility the reconfigurable I/O interfaces
enable. Chapter IV will present the implementation results
obtained, including assessing performance metrics such as
clock frequency, throughput, and resource utilization. Finally,
Chapter 5 will provide the concluding remarks and insights
derived from the conducted work, summarizing the key
strengths of the proposed design.

II. DVB-S2 ENCODING ALGORITHMS
A. DVB-S2 ENCODING ALGORIHMS
LDPC Codes [18] implemented by the DVB-S2 standard are
linear systematic codes. Thus, we define a codeword c to have
the systematic structure

c = [i0, i1, i2 · · · ik−1, po, p1 · · · pn−k−1)] (1)

where [i0, i1, i2 · · · ik−1] are the k input information bits and
[po, p1 · · · pn−k−1] are the n − k parity check bits that must
be appended to the input information bits to construct the
codeword. There are two choices for n and 11 for the code
rate r =

k
n . Thus, the standard [3] requires different (n, k)

LDPC code parameters. A codeword is valid if and only if:

H(n−k)×n · c = 0 (2)

FIGURE 1. Graphical representation of Eq. 4 on a Tanner Graph.

where H is the Parity Check Matrix. Because of the large
dimensions of H, its structure is better illustrated through
an equivalent geometrical description through a Tanner
Graph [19]. The Tanner graph comprises two sets of n -
k check and n-bit nodes, corresponding to the rows and
columns of the parity check matrix H, respectively. An edge
is drawn between a check node and a variable node only if the
corresponding element in the H matrix is ’1’. The n bit nodes
(VN) are divided into:

• n - k parity nodes, denoted PN
• k information nodes, denoted IN

The information nodes are divided into t groups: each
contains L = 360 information nodes. Thus:

t =
k
L

(3)

The parameter L = 360 is crucial for the Parity Check
Matrix structure: it is constant for every Modulation and
Coding (MODCOD), i.e., for any combination of code
rates and codeword lengths. We can also see that the
L = 360 information nodes inside the same group all
have the same number of connections. In contrast, such a
number may vary between groups. As long as the addresses
[a0, a1, . . . aw−1] of the w Check Nodes (CNs) connected to
the first information node IN0 in each group are determined,
then the location indices of the w CNs connected to the ith

information node INi, where i ϵ {0, 1 . . . L − 1 }, can be
obtained by the following equation:

|a0 + i · q|n−k
|a1 + i · q|n−k
...

|aw−1 + i · q|n−k

(4)

where:

q =
n− k
L

(5)

Eq. 4 can be represented graphically on the Tanner Graph [19]
in Figure 1.

We shall now list the important parameters t =
k
L =

r · n
L

and q =
n−k
L =

n · (1−r)
L with regards to all the available code

rates r and codeword lengths n.
The five short frames marked by ∗ have been modified

offline; their code rates are lower than the nominal ones. For

VOLUME 12, 2024 39207

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

TABLE 2. Values of t and q.

TABLE 3. Nominal and actual code rates for DVB-S2 short codes.

the computation of the correct values of t and q, it is necessary
to refer to the actual code rates instead of the nominal ones
(see Table 3.3). This ensures that the fundamental parameter
L = 360 remains constant for every MODCOD.

The [a0, a1, . . . aw−1] addresses corresponding to each
group are found in tables in the European Telecommunica-
tions Standards Institute (ETSI) DVB-S2 standard [5]. Each
row of the table corresponds to one of the groups of INs, i.e.,
each table has t rows. As an example, for code rate r =

1
4

and codeword length n = 64 800, Table B.1 from the ETSI
DVB-S2 standard [3] has t =

k
L =

k
360 =

16200
360 = 45

rows. This table, shown in Figure 2, can be seen as the union
of a t1 × w1 table and a t2 × w2 (e.g. a 15 × 12 table and
a 30 × 3 table, respectively). Thus, in this case, there are
only two values for the degree wc of each group: 12 and 3.
The other standard tables (with different code rates and frame
lengths) also have a very limited set of column-weight values.
If the values in these matrices are to be stored in a Read
Only Memory (ROM), this could be useful in developing a
simpler and faster encoder: the total number of elements in
each standard table is denoted by W.

The parameter (t1, w1), (t2,w2) and W of these standard
tables are described in Table 4 for Normal frames and Short
Frames.

Finally, we can deduce from the Tanner Graph that the
parity check matrix’s structure is shown in Figure 3.

The H matrix can be divided into two sub-matrices: a
sparse matrix A(n−k)×k , corresponding to the permutation
matrix in the Tanner Graph, and B(n−k)×(n−k), a lower
staircase matrix corresponding to the zig-zag structure of
the Tanner Graph. The A matrix is divided into t groups
of L = 360 columns. For each of these groups, Eq 4 can
be translated as follows: the first column of each group has
non-zero elements at indices [a0, a1, . . . , aw−1]. The ith

FIGURE 2. DVB-S2 Standard Table for n=64800 and code rate r=1/4.

TABLE 4. DVB-S2 standard Table parameters.

FIGURE 3. DVB-S2 parity check matrix (structure).

column inside each group can be obtained by a downward
logical rotation of the first column by i × q. The first t1

39208 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

L-columns group all have the same column weight w1; the
latter t2 L-columns group all have the same column weight
w2 = 3.

B. REPEAT AND ACCUMULATE ENCODING
As we have seen, the H matrix is defined in the standard as:

H(n−k)×n = [A(n−k)×k B(n−k)×(n−k)] (6)

If we expand A(n−k)×k and B(n−k)×(n−k), we obtain the
following identity:

H(n−k)×n

=

a0,0 · · · a0,k−1 1 0 0 · · · 0 0
a1,0 · · · a1,k−1 1 1 0 · · · 0 0
a2,0 · · · a2,k−1 0 1 1 · · · 0 0
...

. . .
...

...
...

...
. . .

...
...

an−k−2,0 · · · an−k−2, k−1 0 0 0 · · · 1 0
an−k−1,0 · · · an−k−1, k−1 0 0 0 · · · 1 1

(7)

By applying the fundamental equation H · cT = 0 where
c = [i0, i1, · · · ik−1, p0, p1, · · · , pn−k−1] is the codeword
in systematic form, we obtain the following system of n-k
parity check equations:

(a0,0i0 + a0,1i1 + . . . + a0,k−1ik−1) + p0 = 0
(a1,0i0 + a1,1i1 + . . . + a1,k−1ik−1 + p0) + p1 = 0

...

(an−k−1,0i0 + an−k−1,1i1 + . . . + an−k−1,K−1ik−1+

+pn−k−2) + pn−k−1 = 0

(8)

Since x + x = 0 in the GF(2) field, we can add the
bracketed quantities to both sides of the equations and obtain
the following:

p0 = (a0,0i0 + a0,1i1 + . . . + a0,k−1ik−1)
p1 = (a1,0i0 + a1,1i1 + . . . + a1,k−1ik−1) + p0

...

pn−k−1 = (an−k−1,0i0 + an−k−1,1i1 + . . . +

+an−k−1,k−1ik−1) + pn−k−2

(9)

The input information sequence i mainly participates in
the encoding process through the sub-matrix A, which can
be expressed with the vector S1×(n−k):

S1×(n−k) = ik · ATk×(n−k) = [s0, s1 . . . sn−k−1] (10)

For r ∈ 0, 1 . . . , n− k − 1:

sr = ar,0i0 + ar,1i1 + . . . + ar,k−1ik−1 =

n−k−1∑
j=0

ij · ar,j

(11)

By substituting back sr into Eq. 3.7 we obtain the following
equations.

p0 = s0
p1 = s1 + p0 = s1 + s0

p2 = s2 + p1 = s2 + s1 + s0
...

pn−k−1 = sn−k−1 + pn−k−2 = sn−k−1 + sn−k−2+

+ · · · + s1 + s0

(12)

The ith parity check bit thus can be computed recursively
as:

p0 = s0, pi = si+ pi− 1 (13)

Thus, we can obtain any parity check bit pi through an
accumulation of the sr bits:

pi =

i∑
r=0

sr = si + si−1 + · · · + s1 + s0 (14)

Thus, the LDPC encoding algorithm can be divided into
two steps: computation of the sprimer s (ii) accumulation of the
sprimer s. For this reason, the DVB-S2 LDPC code is referred
to as an Irregular Repeat Accumulate (IRA) code. However,
it can be easily demonstrated that this simple encoding
algorithm is not only inefficient in terms of speed, as it is
only capable of outputting one parity bit at a time, but it
is also utterly infeasible in terms of hardware complexity
and resource utilization. To perform Eq. 11, we would need
to store the entire (n − k) × kA matrix and perform a
multiplication between input as the whole message (k bits)
and one row of the A matrix (k bits). The main flaw of
this algorithm is that it does not use either the sparseness
of the A matrix or its structure. In the following sections,
we shall present two more advanced algorithms that exploit
both features.

C. VECTORISED IRA CODING
For r ∈ 0, 1 . . .N − K − 1:

sr =

n−k−1∑
j=0

ij · ar,j (15)

The non-zero ar,j correspond to the jth information node
linked to check node r. We define IN(r) as the set of
information nodes that are linked to check node r (r-th row
of A). Thus, we can rewrite sr in Tanner Graphs terminology
as:

sr =

∑
z ∈IN (r)

iz (16)

We can define the following algorithm:

Instead of processing the CNs individually, which requires
a priori knowledge of all information bits, we can exchange
the processing order from horizontal to vertical. We define
CN(c) as the set of check nodes that are linked to the
information node c (cth column of A). So, for each new

VOLUME 12, 2024 39209

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

Initialize sr = 0
for r = 0 to (N − K − 1) do
for each z ∈ IN (r) do
sr = sr + iz

end for
end for

information bit ic received by the encoder, the associated sr
values are updated according to:

Initialize sr = 0
for c = 0 to (K − 1) do
for each r ∈ CN (c) do
sr = sr + ic

end for
end for

Now, considering the code periodicity, we shall show
how each inner cycle of this algorithm can be performed
simultaneously for L = 360 CNs, increasing the
encoder throughput. We shall divide the input message
i = [i0, i1, . . . im, . . . it−1] into t groups comprised of
consecutive 360 bits. Each group is defined as:

im = [i360m, i360m+1, i360m+2, . . . i360m+359] (17)

with m ∈ 0, 1, · · · , t − 1 The accumulation vector S1×(n−k)
in Eq. 10 shall be rearranged as S′1×(n−k):

S′1×(N−K) =
[
S0, S1, . . . , Sq−1

]
(18)

where each Sj is a L=360 bits vector, defined as:

Sj = [sj, sj+q, sj+2q, . . . sj+359q] (19)

with j ∈ 0, 1, 2, . . . q− 1 Finally, we construct a q×L matrix,
called SM , with the Sj as its rows, as follows:

SM =

S0
S1
...

Sq−1

 =

s0 sq · · · s359q
s1 s1+q · · · s359q+1
...

...
. . .

...

sq−1 s2q−1 · · · s360q−1

 (20)

We only need to know CN(c) in order to find CN (c + j),
for j = 1, 2, .., L − 1. In fact, if CNr is connected to INc,
i.e. r ∈ CN (c), then, | r + j · q|n −k ∈ CN (c+ j).
It is desirable for an implementation to store the 360 values

of [sr , s|r+q|N−K , s|r+2q|N−K · · · s|r+359q|N−K] values in the SM
matrix row-wise: this way we shall be able to store 360 bits
word in a q × 360 RAM, represented by SM . However, r ∈

{0, 1, 2, . . .N − K − 1}, so the Sj do not automatically line
up with the q rows of SM . Two ways to solve this issue are
logical rotation of Sj or logical rotation of the input im. The
second approach is preferable since we can easily vectorize
the operation on the SM matrix. We denote the left logical
rotation of a vector by the bracketed apex x() and modify
the algorithm this way:

Initialize sr = 0
for m = 0 to (t − 1) do
for each r ∈ CN (c = 360m) do
sr = sr + i360m
s|r+q|N−K = s|r+q|n−k + i360m+1
s|r+2q|N−K = s|r+2q|n−k + i360m+2
s|r+3q|N−K = s|r+3q|n−k + i360m+3
...

s|r+359q|N−K = s|r+359q|n−k + i360m+359
end for

end for

Initialize SM = 0
for m = 0 to (t − 1) do
for each r ∈ CN (c = 360m) do
j = |r|q (address)

x =

⌊
r
q

⌋
(shift amount)

Read old Sj value from SM
Sj = Sj+
textbfi(x)

m
Write new Sj value to SM

end for
end for

Assuming that the SM matrix is stored in a Single Port
RAM, the read and write operations in the inner loop take
two clock cycles (1 clock cycle each). For a given frame
length and code rate, ‘‘each r ∈ CN (c = 360m)’’ means
that for the mth group of 360 input bits, at each iteration
of the inner loop r assumes all the values stored in the
corresponding mth line in the Standard Table identified by
the frame length and code rate. Thus, we can estimate the
clock cycles and resource utilisation for implementing this
algorithm on FPGA. We need 2×W clock cycles, a q× 360
Single Port RAM and 21 Standard Tables, each with W rows
and 19 bits words (8 bits for address j and 9 bits for shift
amount x). One further fundamental observation can bemade.
The implementation of this algorithm relies on a complex
addressing control module that uses a q × 360 Single Port
RAM inside a computational loop: in the context of this work,
however, we strive to achieve a unidirectional data flow as
much as possible as one of the requirements of the design is to
employ an AXI Stream pipelined approach. We shall address
these issues by exploring a different approach to the encoding
problem. Having shown how to compute the Sj, we shall now
define a vectorized algorithm to accumulate the Sj into the
parity bits. Computing the checksum of all the columns of
SM , we obtain the following checksum vector:

sc =

[∑q−1
i=0 si

∑2q−1
i=q si

∑3q−1
i=2q si · · ·

∑360q−1
i=359q si

]
(21)

It is important to notice that the checksum vector sc can be
computed in parallel to the computation of the Sj:

39210 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

Initialize Sc = 0
for m = 0 to (t − 1) do
for each r ∈ CN (c = 360m) do
x =

⌊
r
q

⌋
Read old sc value from sc register
sc = sc + i(x)m
Write new sc value to sc register

end for
end for

Moving on, let LL×L be a lower triangular matrix of ones:

L =

1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
...

...
...

. . .
...

...

1 1 1 . . . 1 0
1 1 1 . . . 1 1

L×L

(22)

By applying the linear transformation specified by L to the
checksum vector, we obtain the following result:

L · sTc

=

[∑q−1
i=0 si

∑2q−1
i=0 si

∑3q−1
i=0 si · · ·

∑360q−1
i=0 si

]T (23)

Next, the vector sc is logically shifted left of one bit
to obtain the following vector, referred to as the parity
initialization vector:

pinit =

[
0

∑q−1
i=0 si

∑2q−1
i=0 si · · ·

∑359q−1
i=0 si

]
=

[
0 pq−1 p2q−1 · · · p359q−1

]
(24)

In this identity, we have applied Eq. 14. Furthermore,
we notice that pinit can readily be obtained from the checksum
vector sc using a simple combinatorial lesson. Finally, we can
now calculate L parity bits at a time by using the following
procedure:

[p0pq · · · p359q] =

= [0p(q−1) · · · p(359q−1)] + [s0sq · · · s359q]
[p1p(q+1) · · · p(359q+1)] =

= [p0pq · · · p359q] + [s1s(1+q) · · · s(1+359q)]
[p2p(q+2) · · · p(359q+2)] =

= [p1p(q+1) · · · p(359q+1)] + [s2s(2+q) · · · s(2+359q)]
...

[p(q−1)p(2q−1) · · · p(n−k−1)] =

= [p(q−2)p(2q−2) · · · p(n−k−2)] + [s(q−1)s(2q−1) · · · s(n−k−1)]

(25)

Similarly to Sj, we define Pj as:

Pj =
[
pj pj+q pj+2q · · · pj+359q

]
(26)

Which can be rewritten recursively as:{
P0 = pinit = [0pq−1p2q−1 · · · p359q−1]
Pj = Sj + Pj−1

(27)

Similarly to SM , we shall define a q× L matrix containing
the parity bits as follows:

PM =
P0
P1
P2
...

Pq−1

 =

p0 pq p2q . . . p359q
p1 pq+1 p2q+1 . . . p359q+1
p2 pq+2 p2q+2 . . . p359q+2
...

...
...

. . .
...

pq−1 p2q−1 p3q−1 . . . pN−K−1

q ×M

(28)

Finally, we can define the computation algorithm of the Pj.

Initialize Pj = piniti
for j = 0 to (q− 1) do
Read Sj from memory at address j
Pj = Sj + Pj−1
Write Pj to memory at address j

end for

Two crucial observations must be made. The first one
is that pinit , being obtained from the checksum vector sc,
can be computed only after all Sj have been calculated.
Secondly, this algorithm computes L=360 parity check bits at
a time, which is desirable for high throughput architectures;
however, these bits are not output in the natural order.
Therefore, a reordering process is necessary. Although this is
an important topic, much of the relevant literature underrates
this problem: we shall propose a solution to this issue further
on. Finally, other 2× q cycles are needed for accumulation,
for 2 × (W + q) under the assumption that Simple One Port
RAM is utilized.

D. VECTORIZED QUASI-CYCLIC ENCODING
We shall now present an alternative approach to the encoding
algorithm based on performing a row permutation on A.
Extract a q × k matrix, denoted as A′

r , from A, with r ∈

0, 1, . . . q− 1

A′
r =

ar,0 ar,1 · · · ar,k−1
ar+q,0 ar+q,1 · · · ar+q,k−1

...
...

. . .
...

ar+359q,0 ar+359q,1 · · · ar+359q,k−1

 (29)

Reorganize the A′
r submatrices into C. C is a row-wise

permutation of A.

C =

A0′
A′

1
...

A′

q−1

 (30)

The reshapedmatrixC is composed of q×t cyclicmatrices:

C =

C0,0 C0,1 · · · C0,t−1
C1,0 C1,1 · · · C1,t−1

...
...

. . .
...

Cq−1,0 Cq−1,1 · · · Cq−1,t−1

 (31)

VOLUME 12, 2024 39211

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

FIGURE 4. Reshaping of A matrix.

Each submatrixCj,m is a square L×L, i.e. 360×360, cyclic
matrix (with j ∈ {0, 1, . . . q− 1) , m ∈ {0, 1, . . . t − 1}),
that is each row (or column) is the right logic rotation of the
previous row (or column). The reshaping operation of the A
matrix into a quasi-cyclic matrixC is represented in Figure 4:
The accumulation vector S1×(n−k) in Eq. 10 is conse-

quently rearranged as S′1×(n−k):

S′1×(N−K) =
[
S0, S1, . . . , Sq−1

]
(32)

where each Sj is a L=360 bits vector, defined as:

Sj = [sj, sj+q, sj+2q, . . . sj+359q]

withj ∈ 0, 1, 2, . . . q− 1 (33)

We shall also divide the input message i = [i0, i1, . . .

im, . . . it−1] into t groups comprised of consecutive 360 input
bits, denoted by im. Eq. 10 can be rewritten as:

S ′
1×(N−K) = i · CT

= [i0, i1, . . . , it−1]

·

CT
0,0 CT

1,0 . . . CT
q−1,0

CT
0,1 CT

1,1 . . . CT
q−1,1

...
...

. . .
...

CT
0,t−1 C

T
1,t−1 . . . CT

q−1,t−1

 (34)

Thus, we deduce that each Sj can be computed as:

Sj =
[
sj, sj+q, sj+2q, . . . sj+359q

]

= [i0, i1, . . . , it−1] ·

CT
j,0

CT
j,1
...

CT
j,t−1

 (35)

If the entire input message i = [i0, i1, . . . im, . . . it−1] is
stored in a memory, then it is possible to compute 360 bits in
parallel and store them in a q× 360 RAM as follows:

SM =

S0
S1
...

Sq−1

 =

s0 sq · · · s359q
s1 s1+q · · · s359q+1
...

...
. . .

...

sq−1 s2q−1 · · · s360q−1

 (36)

Furthermore, it can be shown that the computation of the
Sj a simple task because of the sparseness of the matrix

C, inherited by the parity check matrix, and because of
the quasi-cyclic structure of the square sub-matrices Ci,j.
By expanding Eq. 35 we get:

Sj = i0 · CT
j,0 + i1 · CT

j,1 + · · · + it−1 · CT
j,t−1 =

t−1∑
m=0

im·CT
j,m

(37)

The first observation that can be made is that not all t
transformations of the im vectors need to be executed, as the
vast majority of the Cj,m submatrices have all zero elements.
Secondly, it is trivial to compute the product im · Cj,m. Let
us consider a quasi-cyclic L × L submatrix D and let α ∈

0, 1, · · · ,L − 1 be the index of the only non-zero element in
the first row of D. For example, if α = 0, then D is simply
an L × L identity matrix I. The rows of D are L-vectors over
GF(2) denoted by [d0, d1, d2, · · · , dL−1]. Let u and v be two
L-vectors over GF(2) and consider the following identity:

D · uT = vT (38)

This equation can be expressed equivalently by the system
of equations:

d0 · uT = v0
d1 · uT = v1
...

dL−1 · uT = vL−1

(39)

Since the rows of D are rotated replicas of the first row,
we can indicate a logical left rotation by the bracketed apex
x() and rewrite the equation above as follows:

d0 · uT = v0
d (1)0 · uT = v1
...

d (L−1)
0 · uT = vL−1

(40)

Since d0 only has one non-zero element in position α, then
d0 · uT = v0 = uα . Consequently, it is clear that d (1)0 ·

uT = v1 = u|α+1|L where the modulo-L is a mathematical
description of the fact that the circular non-zero element in
D rotates over to the 0th position after it has reached the
(L − 1)th position. By repeating the same process for all the
other terms, we obtain the following result:

vT = D · uT =

uα

u|α+1|L
u|α+2|L

...

u|α+359|L

 ⇒ v = u(−α) (41)

In simpler terms, Eq. 41 means that the result of the
multiplication between an L-vector u and a quasi-cyclic
matrix D is an L-vector v that is the logical proper rotation
of u by α, i.e. the position of the only non-zero bit in the first
row of D. Returning to the discussion of Eq. 3.34, we note

39212 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

TABLE 5. Index-Alfa Table (frame length = 16200, code rate =1/2).

that some of the non-zero Cj,m are, in fact, quasi-cyclic L×L
submatrix with only one circulating ‘1’, whereas others may
have more than one circulating ‘1’. In the first case, all we
need to know to compute the product im · Cj,m is m, i.e. the
index identifying what group of 360 input bits is currently
selected, and the α value relative to Cj,m. Thus, we have:

im · Cj,m = i(−α)
m (42)

In the latter case, we can keep the index value m constant
and express Cj,m as a sum of multiple quasi-cyclic L × L
submatrixwith only one circulating ‘1’, each characterized by
a distinct α value. For example, if there are three circulating
‘1’s, we shall define three αvalues, i.e. α1, α2, α3, and
compute im · Cj,m as follows:

im · Cj,m = i(−α1)
m + i(−α2)

m + i(−α3)
m (43)

Each Sj can be computed by an accumulation of 360-
bit entries selected from the input message, i.e. im, rotated
by an amount α. Therefore, we must extrapolate all the
valid (m, α) couplets for any q rows of L × L quasi-
cyclic matrices. These couplets are a complete and equivalent
description of theCmatrix. One example of a Look-Up Table
(LUT) for framelength = 16200 and nominalcoderate =

1/2(actualcoderate = 4/9) containing the (m, α) couplets
are given in Table 5: it is composed of q=25 rows and a
varying number of columns, which is equal to the row-weight
wr of each of the selected row of L×L quasi-cyclic matrices:
in this case, wr assumes every value between 2 and 5.

The total number of elements (with two entries) in the
Index-Alfa Tables could be computed by summing all the
row-weights wr of C. However, there is a more straight-
forward and more meaningful method. Let us compare the

FIGURE 5. Comparing the first 360 columns of A (left) and C (right).

first 360 columns of A with the first 360 columns of C,
as exemplified in Figure 5 for framelength = 16200 and
nominalcoderate = 8/9(q = 5, n− k = 1800).
We can quickly identify four L × L quasi-cyclic matrices

with only one rotating ‘1’ and their (m, α) couplets. They
correspond to the original four ‘‘rotating diagonals’’ specified
by the four elements [a0, a1, a2, a3] from the first row of the
Standard Table. Therefore, by repeating the same observation
for all the 360-column groups, we may deduce that there
are as many (m, α) couplets in the Index-Alfa Table as there
are elements in the Standard Tables, i.e. the Index-Alfa table
contains W (m, α) couplets (for the W values, see Table 4).
Finally, we may define the following algorithm.

Initialize Pj = piniti
for j = 0 to (q− 1) do
Initialize Sj = 0
for each (m, α) ∈ j− throwoftheIndex − AlfaTable do
Sj = Sj + i(−α)

m (now we can store Sj in jth row of
SM)

end for
end for

Finally, the second step of the algorithm, computing the
parity check bits, is identical to Vectorized IRA Encoding.
From a timing standpoint, this algorithm requires only W+q
cycles, which is better than the previous one. We also
showed that the Standard Table and the Index-Alfa tables are
equivalent. This approach is more suitable for unidirectional
data flow as it does not rely on a complex loop involving
RAMas a computational building block. These benefits come
at the cost of an increasedmemory footprint as the entire input
message needs to be stored. As already discussed, latency also
increases, but it is not an issue in practical applications.

III. REGISTER TRANSFER LEVEL DESIGN
The proposed encoder architecture introduces the following
key innovations. I) Full Compliance with DVB-S2 Stan-
dard. The encoder will be designed to comply with the
DVB-S2 Standard for all MODCODs. This will enable the
utilization of ACM and VCM techniques, optimizing trans-
mission efficiency by adapting to varying channel conditions.
II) Highly Reconfigurable I/O Interfaces. The input and

VOLUME 12, 2024 39213

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

FIGURE 6. Block Level Architecture.

output interfaces of the LDPC Encoder will be designed for
high reconfigurability, allowing easy adaptation to different
operational requirements and facilitating seamless integration
into diverse systems. A set of 12 values for the input
parallelism and another set for the output parallelism, also
of 12 values, parallelism, is available. The values of Min and
Mout are the following:

• Min = 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96
• Mout = 2, 3, 4, 6, 8, 12, 18, 24, 36, 60, 72, 120

We shall refer to the input parallelism as Min and the output
parallelism asMout .Min andMout are chosen at compile time
independently from each other (for a total of 144 possible
configurations). However, it is preferable to choose between
two reasonably close values. No comparable architecture
in the literature shows such a range of reconfigurability
while maintaining high throughput for the higher parallelism
configurations. III) High Throughput: The design will
prioritize achieving high throughput to achieve the through-
put requirements while maintaining acceptable resource
utilization. To achieve this goal, the architecture shall be
based on a non-reconfigurable LDPC Encoder Core utilizing
a 360-bit stream to implement the high-speed Vectorized
Quasi-Cyclic Encoding algorithm described in Chapter 3.4.
However, this choice challenges adapting the reconfigurable
I/O interfaces to work with the Core for all Min and Mout
values.

A. BLOCK LEVEL ARCHITECTURE
As depicted in Figure 6, the proposed architecture is based on
four streams: Input Stream, Info Stream, Parity Stream, and
Output Stream

The Input Stream is characterized by a Min bits data
payload. Since our circuit is meant to be interfaced with the
BCH, Encoder proposed in [20], which only adds as much
as 192 bits of redundancy, Min was conveniently chosen as
a divisor of 192. This parameter can be adjusted to different
values to support other BCH stages. Ideally, the Input Stream
frame should be comprised of Nbch = Kldpc bits; however,
depending on the MODCOD, Nbch is not always divisible by
Min. Therefore, the output of the BCH Encoder operates zero
padding in such a way that the actual frame length, denoted
by N ′

bch = K ′
ldpc, is divisible by Min. The Input Adapter will

eliminate the zero padding and adapt from Min to L=360 to
fulfil the requirements of the LDPC Core component. The
output of the Input Adapter is a t × 360 frame. Because the

FIGURE 7. DVB-S2 LDPC Encoder Framing Structure.

DVB-S2 LDPC Code is systematic, the Input Stream can be
divided into two streams. The first one, denoted as Parity
Stream, undergoes the high-speed Quasi-Cyclic Encoding
algorithm performed by the LDPCCore, which is divided into
two stages: the first stage computes the Sj vectors; the second
stage accumulates the Sj vectors into the Pj vectors. Since
the Pj vectors contain the parity bits out of order, a Parity
Reorder block is introduced to provide the output parity bits
in natural order. This block also adapts the L = 360 bits
Parity Stream to the output parallelism Mout , whose values
are conveniently chosen to be all divisors of 360. On the
other hand, the Info Stream contains the same information
as the Input Stream but with an L=360 bits data payload
instead, facilitating output adaptation. No operation needs to
be carried out on the Info Stream; thus, it is only buffered on
a FIFO, denoted as Info FIFO. The Read Info module is then
used to read 360-bit words from the Info FIFO, which are,
in turn, adapted to the output parallelism. Finally, an Output
Selector switches over the Info Stream and the Parity Stream
to provide the Output Stream. The framing structures of the
proposed encoder architecture are shown in Figure 7: for the
numbered references, see Figure 4.5.

B. INPUT ADAPTER
The Input Adapter takes Min bits as inputs and outputs
L=360 bits. As explained earlier, the Input Adapter shall
execute two tasks: I) eliminate the zero-padding added by the
output of the BCH Encoder; II) adapt from Min to the core
parallelism of L=360. The Input Adapter may be divided into
two stages to execute these tasks. The first stage performs
adaption fromMin to the first divisor of L=360 that is greater
thanMin (i.e. 32 to 36), which we shall denote asM ′

in ≥ Min.
This first stage is omitted if Min = M ′

in is already a divisor
of 360. The second stage accumulates M ′

in bits from the first
stage into L=360 bits.

C. PARITY STREAM
The sub-modules of the LDPC Core are shown in Figure 8.
The Sum Core stage reads 360-bit words from the Input
Message RAM based on the addresses from the Index-Alfa
Tables and computes q vectors, the Sj. Since the Sj are
computed from 0 to q-1 and must be read with the same

39214 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

FIGURE 8. LDPC Core Architecture.

FIGURE 9. Parity Memory Reorder Issue.

order, a FIFO, denoted as Sum FIFO, can be used as a buffer.
The Sum Core stage also computes the checksum vector sc in
parallel and writes it into the small Checksum FIFO, which
has only two 360-bit words. Since the checksum vector sc
only becomes valid in correspondence with the last Sj, i.e.
Sq−1, the second stage of the Core, denoted as Parity Core,
must wait until it is possible to read the checksum vector sc
from the Checksum FIFO. Having read sc, the initialization
vector pinit may be computed. Then, the Parity Core shall pop
the Sj from the Sum FIFO and accumulate them into the Pj,
written into the Parity RAM.

1) PARITY REORDER
The proposed quasi-cyclic encoder generates the parity bits
in order of the rows of C in the form of Eq. 28 (PMmatrix),
which is a permutation of the original parity check matrix H.
On the other hand, the output requires its input bits in the
order of the original, i.e. the natural order. This difference in
the row order raises the following design challenge. Parity
bits of the quasi-cyclic code is in the permuted matrix’s order
and stored in the single port RAM, as indicated in Figure 9
(a). However, the output requires parity bits to be read from
the RAM in the order indicated in Figure 9 (b). Since multiple
words cannot be accessed simultaneously at a RAM, we need
more ideas for this ordering.

We solved this problem by partitioning the Parity Memory
RAM into 360/Mout sections along the word direction (i.e.
this is the hardware equivalent of dividing the Parity Matrix
PM in groups of Mout columns): using a counter (ranging
from 0 to 360/Mout − 1) and a 360/Mout : 1 MUX with
Mout − bits lines, we shall read Mout bits at a time. After q
cycles, the entire partition is read: we shall store it in a buffer
memory using Flip-FLops (FF) registers. If we transpose the
q×Mout partition into anMout × qmatrix, we have observed
that not only the q bits from one column are reordered, but the
entire partition may also be reordered. Then, we may read
the transposed partition Mout bits at a time: this also takes
q cycles. Using a Ping-Pong strategy, we may use q cycles
to read and transpose the matrix and one cycle to copy the

FIGURE 10. Simple Process of Transpose & Selection: Routing issue.

FIGURE 11. Reorder with shift register for q = 5.

transpose matrix in a buffer. Now, we may read the buffer in
q cycles and the subsequent partition of the Parity Memory.
Implementing the matrix transpose operation in hardware is
not a trivial task due to the dependence of q on theMODCOD:
21 different transpose operations must be implemented and
configurable on the fly. The easiest way to implement the
transpose operation and the output bit selection is shown in
Figure 10: after the transpose, a flattening operation (which
is merely a rearrangement of bits) produces a long flattened
vector with qMAX ×Mout bits. A selection of these bits should
then be performed according to the specific q value; however,
this is where problems arise, as we would need to use at
least

∑21
i=0 (qi ×Mout) wires to create 21 configurations of

qi × Mout bits in order. In the worst case, for Mout = 120,
at least 110400 connections should be routed in the FPGA.

We must find a way to perform the flattening operation.
The idea is to implement a reconfigurable shift register, which
we call a reorder vector, with qMAX ×Mout bits in which the
input Mout bits are shifted for q cycles. At the end of this
shifting operation, we shall have q × Mout valid bits in the
lower part of the register. For example, for q=5 (Short Frame,
Code Rate 8/9), we may have the architecture represented in
Figure 11, where p_read(i) are the bits read from the partition
of the Parity Memory.

Now, we shall show how to make the structure in Figure 11
reconfigurable on the fly for all MODCODs. First, we have
computed all the multiples of q from q × 1 to q × Mout for
all possible q values. Many values are repeated, as shown
in Figure 12 for a subset of the likely multiples. It is then
possible to extract a set of non-repeating multiples of q.

VOLUME 12, 2024 39215

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

FIGURE 12. Multiples of q.

FIGURE 13. Read Info Architecture.

Two fields are associated for each non-repeating multiple
of q. The first field is given by all the possible Physical
Layer (Signaling) (PL(S))-Codes related to the q multiple:
since there are only 21 valid combinations, a number ranging
from 0 to 20, denoted asmodcodid , may be obtained from the
PL(S)-Code. We also need to know what bit shall be selected
from the input Mout bits read from the Parity Memory: this
field is denoted as an index and ranges from 0 to Mout − 1.
Then, we can define the following LUTs for every output
parallelism Mout and optimize the MUXs involved in the
reordering process.

It is important to note that this table is not stored in
the FPGA. Instead, it is read at compile time to define the
following structure of MUXs that feed data to the reorder
vector.

D. INFO STREAM
The Read Info FIFO module shall be designed with the
following architecture. The controller shall issue a pop of one
360-bit word from the FIFO. The word shall be sampled in
360/Mout shift registers with Mout bits. After the sampling
phase, the controller issues a shift operation by toggling the
input selection of the MUXes in Figure 4.24: the output is
then read out from the last shift registerMout bits at a time.
Furthermore, the Info FIFO must be dimensioned with

care. Suppose we assume that the row-column interleaver,
placed after the LPDC Encoder, always provides backpres-
sure to the encoder (worst-case scenario). In that case, it is still
desirable that the data proceed forward through the pipeline
stages in the Parity Stream and the Info Stream as much as
possible. As we have seen, the Parity Stream may contain as
high as:

• 2 frames in the Ping-Pong Input Message RAM

FIGURE 14. Throughput Simulation for Min = 24 and Mout = 120.

• 2 frames in the Sum FIFO (it is, in fact, the parallel
Checksum FIFO that limits the Sum FIFO to accommo-
date only two frames)

• 2 frames in the Ping-Pong Parity Memory
Therefore, we must design the Info FIFO to accommodate six
information frames, i.e. six frames of t×360 bits. In the worst
case, for t = tMAX = 162, we need a 972 × 360 RAM.

IV. RESULTS
A. THROUGHPUT SIMULATION
In this section, we present a way to estimate the output
throughput of our design since, even in full throughput mode
(downstream ready always asserted), the proposed encoder
may not always be able to provide valid data at every cycle.
Thus, we cannot simply compute the output throughput
according to the following equation:

Tout = Mout × fck (44)

Considering Figure 14, it is evident that the output valid
waveform is not human-readable. Additionally, due to the
requirement of evaluating throughput for all 144 combina-
tions of input and output parallelism, it becomes apparent that
conducting a simulation is essential. To do so, we introduced
in our verification flow the capability to generate multiple
frames (10) with the same PL(S)-Code. Then, we configured
the VHDL testbench to achieve full throughput. We exploited
the simulation to measure the percentage of throughout
effectively used, which we call throughput_percent. We can
then modify Eq. 44 by defining an equivalent output
parallelism M̄out = Mout × throughput_percent and compute
the output throughput as:

Tout = M̄out × fck = Mout × throughputpercent × fck (45)

To guarantee that the encoder has achieved a consistent
operating condition before saving the throughput measure-
ments, the throughput percentage values are stored in a
text file only when the last frame of every block of five
frames raises the previous flag. By simulating every input and
output parallelism, we can generate look-up tables that map
equivalent output parallelism to every valid code. Mout =

36 is the lowest available output parallelism greater or equal
to Min = 32. In this case, we can see that the output valid
is almost always asserted: using the simulation method just
described, we can prove that the equivalent output parallelism

39216 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

TABLE 6. Equivalent output parallelism for Min = 24 and Mout = 120.

is always higher or equal toMin = 32. We have verified that,
for any givenMin if we selectMout to be the lowest available
output parallelism greater or equal toMin, then the equivalent
output parallelism M̄out is always greater or equal to Min.
This means that if the previous block in the transmitter chain,
i.e. the BCH encoder, is capable of guaranteeing an input
throughput ofMin× fck , then our proposed encoder is capable
of maintaining at least this throughput value. This important
observation shall be the basis for the choice of the input and
output parallelism in implementation. What happens if we
select a higher output parallelism?We shall explain it through
an example throughput simulation, as shown in Figure 14 for
Min = 24 and Mout = 120 where we have demonstrated
throughput_percent using the analogue format option. The
throughput per cent waveform is only low. There is no
underlying issue in our design. The reason for this waveform
shape is that any systematic block encoder with an input
throughput Tin can only reach an output throughput as high as
Tout =

Tin
rc
. Therefore the equivalent output parallelism shall

be given by M̄out =
Min
rc

. This simulation’s Equivalent Output
Parallelism Table for Min = 24 and Mout = 120 is given
below.

Analysing the equivalent output parallelism values in
Table 6, we have verified that the equation M̄out

Min=
1
rc

is verified.

The proposed encoder may be able to raise its output
equivalent parallelism and its output throughput even higher
than this boundary, but only for a limited amount of time:
an example of this behaviour is illustrated in Figure 14 for
PL(S)-Code = 10, as this short frame (with code rate 1/3)
follows a normal frame (with code rate 2/5).

B. IMPLEMENTATION
Design synthesis and implementation were conducted in
Vivado on the target FPGA Xilinx Kintex Ultrascale

FIGURE 15. Parallelism Plane (Implementation).

XQRKU-060. Since the proposed encoder is an internal
transmitter module, mapping the encoder I/O interfaces to
the FPGA is not of concern. We have set the synthesis
and implementation in out-of-context mode to account for
this. Moreover, since in the course of the encoder design,
we have placed much emphasis on throughput optimization,
we have elected to instruct the synthesizer to use more
hardware resources (within reason) to minimize the critical
register-logic-register path, thus reducing the Worst Negative
Slack (WNS) and boosting the maximum clock frequency
achievable by the encoder. As indicated in the previous
section, selecting Mout as the lowest output parallelism
so that Mout ≥ Min is sufficient to avoid a bottleneck
scenario. Considering that the core is monolithic and the
impact of input adaption on resources is relatively minor
compared to the significant effect of the complex reordering
module, opting for this choice is suggested, as it represents
the optimal trade-off between throughput and resource
utilization. Therefore, we implemented the encoder in twelve
configurations, characterized by the following (Min,Mout)

couplets: (2, 2) , (3, 3) , (4, 4) , (6, 6) , (8, 8) , (12, 18) ,

(16, 18) , (24, 24) , (32, 36) , (48, 60) , (64, 72) , (96, 120).
We can visualize these couplets as points in an x-y plane
(Figure 15).

C. MAXIMUM CLOCK FREQUENCY AND THROUGHPUT
Different clock frequency targets were selected based on the
parallelism couplet to define the design constraints, ranging
from 180 MHz to 280 MHz. We observe an initial plateau
for low input and output parallelism: in this region, the
limiting factor is the monolithic core. However, as the output
parallelism increases, the Reorder Parity module becomes
increasingly complex and resource-consuming, becoming the
limiting factor in achieving higher clock frequencies. Clock
Frequency and Estimated Max Clock Frequency are shown
in Figure 16.

As discussed earlier, if the output parallelism is identical
to the input parallelism, then we can compute the output
throughput simply as Tout = Mout × fck . However, if the
output parallelism is strictly more significant than the input
parallelism, then the output throughput becomes code rate
dependent; however, this dependency is limited to a small
set of codes for which we can compute the equivalent output

VOLUME 12, 2024 39217

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

FIGURE 16. Clock Frequency over Parallelism Couplet.

TABLE 7. Equivalent output parallelism (Implementation).

FIGURE 17. Throughput over Parallelism Couplet.

TABLE 8. Clock frequency and throughput over parallelism couplet.

parallelism, as reported in Table 7. The throughput curves
over the parallelism couplet are shown in Figure 6.4, where
the worst throughput is referred to normal frames with a code
rate of 9/10.

Finally, we obtained the results reported in Table 8.

TABLE 9. Block RAM utilization.

TABLE 10. Resource utilization (LUT, FF).

TABLE 11. Vivado power report.

1) RESOURCE UTILIZATION
Because the core is monolithic, the Block RAM utilization
is constant for all configurations: 47 Block RAM tiles are
utilized according to Table 9. One tile is a 36 Kb RAM or
two fully independent 18 Kb RAM (half tile mode). There
are 1080 tiles for a total of 38.880 Mb.

In contrast, FF Utilization and LUT Utilization, reported
in Table 10, demonstrate an approximately exponential
increase as the system’s complexity rises (see Figure 18
and Figure 19). In the Kintex UltraScale XQRKU060
FPGA, the LUTs can be configured as either one 6-input
LUT with one output or two 5-input LUTs with separate
outputs but common inputs. This is useful to ensure a fair
and unbiased evaluation between different technologies and
manufacturers.

2) POWER REPORT
The Power Report was obtained from Vivado for all configu-
rations. The Static Power only depends on the selected FPGA

39218 VOLUME 12, 2024

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

TABLE 12. Comparison between State-of-the-art DVBS2 Encoder and the proposed encoder (Resource Utilization).

FIGURE 18. LUT utilization over parallelism couplet.

FIGURE 19. Flip-Flop utilization over parallelism couplet.

and equals 0.633W. Conversely, the Dynamic Power depends
on the clock frequency (ideally linearly) and resource utiliza-
tion. The clock frequency constraint is steadily diminished
after the configuration with (M in,Mout) = (12, 12). The
BRAM utilization does not scale up well with higher input
and output parallelisms, and it has the most significant impact
on Dynamic Power, as it ranges from 57% for (Min,Mout) =

(2, 2) at fck = 260MHz to 40% for (Min,Mout) = (96, 120).
Therefore, even though the resource utilization rises in a
quasi-exponential way for LUTs and FFs, the combination of
the lowering of the frequency and the impact of non-scalable
BRAM resources on the Dynamic Power is responsible for
the fact that the Dynamic Power also does not scale up
well with higher configurations of (Min,Mout). The Dynamic
Power ranges from 0.751 W to 0.834 W.

V. CONCLUSION
The main features of the proposed encoder are Full
DVB-S2 compliance, complete characterisation on state-of-
the-art flight hardware (XQRKU-060), throughput config-

urable from 0.52 to 21 Gbps largely reconfigurable (up
to 144 degrees of reconfigurability) By comparing these
results with state-of-the-art LDPC Encoders, we can see
that the proposed encoder presents unprecedented levels
of reconfigurability while achieving very high throughput
(although the technological advancements in hardware com-
plicate a fair comparison between the proposed encoder
and the high throughput encoders in [13] and in [15]).
The proposed architecture offers the end-user significant
flexibility, allowing them to choose the input and output
parallelism independently. As a result, our encoder provides
a high degree of reusability, enabling it to adapt to different
requirements and scenarios and making it an ideal choice
for developing a reconfigurable IP. To achieve excellent
results in throughput, the high-speed encoding algorithm was
implemented in hardware using an AXI-Stream Pipelined
approach. Table 12 compares the resource utilization of the
state-of-the-art DVBS2 Encoder and the proposed encoder
about resource utilization. The proposed encoder does not
stack up well with encoders that are resource-optimized
for relatively low throughput applications, such as the one
presented in [10], which in turn offers no reconfigurability
and indeed very low throughput even with a high 350 MHz
clock. However, the proposed encoder is, in fact, comparable
to [12] when configured with (Min,Mout) = (4, 4),
offering 1000 Mbps of throughput. On the other hand, for
high throughput scenarios, the proposed encoder is far better
than [16] when we consider that [16] is not fully compliant.
The values shown in the table refer to only one frame
length and code rate combination. It is also better than [17]
for the only metric that is provided (FF utilization) when
setting (Min,Mout) = (48, 60), although it probably has
a worse memory footprint. Comparison with [13], which
implements a vectorized IRA encoding algorithm, is difficult,
as Gomes et. Al. said it does not provide a method for
reordering the output parity nor the resources necessary for
this operation. Furthermore, the high throughput of 10 Gbps
is computed, assuming that the input bits may be provided
with parallelism equal to 360. Since the encoder is operated
at fck = 131 MHz, the input throughput must be 47 Gbps,
higher than the 10 Gbps at the output.

Finally, the encoder design is also scalable to the DVB-
S2X extension. The same encoding algorithm also applies
to DVB-S2X frames. To support all 55 DVB-S2X code rate

VOLUME 12, 2024 39219

P. Nannipieri et al.: Design and Implementation of a Configurable Fully Compliant DVB-S2 LDPC Encoder

combinations and frame lengths, more Index-Alfa Tables can
be added inside the Core, and more MUXs shall be employed
in the reordering module.

REFERENCES
[1] M. Jefferies, K. Maynard, P. Garner, J. Mayock, and P. Deshpande,

‘‘26-GHz data downlink and RF beacon for LEO in orbit demonstrator
satellite,’’ in Proc. Int. Workshop Tracking, Telemetry Command Syst.
Space Appl. (TTC), Sep. 2016, pp. 1–5.

[2] Current and Future Eumetsat Meteorological Satellite Networks ‘Second
ITU/WMO Seminar Use of Radio Spectrum for Meteorology: Weather
Water and Climate Monitoring and Prediction, Geneva, World Meteoro-
logical Org., Geneva, Switzerland, 2017.

[3] Digital Video Broadcasting (DVB); Second Generation Framing Structure,
Channel Coding and Modulation Systems for Broadcasting, Interactive
Services, News Gathering and Other Broadband Satellite Applications;
Part 2: DVB-S2 Extensions (DVB-S2X) Part 2: DVB, Standard (ETSI) EN,
302(307), V1, E, 2005, p. 7.

[4] Specific Attenuation Model for Rain for Use in Prediction Methods,
document Recommendation ITU-R P.838-3, 1992.

[5] Digital Video Broadcasting (DVB); Second Generation Framing Structure,
Channel Coding and Modulation Systems for Broadcasting, Interactive
Services, News Gathering and Other Broadband Satellite Applications—
Part, Standard (ETSI) EN, 302(307), 2014, pp. 1–307.

[6] CCSDS Space Link Protocols Over ETSI DVB-S2 Standard, Blue Book,
document C. 131.3-B-2, 2013.

[7] J.-C. Sibel, M. Crussiere, and J.-F. Helard, ‘‘Analysis of decoding failures
of DVB-S2 LDPC codes,’’ in Proc. IEEE 80th Veh. Technol. Conf. (VTC-
Fall), Sep. 2014, pp. 1–6.

[8] J. W. Sun and S. S. Yin, ‘‘Design of DVB-S2 LDPC coder and
decoder implemented in FPGA,’’ Appl. Mech. Mater., vols. 380–384,
pp. 3093–3097, Aug. 2013.

[9] Y. Yuhuang, Z. Wen, and Z. Minmin, Design and Implementation of
DVBS2. San Jose, CA, USA: LDPC Encoder, 2012.

[10] A. V. Lazarenko, ‘‘FPGA design and implementation of DVB-S2/S2X
LDPC encoder,’’ in Proc. IEEE Int. Conf. Electr. Eng. Photon. (EExPoly-
tech), Petersburg, Russia, Oct. 2019, pp. 98–102.

[11] T. Yokokawa, M. Nakane, and M. Kan, ‘‘A low complexity and
programmable encoder architecture of the LDPC codes for DVB-S2,’’ in
Proc. 4th Int. Symp. Turbo Codes Rel. Topics; 6th Int. ITG-Conf. Source
Channel Coding, Apr. 2006, pp. 1–6.

[12] J. Kang, J. An, and B. Wang, ‘‘An efficient FEC encoder core for VCM
leo,’’ IEEE Access, vol. 8, pp. 125692–125701, 2020,

[13] M. Gomes, G. Falcao, A. Sengo, V. Ferreira, V. Silva, and M. Falcao,
‘‘High throughput encoder architecture for DVB-S2 LDPC-IRA codes,’’
in Proc. Internatonal Conf. Microelectron., Dec. 2007, pp. 271–274.

[14] AOS Space Data Link Protocol, document CCSDS 732.0-b-4, 4, Recom-
mendation for Space Data Syst. Blue Book, 2006.

[15] TM Space Data Link Protocol. Recommendation for Space Data System
Standards, Blue Book, CCSDS. 132.0-B-3, 2005.

[16] D. Liu, Y. Luo, Y. Li, Z. Wang, Z. Li, Q. Zhang, J. Zhang, and Y. Li,
‘‘An LDPC encoder architecture with up to 47.5 gbps throughput for DVB-
S2/S2X standards,’’ IEEE Access, vol. 10, pp. 19022–19032, 2022.

[17] J. W. Jung and G. Y. Park, ‘‘High speed LDPC encoder architecture
for digital video broadcasting systems,’’ in Computer Applications for
Database, Education, and Ubiquitous Computing, T.-H. Kim, J. Ma,
W.-C. Fang, Y. Zhang, and A. Cuzzocrea, Eds. Berlin, Germany: Springer,
2012, pp. 233–238.

[18] A. Shokrollahi, ‘‘LDPC codes: An introduction,’’ inCoding, Cryptography
and Combinatorics. Cham, Switzerland: Springer, 2004, pp. 85–110.

[19] R. Tanner, ‘‘A recursive approach to low complexity codes,’’ IEEE Trans.
Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[20] G. Quintarelli, M. Bertolucci, and P. Nannipieri, ‘‘Design and implemen-
tation of a DVB-S2 reconfigurable datapath BCH encoder for high data-
rate payload data telemetry,’’ IEEE Access, vol. 11, pp. 120281–120291,
2023.

PIETRO NANNIPIERI (Member, IEEE) received
the Ph.D. degree (cum laude) in information
engineering from the University of Pisa, in 2020.
He is currently an Assistant Professor with the
University of Pisa. In 2019, he was a Visiting
Researcher with the TEC-EDP Section in ESTEC
(ESA), where he carried out different qualification
tests on the SpaceFibre technology. His research
interests include digital andVLSI design, electron-
ics for space applications, cryptography, hardware

IPs for satellite onboard data handling, signal processing, and hardware
cryptography. Indeed, he is alsoworking on the European Processor Initiative
(EPI) Project.

GIACOMO BARTOLACCI received the master’s
degree (cum laude) in electronics engineering
from the University of Pisa, in 2023. During his
academic career, he pursued the embedded design
and mechatronics curriculum. He conducted his
master’s thesis research in collaboration with
IngeniArs.srl and the Department of Information
Engineering (DII) in Pisa, focusing on digital sig-
nal processing (DSP) and space communications.
His research interests include the fields of digital

and VLSI design and integration.

MATTEO BERTOLUCCI received the Ph.D.
degree in information engineering from the
University of Pisa, in 2022. His study focused on
implementing digital designs for high-speed satel-
lite communications, such as CCSDS 131.2-B
transmitters and receivers on FPGA platforms.
He is currently a part of IngeniArs, where he
works as a DSP and a Hardware Engineer for
space communications. His latest developments
focused on the implementation of a giga-symbol-

per-second transmitter for CCSDS 131.2-B, which is capable of achieving
over 6 Gbit/s of actual telemetry downlink, thus enabling the full and
spectrally efficient use of Ka-band.

LUCA FANUCCI (Fellow, IEEE) received the
Ph.D. degree in electronic engineering from the
University of Pisa, in 1996. From 1992 to 1996,
he was a Research Fellow with European Space
Agency. From 1996 to 2004, he was a Senior
Researcher with the Italian National Research
Council, Pisa. He is currently a Full Professor in
microelectronics with the University of Pisa. His
research interests include design technologies for
integrated circuits and electronic systems. He is

the coauthor of more than 400 journals and conference papers and he
is a co-inventor of more than 40 patents. He served on several technical
programme committees for international conferences.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

39220 VOLUME 12, 2024

