
Received 18 February 2024, accepted 9 March 2024, date of publication 13 March 2024, date of current version 21 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376739

Learning to Generate All Feasible Actions
MIRCO THEILE 1,2, (Graduate Student Member, IEEE),
DANIELE BERNARDINI 1,3, (Member, IEEE),
RAPHAEL TRUMPP 1, (Graduate Student Member, IEEE),
CRISTINA PIAZZA 3, (Senior Member, IEEE), MARCO CACCAMO 1, (Fellow, IEEE),
AND ALBERTO L. SANGIOVANNI-VINCENTELLI 2, (Life Fellow, IEEE)
1TUM School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
2Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA
3TUM School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany

Corresponding author: Mirco Theile (mirco.theile@tum.de)

The work of Marco Caccamo was supported by the Alexander von Humboldt Professorship endowed by the German Federal Ministry of
Education and Research.

ABSTRACT Modern cyber-physical systems are becoming increasingly complex to model, thus motivating
data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However,
most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to
satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive
in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is
feasible to avoid applying the agent’s infeasible action proposals to the system. However, these efforts focus
on guaranteeing constraint satisfaction rather than the agent’s learning efficiency. To improve the learning
process, we introduce action mapping, a novel approach that divides the learning process into two steps: first
learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper
focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying
of the feasibility model. We train the agent by formulating the problem as a distribution matching problem
and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path
planning scenario, and a robotic grasping simulation, we demonstrate the agent’s proficiency in generating
actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible
to focus future work on the objective part of action mapping, paving the way for an RL framework that is
both safe and efficient.

INDEX TERMS Action mapping, feasibility, generative neural network, self-supervised learning.

I. INTRODUCTION
Cyber-physical systems are becoming increasingly complex,
with applications ranging from autonomous vehicles in
chaotic urban environments to robotic assistants for support
in everyday tasks. Most of these applications require the
development of complex control systems. Traditionally, these
systems were modeled in detail, and control strategies
were derived using model-based techniques. However,
the increasing complexity of these systems limits the
applicability of model-based techniques, thus making data-
driven techniques appealing. While data-driven techniques

The associate editor coordinating the review of this manuscript and

approving it for publication was Shafiqul Islam .

such as reinforcement learning (RL) improved significantly
in recent years, they still lack guarantees that they meet
all system constraints, i.e., only providing feasible control
commands.
A popular idea is deriving only the feasibility-relevant

part of the system to ensure feasibility while using
learning techniques to optimize the underlying objective.
The feasibility model only delineates whether a suggested
control command in a given situation is feasible, i.e., the
control command does not violate any constraints and does
not lead to a state from which a future constraint violation
is inevitable. Given this feasibility model, the subsequent
challenge is integrating it within a learning framework
in which a policy aims to optimize an objective function

40668

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1574-8858
https://orcid.org/0000-0002-9416-9557
https://orcid.org/0000-0003-3902-7916
https://orcid.org/0000-0002-0358-8677
https://orcid.org/0000-0003-2328-044X
https://orcid.org/0000-0003-1298-8389
https://orcid.org/0000-0002-0223-5335

M. Theile et al.: Learning to Generate All Feasible Actions

subject to feasibility constraints. The commonly applied
techniques are action rejection, resampling, and action
projection.
Action rejection is a traditional approach, e.g., applied in

the Simplex architecture [1], which can be summarized as
follows. If the policy’s proposed action is feasible according
to the feasibility model, it is applied to the system. Otherwise,
a backup policy is used, which generates a feasible action,
usually independent of the objective. While this is the
simplest method to implement, and the timing requirements
are predictable, the drawback is that the policy needs to
learn the feasibility model explicitly to avoid its action
being rejected and replaced with the sub-optimal backup
action.
As a straightforward augmentation of the action rejection

scheme, action resampling can be applied when training a
stochastic policy. Instead of directly switching to the safe
action, if the proposed action is infeasible, the policy can be
resampled, and the newly generated action can be tested [2].
This process can be repeated until either a feasible action is
proposed or a timeout is reached, at which point the safe action
of the feasibility controller is applied to the system. While this
method may decrease the rejection rate of the policy’s actions,
it adds computational costs. Additionally, most learning
methods train agents that output a reparameterization of a
single Gaussian. Resampling from this Gaussian may not
offer a feasible action if it is too narrow or poorly aligned
with the set of feasible actions. Moreover, the learning
agent must still explicitly learn to avoid proposing infeasible
actions.
A more nuanced method is action projection [3], which

replaces a proposed infeasible action with a feasible action
closest to the proposed action. This projection is typically
formulated as an optimization problem that must be solved
online. The supposed advantage of this method over action
rejection is that the replacement action is better than the safe
action, which was derived independently of the objective.
However, only because the projected action is close in the
action space does not mean it is also close in performance.
Additionally, the online optimization requirement may not
be computationally feasible, especially for complex systems.
From a learning perspective, the projection can either be
penalized or ignored. If penalized, the agent again needs
to learn explicitly to avoid infeasible actions, but it could
receive guidance from the projection distance. If the agent
does not penalize infeasible actions, the agent is not required
to learn the feasibility model. However, the projection to
the closest feasible action will map all infeasible actions to
the borders of the feasible action sets. Learning algorithms
that require action densities or policy gradients must be
adapted to handle the resulting high action density on the
borders.
In all three approaches, the learning agent that aims to

find an optimum of the objective subject to the feasibility
constraints is not aided by the feasibility model; it is solely
made safe. The agent must still violate the constraints

systematically during interactions with the environment, albeit
without actually applying infeasible actions to the system,
to learn to satisfy them in the future. We introduce a different
approach that allows the learning agent to benefit explicitly
from the model-based feasibility model. We call the approach
action mapping. The idea is to learn the feasibility and the
objective consecutively. First, a feasibility policy is trained
to generate all feasible actions for a given state. Using this
feasibility policy, an objective policy can learn to choose the
optimal action from the feasible ones, given an objective. Note
that the optimization problem in the feasible actions could
be solved with various methods, including, but not limited to,
learning, which can all benefit from the guarantee of constraint
satisfaction.

This methodology promises multiple potential advantages.
First, the feasibility policy can be trained directly on
the feasibility model, requiring no interactions with the
environment. Afterward, the objective policy learns to choose
among feasible actions, which could significantly reduce
the number of interactions with the environment. The
combined agent, i.e., feasibility plus objective policy, still
needs to exhaustively violate constraints. However, it can
learn constraint satisfaction offline from the feasibility model
without interactions with the environment. Second, the
feasibility policy can be reused if multiple objectives are
subject to the same constraints. Third, any knowledge of
the environment that can be extracted from the feasibility
model can potentially be utilized in the objective policy
through parameter sharing between both policies. Lastly,
once deployed, it requires precisely one pass of the
feasibility policy and the objective policy per step if the
feasibility policy has no support in the infeasible action
space.
Given these potential advantages, the pivotal question is:

How do we train the feasibility policy? This paper endeavors
to answer this very question. To this end, we derive the
objective of the feasibility policy as a distribution matching
problem in which the target is a uniform distribution over
the feasible action space. The uniform distribution is chosen
since the feasibility policy is agnostic to the objective and
should thus not be biased toward specific actions. We further
present a methodology for estimating the gradient of different
divergence measures to train a feasibility policy toward the
target distribution. To evaluate our proposed methodology,
we perform three experiments. The first is an illustrative
example with an analytical and highly parallelizable feasibility
function that shows the input and output of the feasibility
policy. The second example illustrates how the feasibility
policy can learn to generate feasible trajectory segments for
robotic path planning problems, providing a closer tie to
reinforcement learning. The third experiment showcases a
simple robotic grasping example where feasibility is defined
as grasping poses that lead to a successful grasp. This
experiment shows how a feasibility policy can be learned
for systems without a feasibility model that can be efficiently
parallelized.

VOLUME 12, 2024 40669

M. Theile et al.: Learning to Generate All Feasible Actions

The contributions of this work are the following:
• Conceptualization of action mapping as a framework for
safe and efficient reinforcement learning;

• Formulation of a distribution matching problem to train
the feasibility policy towards generating all feasible
actions;

• Derivation of gradient estimators for different divergence
measures utilizing kernel density estimates, resampling,
and importance sampling;

• Evaluation of the proposed approach in an illustrative
2D example, a qualitative example for spline-based path
planning, and a quantitative planar robotic grasping
example.

The remainder of this paper is structured as follows.
Section II discusses related work. Section III describes
the action mapping motivation and the formulation as a
distribution matching problem, followed by the gradient
estimation in Section IV. Section V provides an illustrative
example to visualize the feasibility policy and Section VI
provides an additional example that showcases how action
mapping could be used in robotic path planning problems.
Sections VII and VIII introduce and discuss the robotic
grasping experiments.

II. RELATED WORK
In discrete action spaces, the equivalent of action mapping
is action masking, for which the feasibility of each action is
evaluated, and the agent chooses the best action among the
feasible ones. In [4], the action masking concept is termed
shielding, in which the shield is based on linear temporal
logic. The authors in [5] investigate the consequences of action
masking for policy gradient deep reinforcement learning
(DRL) algorithms. Applications in various domains show
significant performance improvements, e.g., in autonomous
driving [6], unmanned aerial vehicle (UAV) path planning [7],
and vehicle routing [8].
For continuous action spaces, a straightforward masking

approach is not yet available. As discussed before, the
approaches can be grouped into action rejection, resam-
pling [9], and action projection [10], [11], [12]. The safety
model can be based on control barrier functions [13],
Lyapunov functions [14], or variants thereof. Cheng et al. [3]
use action projection and train a second model on the previous
interventions to reduce the need for future interventions.
Zhong et al. [15] derive a safe-visor that rejects infeasible
actions proposed by the agent and replaces it with a
safe action.
The distribution matching problem is similar to posterior

sampling, a long-standing problem in statistics. State-of-
the-art methods in Bayesian statistics rely on Markov
Chain Monte Carlo (MCMC) algorithms [16], [17], elim-
inating the need to normalize the distribution, which is
often an intractable problem [18]. Variational Inference
(VI) relies instead on fitting the posterior with a family
of parametric probability distributions that can be sam-
pled [19], [20]. Neural samplers offer another alternative

by approximating the posterior with a generative neural
network [21], [22].
Normalizing Flows (NFs) infer the probability density

function (pdf) for each sample using invertible mappings [23],
[24], [25]. While NFs do not require density estimates, they
have been shown to require a prohibitive number of layers
to effectively match a target distribution in more than one
dimension [26]. However, the depth of such models can lead
to challenges like vanishing or exploding gradients, which are
even exacerbated by the inherent conditioning difficulties of
NFs [27].

For robotic grasping, the authors in [28] propose using DRL
to find optimal grasps through interaction with multiple real-
world robots. If the goal is to find grasping poses explicitly
to be used as the target of a classical controller, supervised
learning techniques are often utilized [29]. To support various
downstream tasks, it would be necessary to find all feasible
grasps. To this end, the action space is typically discretized,
and grasping success is estimated for each discrete action
through heat-maps. This can be learned using supervised [30],
[31] or self-supervised [32] methods. Reference [32] explicitly
utilizes the structure given by spatial equivariances. We aim
to find a solution that needs neither discretization nor the use
of the structure, as these requirements are specific to grasping
and also restrict applicability to planar picking in carefully
crafted environments.

III. OPTIMIZATION PROBLEM
A. ACTION MAPPING
For a state space S and an action spaceA, the feasibility model
can be expressed through the function

g : S ×A→ B, (1)

which delineates if a suggested action is feasible in a given
state. Given g, the state-dependent set of feasible actionsA+s ⊆
A contains all actions that are feasible for the state s, i.e., all
actions for which g(s, a) = 1.

For action mapping, the feasibility policy is defined as

πfeasibility : S × Z → A+s . (2)

It learns a state-conditioned surjective map from a bounded
latent space Z ⊂ Rm, with appropriate dimensionality m,
into the set of feasible actions for that state. The latent space
Z can be thought of as an infinite set of indices. For each
index, the feasibility policy has to output a different feasible
action.

Given the task specifics, an objective policy can be defined
that learns the optimal latent value as

πobjective : S → Z. (3)

This optimal index in the latent space can then be mapped to
a feasible action using πfeasiblity. Convolving the functions as
(πfeasibility ◦ πobjective) : S → A+s , yields the action mapping
policy

π (s) = πfeasibility(s, πobjective(s)). (4)

40670 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

TABLE 1. Non-exhaustive list of f-divergences and the corresponding first
derivative for gradient estimators.

In this work, we derive how to train the feasibility policy.
Since this work only concerns the feasibility policy, the
subscript is dropped in the following.

B. FEASIBILITY POLICY
To train the feasibility policy πθ , we parameterize it with
parameters θ and formulate a distribution matching problem.
The goal is that πθ maps every z ∈ Z to an a ∈ A+s , without
any bias toward any specific feasible actions. Therefore,
by sampling uniformly in Z , πθ should generate a uniform
distribution in A+s .
When sampling uniformly in Z , πθ becomes a generator

with a conditional probability density function (pdf) qθ (a|s).
The target distribution is the uniform distribution in the
feasible action space given as

p(a|s) =
g(s, a)∫

A g(s, a
′)da′

. (5)

Given a divergence measureD, the optimal parameters are the
solution to the optimization problem

argminθ∈2

∫
S
D

(
p(·|s) || qθ (·|s)

)
ds, (6)

with 2 being the set of possible parameters. The fol-
lowing section details how to iteratively minimize the
divergence.

IV. METHODOLOGY
The following derives the gradient w.r.t. θ to iteratively
minimize the divergence for a given state. For simplicity of
notation, we omit the state and action dependence of qθ and p.

A. F-DIVERGENCE
As the divergence measure, we choose the f-divergence,
a generalization of the Kullback-Leibler (KL) diver-
gence [33]. The f-divergence between two pdfs p and qθ has
the form

Df (p || qθ) =
∫
A
p f

(
qθ

p

)
da, (7)

where f : (0,∞)→ R is a convex function. Different choices
of f lead to well-known divergences as summarized in Table 1.
The gradients of the f-divergence w.r.t. θ can be estimated
commuting the derivative with the integral [34] and using the

score function gradient estimator [35] as

∂

∂θ
Df =

∂

∂θ

∫
A
p f

(
qθ

p

)
da

=

∫
A
p f ′

(
qθ

p

)
1
p

∂

∂θ
qθ da

=

∫
A
qθ f ′

(
qθ

p

)
∂

∂θ
log qθ da, (8)

considering that p does not depend on θ . Since qθ is normalized
to 1 and thus ∂θ

∫
A q da =

∫
A q ∂θ log q da = 0, a Lagrangian

term λ can be added to the gradient:

∂

∂θ
Df =

∫
A
qθ

(
f ′

(
qθ

p

)
+ λ

)
∂

∂θ
log qθ da. (9)

If the support of qθ includes all of A the above formula in (9)
can be rewritten as the expectation on qθ as

∂

∂θ
Df = Eqθ

[(
f ′

(
qθ

p

)
+ λ

)
∂

∂θ
log qθ

]
. (10)

Alternatively, using a proposal distribution q′ with full support
in A, the expectation in (10) can be reformulated as

∂

∂θ
Df = Eq′

[
qθ

q′

(
f ′

(
qθ

p

)
+ λ

)
∂

∂θ
log qθ

]
. (11)

B. GRADIENT ESTIMATION
Given a sample a ∼ qθ , it is not possible to directly evaluate
qθ (a) as it is not available in closed form. Therefore, qθ needs
to be estimated to compute the gradients of the f-divergence.
Given N sampled actions ai ∼ qθ , qθ can be approximated
with a Kernel Density Estimation (KDE) by

qθ (a) ≈ q̂θ,σ (a) =
1
N

∑
ai∼qθ

kσ (a− ai), (12)

where kσ is a Gaussian kernel with a diagonal bandwidth
matrix σ . The KDE enables the estimation of the expectation.
Using (10), computing the expectation value as the average
over the samples yields

∂

∂θ
Df ≈

1
N

∑
ai∼qθ

(
f ′

(
q̂θ,σ

p

)
+ λ

)
∂

∂θ
log q̂θ,σ . (13)

The gradient estimator in (13) did not converge in our experi-
ments. While a systematic investigation of the convergence
issue was not completed, we suspect two primary reasons.
First, the support qθ usually does not cover the whole action
space A, which is necessary for the expectation formulation
in (10). Second, evaluating qθ (ai) based on a KDE, which uses
aj as supports, has a bias for j = i.

Adding Gaussian noise to the samples gives full support in
A and reduces the bias at the support points of the KDE, which
led to convergence in the experiments. The new samples are
given by a∗j = ai+ ϵ for mi ≤ j < m(i+ 1) and ϵ ∼ N (0, σ ′),
where m indicates the number of samples drawn for each
original sample. This is equivalent to sampling from a KDE
with ai as supports and σ ′ as bandwidth. Using importance

VOLUME 12, 2024 40671

M. Theile et al.: Learning to Generate All Feasible Actions

TABLE 2. Gradient estimators of various losses and choice of Lagrangian
multiplier λ.

sampling in (11), the gradient in (13) after resampling can be
rewritten as follows

∂

∂θ
Df

≈
1
M

∑
a∗j ∼q̂θ,σ ′

q̂θ,σ

q̂θ,σ ′

(
f ′

(
q̂θ,σ

p

)
+ λ

)
∂

∂θ
log q̂θ,σ , (14)

with M = mN . Additionally, align (14) requires an
estimate of p, which in turn requires an estimate of the
volume in (5) ∫

A
g(a) da ≈

1
M

∑
a∗j

g(a∗j)

q̂θ,σ ′ (a∗j)
. (15)

This volume estimation in (15) is similar to self-normalized
importance sampling [36] but uses the proposal distribution.
The bandwidth σ ′ of the proposal distribution is a hyper-
parameter. Setting σ ′ = c σ , experiments show that in
most cases c > 1 helps convergence. Intuitively, a larger
bandwidth enables the exploration of nearby modes in the
action space. Specific estimators for the different f-divergences
can be obtained by substituting f ′ from Table 1 into (14).
A summary of the gradient estimators used in this work is
given in Table 2.

C. TRAINING PROCESS
Algorithm 1 shows a training loop when training a feasibility
policy directly on the feasibility model using a Jensen-
Shannon (JS) loss. The training iterates as follows: A batch of
random states is sampled, and the actor generates N actions
ai per state. For each action ai, m values are sampled from a
normal distributionN (0, σ ′) and added to the action values to
create theM action samples a∗j . Using the actions ai as support
of the KDE in (12), the densities q̂θ,σ (a∗j) and q̂θ,σ ′(a∗j) are
computed. Then the feasibility model g is evaluated on all
samples a∗j and the estimate of p(a∗j) is computed using (5)
and importance sampling in (15). Finally, the gradient of θ

can be computed according to (14). For a better understanding
of the gradient, the trace of the gradient is highlighted in red
throughout the algorithm.
Intuitively, the gradient in (14) attracts support actions

ai towards sample actions a∗j where p(a∗j) > q̂θ,σ (a∗j)
and repulses support actions from samples where

Algorithm 1 Jensen-Shannon Training Loop

1 Initialize θ

2 for 1 to Training Steps do
3 for k = 1 to K do
4 sk ← Sample from S
5 zi← Sample uniformly in Z, ∀i ∈ [1,N]
6 ai← πθ (sk , zi), ∀i ∈ [1,N]
7 ϵj ∼ N (0, σ ′), ∀j ∈ [1,M]
8 a∗j ← stop_gradient(a⌈j/m⌉)+ ϵj, ∀j ∈ [1,M]

// Resample from KDE

9 q̂j← 1
N

∑N
i=1 kσ (a

∗
j − ai), ∀j ∈ [1,M]

// Evaluate KDE on samples

10 q̂′j←
1
N

∑N
i=1 kσ ′ (a

∗
j − ai), ∀j ∈ [1,M]

// Evaluate proposal pdf
11 r̂j← g(sk , a∗j), ∀j ∈ [1,M] // Evaluate

feasibility model on samples

12 V̂ ← 1
M

∑M
j=1

r̂j
q̂′j

// MC integration

with importance sampling

13 p̂j←
r̂j
V̂

, ∀j ∈ [1,M]

14 gk ← 1
2M

∑M
j=1

q̂j
q̂′j
log

(
2q̂j
q̂j+p̂j

)
∇θ log(q̂j)

// gradient trace
15 end
16 θ ← θ − αθ

1
K

∑K
k=1 gk

17 end

p(a∗j) < q̂θ,σ (a∗j). The different f-divergences place different
weights on attraction and repulsion. FKL only attracts support
actions towards samples with high p, while RKL repulses
strongly from samples with p = 0, and JS attracts and repulses
with lower magnitude.

D. ACTOR-CRITIC
Algorithm 1 assumes that the training can be performed
directly on the feasibility model. However, multiple actions
must be evaluated for the same state to train the actor. This
is possible if g is available in closed form or effectively
simulated. In some scenarios, g can be a real experiment
that does not allow reproducibility of states. To mitigate
this problem, an auxiliary neural network ξφ : S ×
A → R with parameters φ can be trained to imitate the
environment g. The policy can then be trained to match the
distribution of feasible actions according to this auxiliary
neural network. We refer to πθ and ξφ as actor and critic,
respectively.

The actor and critic can be trained simultaneously. The critic
is trained on data from a replay memory collected through
interactions between the actor and the environment, with
each training batch containing half feasible actions and half
infeasible actions to stabilize training. To further improve
the training efficiency of the critic, when the actor interacts
with the environment, it suggests multiple actions, which the

40672 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

critic evaluates. The action with the highest uncertainty, i.e.,
the action with ξ ≈ 0.5 is selected as it contains the most
information for the critic. We call this process maximum
uncertainty sampling. During evaluation, to improve the
precision of the actor, the critic can be evaluated on proposed
actions, and actions with low values can be rejected. This
action optimization can increase precision but may reduce
recall or the ability to find all the disconnected sets of feasible
actions.

V. ILLUSTRATIVE EXAMPLE
This section provides illustrative examples to elucidate
the feasibility policy and demonstrates the potential for
direct training on a parallelizable feasibility model across
multiple actions for a given state. Hyperparameters, their
ranges, and training and inference times are summarized
in Table 3.

A. PROBLEM
Consider three circles with given radii and center points as the
state s. The feasibility model g deems any point a a feasible
action if it falls within at least one circle and lies inside a
unit square, described as follows: s = (ck, rk)k∈1,2,3 where
(ck, rk) are the center points and radii of the circles, and
a ∈ R2 represents a coordinate. The feasibility model is thus
expressed by

g(s, a) = (0 ≤ a ≤ 1) ∧
3∨

k=1

(|a− ck| < rk). (16)

In the extended example, each circle includes an inner radius,
forming annular regions.

B. RESULTS
Figure 1 illustrates the outcomes of applying three distinct
divergences, JS, FKL, and RKL, to the circle and annulus
scenarios, depicted in subfigures (b) and (c), respectively.
Actions are generated from a grid of 2562 latent values
shown in subfigure (a), where each color corresponds to
a specific latent value. Three states, marked as (1), (2),
and (3), represent various configurations: disconnected shapes,
partially connected shapes, and fully connected shapes. The
figure visually underscores the different outcomes using the
divergences: the RKL approach tends to focus on singular
modes, even failing to span overlapping regions, as seen
in the third row of both (b) and (c). On the contrary, both
FKL and JS exhibit a more expansive coverage, approaching
the borders of the feasible space, indicated by the white
regions, with the JS divergence showing a reduced density
within the infeasible space, represented by the black regions,
as compared to FKL. This phenomenon is particularly
evident in the first and second states for the circle and
annulus examples, which can be attributed to the repulsive
gradient present in JS divergence that is absent in the FKL
divergence.

These visualizations show that a feasibility policy can be
trained to navigate complex distributions beyond the Gaussian
reparameterization commonly found in the literature. They
further elucidate the importance of enabling the FKL and JS
divergences to address disconnected feasible sets effectively.
Ultimately, these examples offer an intuitive comprehension
of the aim: for the feasibility policy to generate all feasible
actions by learning to map the latent space into diverse shapes
conditioned on the state.

VI. FEASIBLE TRAJECTORY SEGMENTS EXAMPLE
When solving problems in robotic path planning with
reinforcement learning, a standard action space is the direction
and velocity target of the robot. However, in tasks that
span a long time horizon, it can be beneficial to reduce the
number of actions by bundling multiple actions in parametric
trajectory segments, often splines, to be followed. Another
benefit of generating splines is that these can be checked
for collisions with obstacles and other system constraints,
such as maximum curvature. This application example
shows how learning all feasible actions could be used in
this context.

A. PROBLEM
Consider a stationary agent at the center of an environment
with known obstacles. In this example, the objective is to find
all quadratic splines that fulfill the following conditions

1) does not intersect with any obstacle;
2) longer than a minimum length;
3) shorter than a maximum length;
4) its maximal curvature is less than a threshold.

Figure 2 shows an example scenario with randomly generated
obstacles (gray) and example splines. For each constraint,
the figure shows an example that violates it, additionally
providing examples of feasible splines. The splines are
parameterized through the endpoint and an intermediary
point that bends the spline, yielding a 4D action space.
The feasibility model checks for any constraint violation
numerically along the spline. The agent observes the obstacles
as a black and white image with size 31 × 31. It is trained
with the JS loss on randomly generated obstacle maps and
evaluated on maps not seen during training. The parameters
for training, and training and inference times are given
in Table 3.

B. RESULTS
Figure 2 shows three example obstacle maps and action
samples from the agent. In Figure 2b , the agent provides
256 splines for the randomly generated map, among which
254 are feasible. On the right side of the map, with only
two smaller obstacles, the agent produces a wide range of
splines that avoid the two obstacles, with a larger margin
toward the bottom obstacle. The left side of the map, with
larger obstacles and only a smaller gap for feasible paths,
shows that the agent also produced a group of splines. Given

VOLUME 12, 2024 40673

M. Theile et al.: Learning to Generate All Feasible Actions

FIGURE 1. Illustrative example showing two feasibility models, which specify feasible regions as the union of three random circles (b) or annuli (c).
Three states (1)-(3) are shown for each example, solved with the JS, FKL, and RKL divergence, with feasible and infeasible action space in white and
black, respectively. The colored points are actions generated by the feasibility policy when using the corresponding latent space
value (zx , zy) ∈ Z in (a).

FIGURE 2. Quadratic spline action space application showing three different maps: a randomly generated map in (a) and (b) and two handcrafted maps in
(c) and (d). In (a), example splines are shown with green indicating a feasible spline and red indicating an infeasible one. An example for each constraint
violation is given. In (b)-(d), the agent generates 256 actions that are displayed with the color depending on the feasibility of each proposed action..

the minimum length constraint on the splines, the splines
going to the left are disconnected from the splines on the
right, considering the parameter space. The two infeasible
splines generated by the agent are likely to be on the transition
boundary between these disconnected sets of feasible
splines.
Map 2 in Figure 2c shows a situation that contains four

disconnected sets of feasible splines, one in each diagonal
direction. The agent produces feasible splines in each direction,
though generating more infeasible splines. This is likely
due to the difficulty of generating four relatively small
disconnected sets separated by large volumes of infeasible
action space. Map 3 in Figure 2d shows a simpler problem
with three small obstacles resulting in three disconnected sets
of feasible splines. In this example, the agent again generated
254 feasible splines in all three sets with only two splines when
transitioning between sets. Overall, the agent can generate

splines in all disconnected sets, largely avoiding generating
infeasible splines.

This example shows how action mapping could be applied
to motion or path planning problems when they are solved
with reinforcement learning. It can be clearly seen that the
feasibility policy learned to generate splines representative
of all feasible options with only a few infeasible splines.
Therefore, an objective policy should be greatly aided if it only
needs to choose among the splines that the feasibility policy
can generate. In our future work, we plan to investigate action
mapping using splines as action space in a reinforcement
learning-based path planning problem.

VII. ROBOTIC GRASPING SETUP
Besides the illustrative examples, the proposed method was
tested in a simplified robotic grasping simulation, where we
compare different f-divergences with other approaches and

40674 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

investigate how the proposed approach reacts to distortions in
the observation.

A. GRASPING SIMULATION
Our grasping simulator generates four shapes (H, 8, Spoon,
T) for training and a Box shape for testing. The shape
position, orientation, color, and geometry parameters are
randomly sampled, producing various observations. The
observation space is a 128×128 pixel RGB image. We assume
a vertical configuration of a parallel gripper with three
degrees of freedom x, y, and α and assume that the object
is an extrusion of the 2D shape in the observation. The
action space is constrained to the center 78 × 78 pixel
region to avoid undefined behavior at the border of the
RGB image. The angle of the grasp is in [0, π) as the
gripper is symmetrical; thus, a complete revolution is
unnecessary.
The success of a grasp is only determined by the relative

position and alignment of the gripper to the outline of
the object, as seen from a camera positioned above the
experiment. Given the alignment of the gripper, i.e., x,
y, and α and a simulated picture of the object from a
fixed camera, we developed an algorithm that provides a
success/failure outcome in a deterministic and reproducible
manner. Given the maximum aperture of the parallel gripper
l and the width of the gripper claws w, the simulation
analyzes the cropped image content of dimensions l × w
between the gripper claws before the claws close on the
object. The simulation checks if the object is sufficiently
present, equidistant from the claws, and aligned within
parameterized margins. Figure 3 shows successful grasping
poses and the respective gripper content for the objects that are
trained on.
In the primary experiment, we test the algorithm

under aligned observation and action spaces. In a second
study, we investigate if distortions of the observation
affect the performance. The distortions investigated are a
rotation, projection, and rotation + projection as shown
in Figure 4. These distortions correspond to different
camera perspectives. The applied distortion is only on the
observation and does not change the mechanics of the
experiment.

B. NEURAL NETWORK DESIGN
The neural network that was used for the actor and critic in
the robotic experiment is illustrated in Figure 5. The neural
network design was guided by simplicity and inspired by
Generative Adversarial Networks (GANs). Features that rely
on domain-specific knowledge are avoided to evaluate better
the learning method presented in the paper. The actor and
critic share the residual feature extraction network [37]. The
hyperparameters for training and training and inference times
are summarized in Table 3.
As a peculiarity of the network and the loss, the actor’s

inferred action has four components, [x, y, r sinα, r cosα],

TABLE 3. List of parameters for all experiments..

with r ∈ [0,
√
2]. The angle can be extracted trivially with the

arctan of the ratio of the third and fourth action components.
As the scale factor r does not change the angle, the critic
receives the normalized action [x, y, sinα, cosα] as input.
To avoid the actor from reaching the singularity at r = 0 and
the distribution q being spread along the radius, g(s, a) and
ξ (s, a) are scaled with an unnormalized Gaussian on the radius,
centered at 0.5 with the standard deviation of σsc.

C. COMPARISON
In the primary experiment, we are comparing different f-
divergences with each other and with two other approaches.
The first is a maximum entropy (ME) RL algorithm similar
to Soft Actor-Critic (SAC) in [38], which trains the actor to
minimize

min
θ

Es∼M,z∼Z
[
log qθ (πθ (s, z)|s)− ξφ(s, πθ (s, z))

]
, (17)

with M being the replay memory. The critic is trained as
described in Section IV-D. Instead of using the reparameteri-
zation trick with a known distribution to estimate the entropy,
we use the KDE. The other approach is an implementation of
a conditional GAN [39] with a growing dataset. The min-max
optimization problem is given through

min
θ

max
φ

Es,a∼Mp
z∼Z

[
log(ξφ(s, a))− log(1− ξφ(s, πθ (s, z)))

]
,

(18)

with a positive replay memoryMp only containing feasible
actions. An asterisk is added (e.g., JS*) when using action
optimization, rejecting 10% of the proposed actions with the
lowest critic value.

VOLUME 12, 2024 40675

M. Theile et al.: Learning to Generate All Feasible Actions

FIGURE 3. Feasible gripper positions (red) for different variations of the shapes (H-shape (a+b), 8-shape (c+d), Spoon (e+f), and T-shape (g+h)) used in
training, with a detailed view of the area between the gripper to the right of each figure.

FIGURE 4. Different distortions are applied, showing a colored chess board
for illustration and an example shape under all distortions.

FIGURE 5. Before processing, the image is embedded (in gray) and
augmented with positional encoding, resulting in 32 total channels. After
positional encoding, a convolutional layer with stride 3, followed by
7 residual blocks (in yellow) with a bottleneck, preprocesses the state. The
output is processed by 3 layers of ‘‘pixel-wise’’ shared MLPs (in brown),
with the features being concatenated with a latent input (in purple) of
length d . The latent input is a random sample from Z for the actor and the
action to be evaluated for the critic. Four (for the actor) or three (for the
critic) fully connected layers (in blue) output the action and the feasibility
estimate, respectively.

In the secondary evaluation, we compare with a common
approach in the literature [32] that uses spatial equivariance.
The domain-specific approach utilizes fully convolutional
networks to output a probability of success for each action of a
discretized action space. As in [32], the observation is fed into
the neural network multiple times with different rotations. The
neural network then only needs to output a one-channel image
containing the probability of success of each discretized x, y
action for the given rotation of the image. This approach thus
uses translation equivariance by using a convolutional neural
network (CNN) and rotation equivariance. In the experiments,
we denote it as the heat-map approach (H).

The approach is implemented using fully convolutional
networks with an hourglass structure, adopting the beginning
of the Resnet in Figure 5 and adding the same structure

in reverse order with nearest-neighbor upsampling. The
approach predicts grasping success for 78 × 78 pixels with
16 rotation angles, trained on a cross-entropy loss on the
grasping outcome sampled from the replay buffer. The replay
buffer is also filled with imitation learning examples, and
maximum uncertainty sampling is applied. For evaluation,
the success estimate of each discretized action is used as its
probability to be sampled. To increase accuracy, an inverted
temperature factor increases the difference between higher
and lower score actions. Specifically, the actions are sampled
according to

q(a|s) =
exp(β log ξ (s, a))∑
∀a∈Ad

exp(β log ξ (s, a))
, (19)

with ξ being the fully convolutional network with s as
input and as output shape the discretized action space Ad .
The inverted temperature was set to β = 100 for H and
β = 1000 for H∗.

VIII. ROBOTIC GRASPING RESULTS
A. TOP-DOWN OBSERVATION
For each configuration, three agents were trained for
1 million interaction steps with the environment, taking
approximately 48 hours per agent on a single NVIDIA
40GB A100 GPU. At the start of the training, 80k examples,
including positives and negatives, for randomly generated
shapes were added to the replay memory to bootstrap the
critic and discriminator learning. The training architecture
is implemented in TensorFlow [40] with the parameters in
Table 3.

Figure 6 shows the problem, the ground truth feasible
picking positions, the critic estimate, and a heat-map of the
actor’s proposed actions. All figures are projections taking
the maximum over the dimension that is not shown. In the
problem visualization in Figure 6a, five feasible picks are
shown in different colors, which correspond to the markers in
Figure 6b. These markers highlight the complex multimodality
of the problem. While it appears that, e.g., red and purple are
in the same mode in the x-y projection, it is visible in the
x-α projection that they are not directly connected. Figure 6c
shows that the critic has an approximate understanding of
the feasible regions of the action space, showing five modes
clearly in the x-y projection. The actor distribution in Figure 6d
also shows all five modes, while the output is significantly
sharper in the centers of the modes. This is due to the use of
the KDEs and the choice of bandwidth σ .

40676 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

FIGURE 6. Critic classification and actor distribution trained with JS compared with the ground
truth. Five example grasps are shown in the problem and their associated locations in the
ground truth. The figures show projections onto the x-y plane (top row) and the x-α plane
(bottom row).

FIGURE 7. Qualitative comparison of the implemented algorithms, showing action heat-maps on three different states, with the last state never been
observed during training.

In the qualitative comparison in Figure 7, the actor
distributions of the different algorithms are shown for three
different shapes. While the H and 8 shapes were trained on,
the Box shape has not been seen during training. The different
subfigures show the action heat-maps of all implemented
algorithms, showing only the x-y projections. The H-row
shows that Jensen-Shannon (JS) and Forward Kullback-
Leibler (FKL) learned all five modes, with JS having the
fewest samples in the connecting area. Against the expectation
from the illustrative examples, Reverse Kullback-Leibler
(RKL) also learned all modes. The most probable reason is
that the actor learns to match the critic’s distribution, changing
simultaneously from a rough estimate of one feasibility region
to the refined shape of individual modes. If the actor learns

the entire distribution of the critic early on, when the critic
learns to distinguish different modes, the actor’s distribution
has support in all modes and is thus trapped in each mode.
The GAN implementation shows four very unbalanced modes.
Additionally, the modes are single points, which correspond
to the automatically generated imitation examples, showing
that the GAN approach can only imitate but cannot find other
feasible actions. The ME implementation collapses in a single
mode. The 8-row and the Box-row show a similar pattern with
the most pronounced spread of the action distributions in JS,
FKL, and RKL and mostly collapsed action regions in the
other approaches.

Each algorithm’s accuracy and shares ofmodes on all shapes
were evaluated to quantify the capability of generating actions

VOLUME 12, 2024 40677

M. Theile et al.: Learning to Generate All Feasible Actions

FIGURE 8. Gripping rank comparison, with the ratio of picks for each
ranked mode or failure in %.

in all disconnected sets of feasible actions. 1024 random states
were generated for each shape that differed in pose, color, and
geometry. For each state, 1024 actions were sampled from the
different actors. The actions were then evaluated, and the mode
of each action was recorded. The modes were then ranked
and averaged over all the states of that shape by frequency.
By averaging the ranks instead of the modes, the last rank
shows the average ratio of the least frequent mode for each
state.
Figure 8 shows the shares of each rank for the H and

Box shapes for all the algorithms. This figure presents the
multimodal capabilities of the proposed approaches. For the
H shape, JS and FKL have the most balanced distribution over
the grasping modes. The GAN approach sometimes generates
actions in all the modes but primarily focuses the actions in a
primary mode. TheME approach almost exclusively generates
actions in one mode. The comparison on the Box shape shows
that the generalization capability of the JS and FKL algorithms
outperform the other approaches, which could indicate that
explicitly learning all feasible actions improves generalization.
The generalization capability of the GAN implementation
is significantly lower than the others, as seen on the Box
shape, indicating that that approach overfitted on the imitation
examples.
To quantify the overall performance, Table 4 shows

the precision (feasible actions generated over total actions

FIGURE 9. Gripping rank comparison, with the ratio of picks for each
ranked mode or failure in %.

generated) for each shape and the last ranked mode for
the H, T, and Box shapes. The table shows that ME has
solid performance on all shapes trained on but has lower
generalization performance and fails to find the different
modes. The GAN algorithm shows some actions in the last
ranked modes, but it is significantly weaker overall. The
best approach is JS with the highest precision and similar
shares in the last ranked mode as FKL. As discussed before,
action optimization improves precision but reduces recall,
slightly decreasing the least ranked mode for most approaches.
The maximum deviations in the superscript show that all
approaches learn reliably, with the GAN having the highest
performance deviations among runs.

B. OBSERVATION VARIATION EXPERIMENTS
For each observation distortion, we trained one agent using
the JS loss and one agent using the heat-map approach,
each for 106 training steps. The results are shown in
Figure 9 and Table 5, which compare the performance of
the proposed Jensen-Shannon (JS) approach with the heat-
map (H) approach. As expected, the domain-specific heat-
map approach performs well on the original problem. In that
scenario, no scene understanding is required, and only local
features need to be considered to estimate grasping success.

40678 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

TABLE 4. Grasping score and mode comparison..

TABLE 5. Grasping score and mode comparison under perspective distortions..

Therefore, the approach is expected to generalize well to
unseen shapes, as seen for the Box-Shape, since the grasping
success depends only on gripper alignment. It only needs
to learn to imitate the grasping success heuristic shown in
Figure 3.
Rotating the observation does not seem to impact its

performance. However, under projection and projection +
rotation, the heat-map approach fails to learn to grasp reliably.
Our proposed approach learns well under all distortions.
In general, the performance of our proposed approach does
not depend on the distortion as it does not explicitly use the
spatial structure. Its design does not depend on the specifics
of the experiment at all. It can, therefore, learn independently
of the distortion applied as long as the object is still fully
observable.

IX. DISCUSSION
This paper introduced the concept of action mapping, in which
an optimization process can be learned sequentially by first
learning feasibility and then learning the objective. In this
paper, we focused on the former part by learning to generate all
feasible actions. We showed that by formulating a distribution
matching problem and deriving a gradient estimator for
general f-divergences, we train a feasibility policy that can
function as a map between a latent space and the feasible
action space. An illustrative example, a robotic path planning
example, and experiments for robotic grasping show that our
approach allows the feasibility policy to generate actions in
all disconnected sets of feasible actions, a challenging task for

state-of-the-art approaches. Enabling FKL and JS through our
gradient estimator was instrumental.
Our experiments, detailed in Table 3, reveal that training

time varies significantly across different setups, with no clear
correlation to increases in dimensionality. Surprisingly, the
2D system described in Section V required more training
time than the 4D system in Section VI. While our results
do not show increased complexity with higher dimensions,
we anticipate that scalability to higher-dimensional action
spaces may still pose challenges. Nevertheless, adopting
alternative non-parametric density estimators from existing
literature could help mitigate these scalability concerns.
Given the proposed method for training the feasibility

policy from a feasibility model, the following steps will
focus on action mapping. We will test it in reinforcement
learning scenarios for which a feasibility model is known.
A potential problem could be that the rough transition between
disconnected sets of feasible actions makes deterministic
objective policies more challenging. An added regularizing
loss on smoothness could improve the transition, all be it
by likely reducing accuracy. Further, the approach is very
sensitive to the KDE bandwidth. We may need to adapt it
throughout training, learn it, or derive a better estimate based
on the Jacobian of the network.

REFERENCES
[1] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha,

‘‘The system-level simplex architecture for improved real-time embedded
system safety,’’ in Proc. 15th IEEE Real-Time Embedded Technol. Appl.
Symp., Apr. 2009, pp. 99–107.

VOLUME 12, 2024 40679

M. Theile et al.: Learning to Generate All Feasible Actions

[2] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti, and A. Garg,
‘‘Conservative safety critics for exploration,’’ in Proc. Int. Conf. Learn.
Represent., Oct. 2021, pp. 1–27.

[3] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, ‘‘End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,’’ in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33,
no. 1, pp. 3387–3395.

[4] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu,
‘‘Safe reinforcement learning via shielding,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, pp. 1–10.

[5] S. Huang and S. Ontañón, ‘‘A closer look at invalid action masking in policy
gradient algorithms,’’ in Int. FLAIRS Conf. Proc., vol. 35, 2022, pp. 1–14.

[6] H. Krasowski, X. Wang, and M. Althoff, ‘‘Safe reinforcement learning for
autonomous lane changing using set-based prediction,’’ in Proc. IEEE 23rd
Int. Conf. Intell. Transp. Syst. (ITSC), Sep. 2020, pp. 1–7.

[7] M. Theile, H. Bayerlein, M. Caccamo, and A. L. Sangiovanni-Vincentelli,
‘‘Learning to recharge: UAV coverage path planning through deep
reinforcement learning,’’ 2023, arXiv:2309.03157.

[8] M. Nazari, A. Oroojlooy, L. Snyder, andM. Takác, ‘‘Reinforcement learning
for solving the vehicle routing problem,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 31, 2018, pp. 1–11.

[9] J. Garcıa and F. Fernández, ‘‘A comprehensive survey on safe reinforcement
learning,’’ J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480, 2015.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and
C. J. Tomlin, ‘‘A general safety framework for learning-based control in
uncertain robotic systems,’’ IEEE Trans. Autom. Control, vol. 64, no. 7,
pp. 2737–2752, Jul. 2019.

[11] Z. Li, U. Kalabic, and T. Chu, ‘‘Safe reinforcement learning: Learning with
supervision using a constraint-admissible set,’’ in Proc. Annu. Amer. Control
Conf. (ACC), Jun. 2018, pp. 6390–6395.

[12] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa,
‘‘Safe exploration in continuous action spaces,’’ 2018, arXiv:1801.08757.

[13] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, ‘‘Control barrier functions: Theory and applications,’’ in Proc.
18th Eur. Control Conf. (ECC), Jun. 2019, pp. 3420–3431.

[14] L. Sha, ‘‘Using simplicity to control complexity,’’ IEEE Softw., vol. 18,
no. 4, pp. 20–28, Jul. 2001.

[15] B. Zhong, A. Lavaei, H. Cao, M. Zamani, and M. Caccamo, ‘‘Safe-visor
architecture for sandboxing (AI-based) unverified controllers in stochastic
cyber–physical systems,’’ Nonlinear Anal., Hybrid Syst., vol. 43, Dec. 2021,
Art. no. 101110.

[16] W. K. Hastings, ‘‘Monte Carlo sampling methods using Markov chains and
their applications,’’ Biometrika, vol. 57, no. 1, p. 97, Apr. 1970.

[17] A. E. Gelfand and A. F. M. Smith, ‘‘Sampling-based approaches to
calculating marginal densities,’’ J. Amer. Stat. Assoc., vol. 85, no. 410,
p. 398, Jun. 1990.

[18] J. K. Kruschke, ‘‘Chapter 5-Bayes’ rule,’’ in Doing Bayesian Data Analysis,
2nd ed., J. K. Kruschke, Ed. Washington, DC, USA: National Academy
Press, 2015, ch. 5, pp. 99–120.

[19] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, ‘‘An
introduction to variational methods for graphical models,’’Mach. Learn.,
vol. 37, no. 2, pp. 183–233, Nov. 1999.

[20] M. J.Wainwright andM. I. Jordan, ‘‘Graphical models, exponential families,
and variational inference,’’ Found. Trends Mach. Learn., vol. 1, nos. 1–2,
pp. 1–305, 2007.

[21] S. Nowozin, B. Cseke, and R. Tomioka, ‘‘F-GAN: Training generative
neural samplers using variational divergence minimization,’’ in Advances
in Neural Information Processing Systems, vol. 29, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, Inc., 2016.

[22] T. Hu, Z. Chen, H. Sun, J. Bai, M. Ye, and G. Cheng, ‘‘Stein neural sampler,’’
2018, arXiv:1810.03545.

[23] D. J. Rezende and S. Mohamed, ‘‘Variational inference with normalizing
flows,’’ in Proc. International Conference Machine Learning, Jun. 2015,
pp. 1530–1538.

[24] E. G. Tabak and C. V. Turner, ‘‘A family of nonparametric density estimation
algorithms,’’ Commun. Pure Appl. Math., vol. 66, no. 2, pp. 145–164,
Feb. 2013.

[25] E. G. Tabak and E. Vanden-Eijnden, ‘‘Density estimation by dual ascent of
the log-likelihood,’’ Commun. Math. Sci., vol. 8, no. 1, pp. 217–233, 2010.

[26] Z. Kong and K. Chaudhuri, ‘‘The expressive power of a class of normalizing
flow models,’’ in Proc. Int. Conf. Artif. Intell. Statist., 2020, pp. 3599–3609.

[27] F. Koehler, V. Mehta, and A. Risteski, ‘‘Representational aspects of depth
and conditioning in normalizing flows,’’ in Proc. Int. Conf. Mach. Learn.,
2021, pp. 5628–5636.

[28] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, ‘‘Scalable deep
reinforcement learning for vision-based robotic manipulation,’’ in Proc. Int.
Conf. Robot. Learn., 2018, pp. 651–673.

[29] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, ‘‘A survey
on learning-based robotic grasping,’’ Current Robot. Rep., vol. 1, no. 4,
pp. 239–249, Dec. 2020.

[30] S. Kumra, S. Joshi, and F. Sahin, ‘‘Antipodal robotic grasping using
generative residual convolutional neural network,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2020, pp. 9626–9633.

[31] D. Morrison, P. Corke, and J. Leitner, ‘‘Learning robust, real-time, reactive
robotic grasping,’’ Int. J. Robot. Res., vol. 39, nos. 2–3, pp. 183–201,
Mar. 2020.

[32] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, ‘‘TossingBot:
Learning to throw arbitrary objects with residual physics,’’ IEEE Trans.
Robot., vol. 36, no. 4, pp. 1307–1319, Aug. 2020.

[33] F. Liese and I. Vajda, ‘‘On divergences and informations in statistics
and information theory,’’ IEEE Trans. Inf. Theory, vol. 52, no. 10,
pp. 4394–4412, Oct. 2006.

[34] P. L’Ecuyer, ‘‘On the interchange of derivative and expectation for likelihood
ratio derivative estimators,’’Manage. Sci., vol. 41, no. 4, pp. 738–748, 1995.

[35] J. Kleijnen and R. Rubinstein, ‘‘Optimization and sensitivity analysis of
computer simulation models by the score function method,’’ Eur. J. Oper.
Res., vol. 88, no. 3, pp. 413–427, 1996.

[36] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[38] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[39] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’ 2014,
arXiv:1411.1784.

[40] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on
heterogeneous systems,’’ 2015, arXiv:1603.04467.

MIRCO THEILE (Graduate Student Member,
IEEE) received the M.Sc. degree in electrical
engineering and information technology from the
Technical University of Munich, Germany, in 2018,
where he is currently pursuing the Ph.D. degree.
He is a Visiting Researcher with the University of
California at Berkeley, USA. His research interests
include reinforcement learning in applications of
cyber-physical systems, including UAVs, robotics,
and real-time systems.

DANIELE BERNARDINI (Member, IEEE)
received the M.Sc. degree in theoretical physics
from the University of Florence, in 1997. He
is pursuing the Ph.D. degree with the School
of Computation, Information and Technology,
Technical University ofMunich (TUM), since 2022,
beside his role with the School of Engineering and
in the startup. After graduation, he spent two more
years as a Researcher with Ludwig Maximilians
University Munich, before transitioning to the

industry, where he gained more than 20 years of experience in software
development and data science. In 2021, he joined the School of Engineering
and Design of the TUM as a Research Group Leader, where he focused on
advancing perception for robotic manipulation. Since 2021, he has been the
Co-Founder and the CEO of Cognivix, a startup specializing in automation
solutions for industries requiring high-variability and low-volume production.

40680 VOLUME 12, 2024

M. Theile et al.: Learning to Generate All Feasible Actions

RAPHAEL TRUMPP (Graduate Student Member,
IEEE) received the M.Sc. degree in mechanical
engineering from the Technical University of
Munich, in 2021, where he is currently pursuing the
Ph.D. degree in informatics. His research interests
include machine learning, especially combining
deep reinforcement learning with classical control
methods. He is also interested in applying these
to interactive multi-agent scenarios, such as
autonomous racing and robotics.

CRISTINA PIAZZA (Senior Member, IEEE)
received the B.Sc. degree in biomedical engineer-
ing, the M.S. degree in automation and robotics
engineering, and the Ph.D. degree (summa cum
laude) in robotics from the University of Pisa,
Italy, in 2019. Subsequently, she moved to Chicago,
USA, where she was a Postdoctoral Researcher
with Northwestern University. Since 2020, she has
been a tenure-track Assistant Professor with the
Technical University of Munich

MARCO CACCAMO (Fellow, IEEE) received the
Ph.D. degree in computer engineering from Scuola
Superiore Sant’Anna, Italy, in 2002. Shortly after
graduation, he joined the University of Illinois
at Urbana–Champaign as an Assistant Professor
of computer science and was promoted to a Full
Professor, in 2014. Since 2018, he has been with
the Chair of Cyber-Physical Systems in Production
Engineering, Technical University of Munich,
Germany. In 2003, he received the NSF CAREER

Award. He is a recipient of the Alexander von Humboldt Professorship.

ALBERTO L. SANGIOVANNI-VINCENTELLI
(Life Fellow, IEEE) is currently the Edgar L. and
Harold H. Buttner Chair of Electrical Engineering
and Computer Sciences with the University of
California at Berkeley. Previously, he was the
Co-Founder of Cadence and Synopsys, the two
leading companies in the area of electronic design
automation. He is the author of over 1000 articles,
17 books, and three patents in the area of design
tools and methodologies, large-scale systems,

embedded systems, hybrid systems, and AI. He is a Board Member of
eight companies, including Cadence, and the Chairperson of the Board of
Quantum Motion, Innatera, Phoelex, e4Life, and Phononic Vibes. He was
a recipient of several academic honors and research awards, including
the IEEE/RSE Wolfson James Clerk Maxwell Medal ‘‘for groundbreaking
contributions that have had an exceptional impact on the development of
electronics and electrical engineering or related fields,’’ the BBVA Frontiers
of Knowledge Award in the Information and Communication Technologies
Category, the Kaufmann Award for Seminal Contributions to EDA, the
IEEE Darlington Award, the EDAA Lifetime Achievement Award, and four
Honorary Doctorates from the University of Aalborg, KTH, AGH, and the
University of Rome, Tor Vergata.

VOLUME 12, 2024 40681

