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ABSTRACT This paper introduces a robust approach, integrating a Virtual Inertia Controller (VIC) with
a modified demand response controller for an islanded Multi-Microgrid (MMG) system, accommodating
high levels of Renewable Energy Sources (RESs). In these MGs, the low inertia in the system has an
undesirable impact on the stability of MG frequency. As a result, it leads to a weakening of the MGs overall
performance. A novel fractional derivative virtual inertia is integrated into the VIC loop to address this
issue. This enhancement aims to fortify the MG’s stability and robust performance, particularly when facing
contingencies. Furthermore, a modified demand response controller has been incorporated into the proposed
inertia control technique tomitigate the frequency fluctuations and reduce stress on the energy storage system
(ESS). Fractional Order Proportional Integral Derivative (FOPID) controllers have been employed to regulate
the active power output of the biodiesel generators and the Geothermal station in the MG. The hybrid
sparrow search and mountain gazelle optimizer algorithm (SSAMGO) optimizes the parameters for the
three-loop controller. Time-domain simulations assess the effectiveness of proposed controllers in enhancing
system frequency stability. SSAMGO’s performancewas comprehensively evaluated, comparing it to various
optimization algorithms in diverse scenarios. The results obtained from the MMG system demonstrate that
utilizing the proposed controller technique, optimized with hybrid SSAMGO parameters, yields notable
improvements in settling time by 24.68%, 46.20%, 7.52%, and 61.01%, steady-state error values by 72.56%,
98.18%, 98.73%, and 6.67%, undershoot by 105.76%, 144.23%, 19.23%, and 7.69% compared to other state-
of-the-art algorithms presented in the literature. Finally, the proposed control technique’s effectiveness and
robustness are assessed in comparison to conventional inertia control across various system scenarios. These
scenarios encompass random load demand fluctuations, real-time changes in RES, and a wide spectrum of
system operations, including situations with reduced damping and inertia and high levels of load variation.
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I. INTRODUCTION
The intermittent nature of Renewable energy sources (RESs)
in Microgrids (MGs) makes it challenging to stabilize
the system frequency within acceptable limits. The over-
penetration of RESs can result in precarious frequency
oscillations, exacerbating the difficulty ofmaintaining system
stability [1]. Moreover, the integration of RESs into islanded
MGs leads to a reduction in the overall system inertia [2].
Hence, this study introduces an enhanced model of an MMG
electric power system that incorporates a high penetration
of RESs. The focus is on frequency analysis and control,
where new virtual inertia control techniques are proposed.
Additionally, the effects of demand response are taken into
consideration in the analysis.

To overcome the challenge of lacking inertia in MGs, the
VIC technique is one of the significant solutions that has
been used widely. In [3], the authors proposed a derivative
VIC connected with a superconducting ESS to compensate
required inertia of the system. Reference [4] introduces the
derivatives virtual inertia technique to improve the frequency
dynamic response of interconnected power systems with
RESs. However, it neglects the effect of damping the control
loop in the structure of the controllers. The ability to provide
the effect of virtual damping has been considered in [5],
which significantly affects the transient and steady-state
stability of the performance of the system frequency. In [6],
a VIC technique to support a single-area MG system with
the required inertia from a photovoltaic system is presented.
The model includes virtual damping and a droop control
loop in [7] to enhance stability. In [8], the author proposed
a fractional order VIC approach to address frequency
fluctuations in islanded MG power systems. Previous studies
have employed derivative control techniques with integer
derivative orders. However, this approach results in a higher
virtual inertia constant value for the VIC system. Therefore,
a larger ESS capacity is required to compensate for active
power fluctuations during disturbances effectively.

Furthermore, in recent years, there has been a significant
focus on demand response controller (DRC) techniques for
frequency control. These techniques have gained consid-
erable attention due to their potential in addressing the
challenges associated with maintaining grid frequency stabil-
ity. In [9], the author introduces a DR control technique aimed
at improving the frequency performance of interconnected
hybrid power systems. The authors in [10] demonstrated
that incorporating an ESS into the system significantly
improved the dynamic stability by actively participating in
DR measures. In [11], the authors propose a method that
combines a particle swarm optimization algorithm (PSO)
with aDR controller technique to improve the system stability
through the optimization of ESS’s size. The authors of [12]
propose an approach that integrates the ESS control loop

with the LFC system. By doing so, they aim to enhance the
overall system stability and mitigate frequency deviations.
To achieve this, the PSO algorithm is utilized to determine
the optimal parameters for the Fuzzy controller within the
secondary control loop.

Over the years, researchers have proposed numerous
classical and intelligence-based control strategies with the
primary goal of enhancing system stability, reducing fre-
quency deviation, and minimizing the tie-line power flow
variation. These strategies have been specifically designed to
tackle the complex challenges inherent inMGpower systems,
with the ultimate aim of ensuring seamless operation and
optimizing performance [13]. In [14], the PID controller
parameters were tuned using the Ziegler-Nichols (Z-N)
method, yielding effective results under certain conditions.
However, when dealingwith a system that exhibits substantial
uncertainties in its load and generation dynamics, this
approach becomes inadequate. As a consequence, alternative
control strategies need to be investigated to address and
overcome the complexities introduced by these uncertainties.
To address these challenges, researchers in [15] utilized
type-2 fuzzy tuning for PID controller parameters. Stability
was ensured through a Lyapunov function, and tuning laws
for output scaling factors and consequent parameters were
derived, resulting in improved system performance. In [16]
and [17], the author proposes a fuzzy-PSO-PID controller
designed to regulate frequency deviations in a Hydro-Hydro
Power System. It assesses the controller’s effectiveness in
handling load alterations and compares its performance
with existing LFC approaches. The research targets the
optimization of LFC in hydro systems to enhance power
delivery efficiency, considering the varying demands and
mechanical constraints of hydro turbines. The self-adaptive
nature of Neural Network-based classical controllers allows
them to handle uncertainty in dynamic systems. However,
the effectiveness of these controllers is contingent upon
a properly designed network; otherwise, their performance
may degrade [18]. Researchers employ population-based
evolutionary computational intelligence approaches such
as PSO [19], Fuzzy inference system [20], Manta Ray
Foraging [21], and numerous other methods. The controller
gain values obtained from the above classical method have
improved MG system efficiency and robustness. However,
with the rapid growth ofMMG systems and the unpredictable
variations in RESs and load demand, there is a pressing
need for an even more efficient controller to manage these
uncertainties effectively. Conventional approaches struggle
and degrade in performance with exponential uncertainty
growth and lacking MG inertia impact. Maintaining stability
in MG power systems remains a significant challenge due to
the lack of optimal control parameter settings. To address this,
researchers have introduced an alternative control concept
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of FOPID to enhance the performance of classical integer
order controllers and increase robustness in the face of
uncertainties.

The additional tuning parameters of differential-integral
operators introduce a high degree of freedom [22]. These
additional features contribute to its distinctive performance
in various applications [23]. In conjunction with intelligence-
based heuristic methods, the FOPID controller has demon-
strated significant effectiveness in diverse LFC applications
for MG power systems, such as using Quasi-Oppositional
Sine Cosine Algorithm (QOSCA) tuned FOPID gain param-
eters in [24], Jellyfish Search Optimizer (JSO) in [25], and
Cohort Intelligence Optimizer (CIO) in [26]. However, the
literature mentioned above overlooks the investigation of
high penetration RESs like wind turbine power, solar thermal
power, geothermal stations, solar PV, and ESSs, considering
the significant reduction in the equivalent inertia constant
in MMG power systems. This research gap serves as a
driving force for researchers to explore the influence of
these factors on LFC systems when utilizing the FOPID
controller.

On the other hand, designing PID/FOPID controller
gain values using optimization techniques typically entails
choosing one or more performance indices for the controller.
These indices may include Integral Absolute Error (IAE),
Integral Time Absolute Error (ITAE), Integral Square Error
(ISE), and Integral Time Absolute Error (ITSE) [27].
In optimization-based design methods, ISE is often preferred
for its mathematical convenience, particularly in scenarios
with step changes in set-point or load. Its computational
differentiability enables the use of gradient-based opti-
mization techniques for obtaining FOPID controller gains.
Nevertheless, ISE tends to mitigate significant errors in the
system, leading to higher controller gain values, oscillatory
step responses, and a potential loss of robustness [28].
To address this, employing IAE or ITSE as performance
indices emphasizes small errors in controller gain tuning over
ISE. Conversely, ITAE prioritizes minimizing error during
the initial transient response and penalizes prolonged larger
errors through the integration of absolute error multiplied by
time. Systems optimized with ITAE generally achieve faster
settling times than alternatives, potentially with a slower
initial response [23].

The dynamic performance of the proposed model is
enhanced through the implementation of three stages of
controller techniques in this paper. To enhance the frequency
response and minimize the variations in tie line power during
load disturbances in a low-inertia MG system integrated
with RESs, a new fractional derivative virtual inertia control
technique named (FDVIC) is devised. To further enhance
the frequency response within the primary control loop and
reduce the strain on the ESS during charging and discharging,
a combined approach is adopted by integrating the demand
response controller (DRC) with the proposed FDVIC. This
integration aims to improve system performance synergisti-
cally. In the last stage, the secondary control loop involves

the utilization of FOPID controllers to govern the output
active power of the biodiesel generators and the geothermal
generator. The contribution of this study can be summarized
as below:

1) To mitigate the frequency nadir of the MG system
during load disturbances, a novel FDVIC is developed.
The objective is to reduce the lowest frequency point
experienced by the system.

2) To enhance the primary control loop and alleviate
stress on the ESS of the FDVIC, the DR controller is
integrated with the FDVIC. This integration aims to
improve the overall performance of the system stability
by leveraging the capabilities of both controllers.

3) To improve the performance of the SSA algorithm,
a hybridization approach with the MGO algorithm is
employed. This hybridized algorithm is then applied to
tune the parameters of the FDVIC, DRC, and FOPID
controllers in the virtual control loop, primary control
loop, and secondary control loop, respectively, within
the MG system.

4) To assess the efficiency of the SSAMGO-tuned FOPID
controller, a comprehensive comparison is conducted
using steady-state and transient performance indices.
The results clearly indicate that the SSAMGO-tuned
FOPID controller outperforms other state-of-the-art
techniques.

The rest of this paper is structured as follows: Section II
details the proposed MG model. Section III provides a
demonstration of the proposed control strategy. Section IV
introduces the hybrid optimization algorithm. Section V
presents the simulation results and corresponding discussion.
Finally, Section VI summarizes the conclusions derived from
this study.

II. MULTI-MG MODEL DESCRIPTION
The development and economic growth of Malaysia have
led to an increased demand for energy within the country.
In response to this demand, Malaysia has emerged as a
promising nation in the utilization of various RESs. These
resources include biodiesel, wind energy, solar energy, and
geothermal energy [29]. In the present study, theMMGpower
system consists of an MG1 with a rated capacity of 2000 kW
and an MG2 with a capacity of 1500 kW. MG1 consists of
a biodiesel generator with a 600 kW rated power integrated
with a 350 kW ratedwind turbine generator (WTG), a 550 kW
solar thermal generator (STH), and a 550 kW geothermal
power station. MG2 consists of a 550 kW-rated WTG, a
400 kW-capacity solar photovoltaic, and a 600 kW-rated
biodiesel generator. In addition, MG1 can deliver power
to a residential load of 800 kW, and MG2 is capable of
supplying a residential load of 600 kW. For demand response
control, 30% of the total nominal load of MG1, totaling
240 kW, has been chosen as responsive loads. Similarly, MG2
has designated 25% of its total nominal load, amounting to
187.5 kW, for demand response control. A 300 kW ESS
has been combined with MG1 and MG2 to provide the MG
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system with the required inertia utilizing the novel FDVIC
technique that has been proposed. The MMG development
structure proposed in this paper is illustrated in Fig. 1.

The frequency stability is an effect of the MG’s inertia
response. During load imbalance or load fluctuation events,
inertia plays an important role inmaintaining the frequency of
the MG system [30]. The inertia control stage is the first line
of defence against load fluctuations to reduce the frequency
deviation of the MG. The inertia constant of the conventional
system is calculated as a function of the kinetic energy stored
in the generator’s rotating parts.

The inertia can be calculated as follows:

H =
Ekinetic

S
=

Jω2

2S
(1)

where H is the inertia constant; Ekinetic is the stored kinetic
energy in the rotor; J is the moment of inertia in kgm2; ω is
the rotor angular velocity in rad/s, and S is the rated power
of the MG system in VA.

The equivalent inertia of the MMG system integrated with
RESs can be estimated as follows:

Hequiv. =

N∑
i=1

HiSi

N∑
i=1

Si +
R∑
i=1

Pi

(2)

Dequiv. =

N∑
i=1

DiSi

N∑
i=1

Si +
R∑
i=1

Pi

(3)

where Hi is the inertia constant of the ith MG distributed
generators (i = 1, 2, . . . . N); N is the number of dis-
tributed generators; Si is the rating power of the ith MG
distributed generators; Di is the damping coefficient of the
ith MG distributed generators; Pi is the injected real power
by the ith RESs connected to MG by static converters (zero
inertia); R is number of RESs.

The dynamic response of the generation-load power
imbalance is described by the following general swing
equation [6]:

1Pm − 1Pload = 2H
d1f
dt

+ D1f (4)

where 1Pm is the change of mechanical power, 1Pload is the
change of demand load, and 1f is the rate of change of the
MG frequency.

Fig. 2 shows that the proposed dynamic model consists
of the secondary control loop with FOPID, the proposed
FDVIC, and DRC. The parameters of the proposed MGs and
RESs are illustrated in Appendix A.

A. BIODIESEL GENERATOR
Biodiesel Generator (BDG) is made by a chemical process
called transesterification, and it has similar qualities to
natural diesel despite being made from energy crops that

are inexpensive in cost and maintenance [31]. It can be
utilized in various combinations, including its pure form
(B100). The linearized model of the BDG output power can
be approximated as follows [9]:

1PBDG =
kVA

1 + sTVA
·

kBE
1 + sTBE

(5)

where1PBDG is the output power of the BDG; kVA, TVA, kBE,
and TBE are valve gain, valve actuator delay, engine gain, and
time constants of BDG, respectively.

B. GEOTHERMAL POWER STATION
Geothermal power stations (GEO), which use the heat stored
deep inside the earth to produce electricity, are another
promising form of renewable energy. The high-pressure (>7
bar), high-temperature (140 to 250 degrees Celsius) stream is
injected straight into the GEO power plant. According to the
International GEO Association (IGA), the capacity that has
been installed around the world is around 12.636 GW, and it
has produced 73.549GWhof electrical energy. The linearized
transfer function model of geothermal energy conversion is
considered in this study as follows [32]:

1PGeo =
kgg

1 + sTgg
·

ktg
1 + sTtg

(6)

where 1PGeo is the output power of the GEO; kgg, Tgg, ktg,
and Ttg are governor gain, governor time constant, turbine
gain, and turbine time constant, respectively.

C. SOLAR THERMAL GENERATOR
Malaysia’s daily solar radiation, averaging 4000–5000
Wh/m2 and 4–8 hours of daily sunshine, highlights its
strong solar energy potential. These favourable conditions
position the country for widespread adoption of solar tech-
nologies, including solar water heaters in diverse economic
sectors [33]. Solar Thermal (STH) power plant consists of
trough collectors, several dishes to reflect the sun’s heat,
a central receiver, and a linear fresnel reflector. The generated
steam powers a turbine coupled to an alternator for electricity
production. Excess heat from the working fluid is stored
in molten salt for post-sunset utilization [34]. The transfer
function of the STH system is depicted in (7):

1PSTH =
kT

1 + sTT
·

kS
1 + sTS

(7)

where1PSTH is the output power of the STH power plant; kT,
TT, ks, and Ts are the gain of the system turbine, the turbine
charging time constant, the solar collector gain, and the time
constant of the solar collector, respectively.

D. WIND TURBINE GENERATOR
Recent technological progress in power converters, reduced
reliance on fossil fuels, environmental considerations, and
cost-effectiveness have elevated wind power as a critical
renewable energy source [35]. A pitch control mechanism
changes the rotor’s pitch as the wind speed changes in order
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FIGURE 1. Block diagram of the MMG model.

to maintain the steady output of power from the wind energy
conversion system. Wind-generated power relies on various
factors. Themechanical power of wind turbines is determined
by [36]:

1PWT =
1
2
ρArCpV3

W (8)

Cp = (0.44−0.0167β) sin
[

π(λ − 3)
15 − 0.3β

]
−0.018(λ − 3)β

(9)

where1PWT represents the mechanical power extracted from
the wind; ρ is the air density in Kg/m3; Ar is the swept area of
the blades (m2); VW is the wind speed, and Cp is a function
influenced by both the speed tip ratio (λ) and blade pitch
angle (β). The association between mechanical power and β

allows for the utilization of this relationship to reserve power.
Two WTGs integrated with MG1 and MG2 are considered in
this study and illustrated as a first-order transfer function as
follows:

1PWTG =
kWTG

1 + sTWTG
(10)

where kWTG and TWTG are the gain constant and time
constant of the WTG.

E. PHOTOVOLTAIC POWER GENERATOR
Malaysia typically receives monthly solar radiation of
approximately 400–600MJ/m2 from the sun [33]. Crystalline
or thin-film panels are used widely in Photovoltaic (PV)
power plants to convert sunlight into electricity. This study
assumed the PV generating system operates in a maximum
power point tracking mode. The PV output power can be
represented as [37]:

Psolar = A × ηsolar × I × [1 − (0.005 Ta + 0.125)] (11)

where Psolar is the output power of the PV system in Watt;
A is the area of the cells (m2); ηsolar is the efficiency of
the conversion from sunlight to electricity; I is the isolation
(Watt/m2), and Ta is the ambient temperature in oC .

The transfer function of the PV power generator can be
written as follows:

1PPV =
kPV

1 + sTPV
(12)

where 1PPV is the output power of the PV; kPV and TPV are
the gain constant and time constant of the photovoltaic cell
behaviour.

F. ENERGY STORAGE SYSTEM
ESS has indeed gained significant attention in recent
years as a means to enhance the frequency response of
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FIGURE 2. Dynamic model of MMG integrated with RESs.

MGs. By quickly responding to imbalances between power
generation and demand, ESS can help reduce frequency
deviation and contribute to system stability. Lithium-ion
batteries are the most common type of battery used in LFC
power applications due to their properties [38]. It can be
rapidly charged and discharged and has a relatively long cycle
life, both of which have significance for LFC. The proposed
control technique in this paper is designed to keep the ESS
unit fully charged during normal operating conditions and
then automatically inject the system with the required active
power during the contingencies. The transfer function of the
ESS can be written as a first-order lag:

1PESS =
1 (Pch − Pdes )

1ω
=

KESS

1 + TESS
(13)

where1PESS is the output power of the ESS; KESS is the gain
constant of the ESS; TESS is the time constant of the ESS.

G. PROPOSED FRACTIONAL DERIVATIVE VIRTUAL INERTIA
CONTROL
This section demonstrates a novel design of the FDVIC based
on the ESS proposed in this study. The objective of this
design is to provide inertia and damping impact instantly
during high penetration of RESs into the MGs. Short-term
ESS, an inverter, and the proposed inertia controller can prove
this concept. FDVIC controller operates separately from other
control units in the model, such as the primary control loop

FIGURE 3. The proposed fractional derivative virtual inertia control
system.

(droop control) and secondary control loop. As a result, the
ESS’s energy is completely exploited to enhance stability.
The dynamic structure of the proposed FDVIC is presented
in Fig. 3:

The dynamic equation of the proposed FDVIC controller
design can be presented as follows

1Pinertai i,j = 1fi,j
(
sµvi,jHvir. i,j + Dvir. i,j

) [
KESS

1 + sTESS

]
(14)

where 1Pinertiai,j is the change of active power supported to
the MGi,j (i ̸= j); sµvi,j is the fractional derivative; µv is
the derivative coefficient factor; Hvir.i,j is the virtual inertia
constant; Dvir.i,j is the virtual damping coefficient constant;
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KESS is the gain constant of the inverter based ESS; and TESS
is the time constant of the inverter based ESS.

The FDVIC controller can control the power direction of
the ESS. The proposed algorithm has been used in this paper
to tune the value of µv and estimate the optimal value of Hvir.
and Dvir. To include the FDVIC controller impact with the
dynamic swing power equation. Equation (4) can bemodified
as follows:

1Pm − 1P1 ± 1Pinertia = 2H
d1f
dt

+ D1f (15)

H. DEMAND RESPONSE CONTROLLER
Demand Response Controller (DRC) unit is used to improve
system frequency, reduce operational costs, and increase
the flexibility of the MGs to deal with the fluctuation and
uncertainty of the RESs [9]. The conventional dynamic
response in (4) will be modified to (16) to include the DRC
loop, where 1PDRC is the change in the DRC active power.
Based on the sign (negative or positive) of the frequency
deviation, the binary indicator factor xDRC is activated (1) or
deactivated (0).

1Pm − 1Pload ± xDRC1PDRC = 2H
d1f
dt

+ D1f (16)

In contrast to conventional control, such as adjusting the
position of a valve or gate, DR control is known for its
quick response to frequency regulation. In DR, the frequency
threshold (1fth) and appliance shutoff time (Toff) are the
two most critical factors to determine [39]. The number of
electrical devices that require turning off is dependent on the
following (17), as shown at the bottom of the next page, where
1fdb is the dead band frequency for the primary frequency
control; 1fprm is the MG’s frequency deviation at the end of
all primary control reserves delivered.

Assume there are a number (n) of appliances that will be
chosen to participate in improving the frequency deviation
of the proposed MGs. These appliances will be arranged
according to priorities. The controller is designed to switch
off the least important devices first. P1, P2, . . . Pk represents
the individual power demands of the listed DR devices. The
1fth parameter can be calculated for the ith appliance by:

1fth(i) = 1fdb −

[
1fdb − 1fprm

PDRC
·

∑i

k=1
Pk

]
(18)

The aggregated DR’s frequency response characteristics are
illustrated in Fig. 4.

In order to avoid quick switching, the responsive DR
appliances (which are turned off because of the frequency
deviation) cannot be turned back on before the minimum off-
time has elapsed. After that, the responsive DR appliances are
progressively turned on if the minimum off-time has elapsed
and the frequency has been returned to the nominal value [40].
The assumed rate of reduction is kres p.u. per second for the
responsive DR load. The parameter Toff of the ith appliances
can be calculated in (19):

Toff (i) = Toff 0 +
1

kres

∑i

k=1
Pk (19)

where Toff0 is the first switched minimum off-time of
the DR appliance. The value of the kres is evaluated by
using the proposed algorithm. The overall control process
of the DR controller to reduce the frequency deviation
of the proposed MGs can be demonstrated in four steps
as follows:

Step 1: In the first step, all DR appliances are in standby
condition. If the system frequency drops below the dead band
frequency, then go to step 2.

Step 2: In this step, DR appliances are progressively
switched off. By using the formula in (17), the DR load that
will be shed can be estimated. When the system frequency
reduces to the nadir frequency, Toff0 will initialize and go to
step 3.

Step 3: If the Toff0 is elapsed and 1f > 1fdb, then go to
step 4. If 1f < 1fdb, go to step 2.
Step 4: At this step, the responding DR appliances have

beenmanaged and are being gradually recovered (turned back
on). By using the rate of reduction kres, the DR load will be
reduced until all appliances are recovered. If PDRC = 0, then
go to step 1. If the 1f < 1fdb, go to step 3.

The dynamic structure of the proposed DR controller
combined is illustrated in Fig. 5:

where Pcf is the demand contribution factor, and MDRi is
the intervention coefficient.

The proposed hybrid optimization algorithm has been
utilized to determine the optimal values for both the demand
contribution factor and the intervention coefficient. Pcf
plays a pivotal role in controlling the gain of active power
within the DRC, contributing significantly to its enhanced
performance.

The final frequency deviation equation of the MG1 and
MG2 has been derived by taking into consideration the
relationship between the DGs of the MG integrated with
RESs and including the proposed FDVIC technique with the
DRC technique and the demand load of the proposed model
depicted in Fig. 2 as follows:

1f1

=
kps1

D1 + 2H1s
× [1PBDGl + 1PRES1 ± 1PDRCl ± 1Pinetial − 1Ploadl ]

(20)

where 1PRES1 = 1PGeo + 1PSTH + 1PWTG1

1f2

=
kps2

D2 + 2H2s
×[1PBDG2+1PRES2 ± 1PDRC2 ± 1Pinetia 2−1Pload 2]

(21)

where 1PRES2 = 1PWTG2 + 1PPV
where kps1 and kps2 are the gain constant of theMG power

systems.

VOLUME 12, 2024 45885



B. A. Fadheel et al.: Hybrid Sparrow Search Optimized Fractional Virtual Inertia Control

FIGURE 4. Frequency response behaviour of aggregate DRC.

FIGURE 5. The proposed demand response control system.

The frequency response of the proposed MGs model at
steady-state can be represented as in (22) [41]:

1fss =
1Pgen ,ss ± 1Pinertia ,ss ± 1PDR,ss − 1Pload

D +
1
R

(22)

where1fss is the frequency deviation at steady-state;1Pgen,ss
is the change of the total power generated from the BDG
and the RESs; 1Pinertia,ss is the change of the active power
supported from ESS; 1PDR,ss is the change in demand
response power.

The steady-state frequency deviation in (22) can be
minimized to zero if one or more of the three powers
(1Pgen,ss, 1Pinertia,ss, and 1PDR,ss) are adequately available
to balance the change in demand load 1Pload. Therefore,
1Pinertia,ss, and 1PDR,ss are indicated to be used to regulate
the frequency deviation in addition to the secondary control
loop.

In order to improve the frequency performance in con-
tingency situations, the proposed control strategy has the
freedom to decide the optimal power sharing from each
control loop. If the shares power of Pinertia, PDR, and Pgen.
are δ, γ , and ξ , respectively, then:

ξ = 1 − δ + γ (23)

If the total sharing power to balance the
change in the demand load is 1Ptotal, then the power

contribution from ESS is:

1Pinertia = δ1Ptotal (24)

The power contribution of the DRC is present as follows:

1PDR = γ1Ptotal (25)

The value of γ acts as a pivotal control parameter for the
demand response controller, determining its operation in tan-
dem with FDVIC and FOPID by incorporating adjustments
based on a predefined percentage.

Finally, the power contribution by the conventional gener-
ator integrated with RESs is:

1Pgen. = (1 − δ + γ )1Ptotal (26)

It should be noted that the steady-state values depend on the
proportion between the conventional control loop (ξ ), the
DR control (γ ), and the virtual inertia control (δ), which
is decided by the system administrator in negotiations with
consumers.

III. THE PROPOSED CONTROL STRATEGY
The closed-loop control technique ofMMG can be simplified
as depicted in Fig. 6:
FOPID controller transfer function is given in (27) [42]:

TFOPD = kpi +
kii
sλi

+ kdisµi (27)

where kpi, kii, and kdi are proportional, integral, and derivative
parameters of FOPID, λi, and µi represent the fractional-
order operators and their values tuned in the range (0,1).

In this work, two FOPID controller units have been used in
the secondary control loop of the proposed model. Its value
is tuned using the hybrid SSAMGO algorithm. Furthermore,
in order to provide the proposed model with the required
virtual inertia and virtual damping, new FDVIC techniques
have been designed to operate independently in low inertia
situations. The transfer function of the proposed FDVIC
technique is presented as follows:

TPinetria i
= Hvir. isµvi + Dvir. i (28)

where Hver.i, Dver.i, and µvi tuned by using the proposed
hybrid algorithm.

The DR control loop transfer function is given as:

TDRC = MDRi + Pcfi (29)

where MDRi is the primary DR control coefficient; Pcfi is the
secondary DR control coefficient.

PDRC =



−PDRC if 1f > 1fpm
−

PDRC
(1fdb−1fpmm)

(1fdb − 1f) if 1fdb ≤ 1f ≤ 1fprm
0 if − 1fdb < 1f < −1fprm
−

PDRC
(1fdb−1fpmm)

(1f − 1fdb) if 1fprm ≤ 1f ≤ 1fdb
PDRC if 1f < −1fprm


(17)
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FIGURE 6. The proposed closed-loop control approach of the MMG.

The selection of the ITAE performance index for controller
parameter design in this study is based on its superior
performance compared to other indices [43]. Thus, the fitness
function is given as:

Min(J) = ITAE =

∫ t

0
t
{∣∣Ui + 1fj + 1Ptiei- j

∣∣} dt i ̸= j

(30)

where

Ui(t) = ACEi ×

(
kpi +

kii
sλi

+ kdisµi
)

and

ACEi =

N∑
i

1Ptiei + Bi1fi

where ACEi is the area control error of the ith area; Bi is the
system frequency bias in (p.u MW/Hz). Under the conditions
of the following inequalities:

kmin
p < kpi < kmax

p ; kmin
i < kii < kmax

i
kmin
d < kdi < kmax

d ; λmin < λi < λmax

µmin < µi < µmax ; Hmin
vir. < Hvir.i < Hmax

vir.
Dmin
vir. < Dvir.i < Dmax

vir. ; µvmin < µvi < µvmax

Mmin
DR < MDRi < Mmax

DR ; Pmin
cf < Pcfi < Pmax

cf
The maximum and minimum ranges used for tuning the

parameters of the FOPID controller, such as kp, ki, and kd
are bounded between [−100, −0.01], λ, and µ is selected
between [0, 1].

IV. HYBRID SSAMGO OPTIMIZATION ALGORITHM
To obtain the optimal values of the three controller parameters
(FOPID, FDVIC, and DRC) for a multi-MG power system,
an effort was made to develop a new hybrid metaheuristic
algorithm that combines the strengths of swarm-inspired

algorithms such as SSA [44] with MGO. The Sparrow
Search Algorithm (SSA) has limitations in terms of exploring
new areas, resulting in poor performance in handling multi-
dimensional and complex problems. From this point of view,
the SSA is integrated with the territorial solitary males’ tactic
of MGO [45], [46] and the chaotic map mechanism in order
to improve the exploration phase. It is worth noting that the
newly discovered solutions’ positions are included with the
information on the best optimal solution to develop both
the exploration phase and importing high-quality solutions
at the same time. The improvements of the proposed hybrid
algorithms can be presented as follows:

In (31) shows the improved SSA used in this work,

Xt+1
i, j =

{
Xt
i, j × exp

(
−i

α· iter max

)
− Xt

i, j R2 < ST

Xt+1
best + M R2 ≥ ST

}
(31)

M = 4 × (1 − m),m = rand , where m is chosen randomly
between the range of [0, 1].

where t represents the current iteration; j = 1, 2, 3, . . . , n; n
presents the number of the variables that optimize; Xi,jt is the
value of the jth dimension of the ith sparrow at t; Xbestt+1 is
the best individual location; itermax is the maximum number
of iterations. α is a random number between [0, 1]; R2 is the
alarm value chosen between [0, 1]; ST is the safety threshold
value chosen between [0.5,1].

The discoverer location in (31) of SSA has been improved
by including the information on neighbour solutions in the
first phase of the equation when R2 < ST, while the chaotic
map, along with the best optimal solutions found so far,
has been applied in the second phase when R2 ≥ ST. This
improvement can significantly increase the exploration of the
optimizer and prevent falling in local optima.

The first term of the follower’s location of SSA has
been improved by using the mechanism of solitary territorial
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TABLE 1. Benchmark functions.

TABLE 2. Benchmark functions.

males of the MGO. This mechanism is inspired by the battle
between the adult male gazelles to take place over the territory
or possession of the female, which is modelled in (32), as
shown at the bottom of the page, where ri1 and ri2 are random
integers values chosen 1 or 2; Xpt+1 is the optimal location
occupied by the producer; A is a matrix [1 x n] which each
element inside assigned 1 or −1; A+

= AT(AAT)−1; L is a
matrix [1 x n] which each element inside is 1; BH is the young
male herd coefficient vector; more details about calculating
the factors BH, F, and Cofr please refer to [45].

V. SIMULATION RESULTS AND DISCUSSION
The dynamic response of the low-inertia MMG system
integrated with RESs for the FOPID, FDVIC, and DRC
controllers is described in this section. By using five bench-
mark functions, the proposed hybrid SSAMGO algorithm’s

performance is evaluated by comparing it with SSAGWO,
PSOGSA, MPSOGA, and CPSO algorithms in terms of
statistical findings. Furthermore, the proposed SSAMGO-
tuned twenty parameters of the three loop controllers are
analyzed for the MGs power system (i.e., five parameters for
the FOPID controller of MG1, five parameters for the FOPID
controller of MG2, three parameters for the FDVIC of MG1,
three parameters for the FDVIC of MG2, two parameters
for the DRC of MG1, and two parameters for the DRC of
MG2). The MG model is developed and implemented using
MATLAB/Simulink.

A. VALIDATION OF BENCHMARK FUNCTIONS
The performance of the SSAMGO algorithm is evalu-
ated against SSAGWO, PSOGSA, MPSOGA, and CPSO
algorithms using five benchmark functions with diverse

Xt+1
i,j =

{
Xt+1
ibest − |(ri1 × BH − ri2 × X(t)) × F| × Cofr if R2 < ST

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+
· L otherwise

}
(32)
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TABLE 3. Virtual inertia and virtual damping for FDVIC of MG1 and MG2.

characteristics. This comparison provides a comprehensive
assessment of the effectiveness of these algorithms [47],
[48]. The evaluation of hybrid SSAMGO algorithms involves
benchmark functions detailed in Table 1. Specifically, F1 and
F2 are categorized as unimodal with a single global best solu-
tion (‘‘U’’). The table further distinguishes the separability
of these functions, using ‘‘S’’ for separable and ‘‘N’’ for
non-separable characteristics. Algorithm exploitation ability
is assessed using unimodal benchmark functions, indicating
the algorithm’s proficiency in local search. F8, F10, and F12
denote multimodal functions. These functions, with multiple
global best solutions, assess an algorithm’s exploration
capability. Table 1 categorizes functions labelled with ‘‘M’’
as multimodal, further classifying them as separable or
non-separable [49]. Table 2 summarizes statistical results
from algorithms on classical benchmarks, comparing mean
and standard deviation (SD) for best and worst outcomes.
Experiments conducted independently with 20 runs per
algorithm, used recorded results for evaluation. Benchmark
functions were assessed with a fixed population size of
30 and 500 iterations. From Table 2, SSAMGO shows
significant enhancements in the exploration and exploitation
phases. Fig. 7 displays the convergence curves for SSAMGO,
SSAGWO, PSOGSA, MPSOGA, and CPSO, underscoring
its superior performance in tackling optimization challenges
posed by benchmark functions.

B. TIME DOMAIN ANALYSIS OF THE MMG POWER
SYSTEM
In this subsection, the virtual inertia constant and virtual
damping coefficient have been estimated by using the
proposed SSAMGO and compared with other hybrid opti-
mization techniques. Table 3 illustrates the optimal value
of the Hvir, Dvir, and µ for the FDVIC of MG1 and MG2,
respectively. The results show that the value of the virtual
inertia and virtual damping when using SSAMGO is less
than other optimization techniques by (65.62%, 44.82%,
48.05%, and 48.61%) for Hvir1 and (70.53%, 17.46%,
45.60%, and 47.97%) for Dvir1 and (69.43%, 42.00%,
43.53%, and 36.07%) for Hvir2 and (70.99%, 45.66%,
37.94%, and 40.73%) for Dvir2. The estimated value of the
virtual inertia constant has a very significant impact on the
size of the capacity of the ESS that is used to support the MG
power system with instant active power to reduce the value of

the frequency nadir. In other words, the minimum value of the
virtual inertia constant means reducing the size of the battery
and leading to a reduction in the cost.

The proposedMGmodel is simulated under two scenarios.
The first scenario shows the effect of the proposed new
FDVIC technique on the dynamic performance of the MGs.
In addition, proves the effectiveness of the proposed MG
model under uncertainty in the load, variable virtual inertia,
variable virtual damping, variable nominal load, uncertainties
due to input real power of the solar PV and wind turbine
generator RESs. At the same time, the second scenario
demonstrates the dynamic performance of the MG power
system after combining the proposed DRC technique with the
FDVIC on the system frequency deviations and the stress on
the ESS.

The time domain response analysis of the MG is presented
as follows. MG1 consists of a biodiesel generator integrated
with a geothermal power station, solar thermal power station,
and wind turbine generator renewable energy sources. While
MG2 consists of a biodiesel generator integrated with solar
PV and wind turbine generator RESs. Fractional derivative
virtual inertia control is used to control the active power
support from the ESS to compensate for the lack of microgrid
inertia in MG1 and MG2, respectively. A step load change of
0.12 p.u. (240 kW) and 0.1 p.u. (150 kW) of the rated power
occurs in MG1 and MG2, respectively. Table 4 presents the
optimized values of the FOPID controller using the proposed
SSAMGO, in comparison with other hybrid optimization
algorithms, for the MMG power system in both the first and
second scenarios.
THE FIRST SCENARIO:
In this section, the impact of the proposed FDVIC tech-

nique on the dynamic performance of MGs is demonstrated.

1) DYNAMIC PERFORMANCE COMPARATIVE
To provide further evidence of the superior performance
of the SSAMGO algorithm in optimizing the FOPID and
FDVIC parameters for MG1 and MG2, a comprehensive
comparison was conducted with several widely used meta-
heuristic hybrid algorithms found in the existing literature.

The algorithms considered for this comparison included
SSAGWO, PSOGSA, MPSOGA, and CPSO. These algo-
rithms were employed to optimize the parameters of the
FOPID and FDVIC controllers in the multi-MG model
integrated with high penetration RESs, as discussed in the
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FIGURE 7. Convergence characteristics for the proposed SSAMGO compared with other hybrid optimization algorithms.

first scenario. By comparing the results obtained from the
SSAMGO algorithm with those obtained from the other
algorithms, we aimed to validate the effectiveness and
superiority of the SSAMGO approach in achieving optimal
parameter settings for the given system. To maintain fairness
in the comparison, all algorithms were implemented in
MATLAB, utilizing a system configuration consisting of
an Intel Core i7 7th generation processor and 8 GB of
RAM. In order to create a consistent evaluation framework,
the maximum number of iterations and the population
size were uniformly set to 100 and 30, respectively, for
all the algorithms being compared. By establishing these
standardized parameters, we ensured that each algorithm
was assessed under the same computational conditions when
optimizing the FOPID and FDVIC controller parameters for
the multi-MG model incorporating high penetration RESs.
Fig. 8, illustrates the frequency deviation of the proposed
SSAMGO for tuning FOPID controller parameters for the
secondary control loop of the MG1 and MG2 and for
tuning FDVIC parameters of the MG1 and MG2 compared
with (SSAGWO, PSOGSA, MPSOGA, and CPSO) hybrid
optimization algorithms.

The results of the frequency deviation of MG1 and
MG2 and the change of the tie line power are presented
in Table 5. It is clear from Fig. 8 and the results
illustrated in Table 5 that Settling Time (ST), Steady-
State Error (SSE), Undershoot (US), and Best Score (BS)
for the proposed SSAMGO algorithm optimized FOPID

and FDVIC are much faster than other optimization-tuned
FOPID and FDVIC controllers. ET, and ITAE are elapsed
time, and integrated time absolute error performance index,
respectively.

The ST of the SSAMGO tuned the FOPID and tuned
the proposed FDVIC for the frequency response of MG1
is improved by (24.68%, 46.20%, 7.52%, and 61.01%) and
for the frequency deviation of MG2 enhanced by (42.59%,
47.71%, 61.18%, and 72.67%) and for the change in the
tie line power ameliorated by (40.45%, 4.85%, 75.04%,
and 57.49%) from SSAGWO, PSOGSA, MPSOGA, and
CPSO, respectively. Moreover, the SSE of the frequency
deviation of the SSAMGO forMG1 is better than other hybrid
optimization techniques by (72.56%, 98.18%, 98.73%, and
6.67%) and for frequency response of MG2 raises by
(75.47%, 98.29%, 98.92%, and 7.14%) and for the tie line
power deviation improved by (73.91%, 93.75%, 98.75%,
and 33.33%), respectively. Furthermore, the proposed FDVIC
technique in this work reduces the US of the frequency
deviations, which has a significant impact on the frequency
nadir and system stability, and it is enhanced by (105.76%,
144.23%, 19.23%, and 7.69%) than the other optimization
techniques used to tune FDVIC parameters. Moreover, there
is a significant enhancement in the steady-state values of
the performance indices for frequency deviations and the
change in tie-line power. Specifically, for the frequency
deviation of the MG1, improvements are observed: 60.74%
for ITAE, 2.63% for IAE, 12.5% for ISE, and 7.89% for
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FIGURE 8. The dynamic response of the proposed algorithm compared to other optimization techniques for tuning FOPID controller parameters and
FDVIC parameters: (a) The frequency deviation of MG1; (b) The frequency deviation of MG2; (c) The power deviation of the tie line.

TABLE 4. FOPID controller parameters for MMG.

TABLE 5. Frequency deviation and the change in tie line power of MG1 and MG2 of the first scenario.

ITSE. For frequency deviation of MG2, enhancements are
noted: 44.57% for ITAE, 2.04% for IAE, 62.79% for ISE,
and 34.62% for ITSE. Similarly, for the change in tie-line
power, considerable advancements are registered: 78.12% for
ITAE, 62.5% for IAE, 58.47% for ISE, and 74.76% for ITSE.
These results show that the studiedMGhas improved its load-
frequency characteristic as intended.

2) COMPARATIVE BETWEEN THE PROPOSED FDVIC AND
CONVENTIONAL VIC
The frequency response of MG1 and MG2, as depicted
in Fig. 9, demonstrates an improvement in dynamic per-
formance. Specifically, the proposed FDVIC techniques
enhance MG1 frequency undershoot by 40.37%, MG2 fre-
quency undershoot by 66.62%, and tie line power undershoot
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FIGURE 9. The dynamic response of the SSAMGO-tuned FDVIC compared with SSAMGO-tuned conventional VIC: (a) The frequency deviation of MG1;
(b) The frequency deviation of MG2; (c) The power deviation of the tie line.

TABLE 6. Frequency deviation and the change in tie line power of MG1 and MG2 of proposed FDVIC compared with VIC.

TABLE 7. Frequency deviation and the change in tie line power of MG1 and MG2 of proposed FDVIC compared without VIC.

by 31.74% when compared to the conventional VIC tech-
nique under the same operating conditions. Furthermore, the
proposed FDVIC techniques have also led to improvements
in several performance metrics. The rise time (RT), SSE,
overshoot (OS), and the steady-state value of ITAE of
the frequency deviations, as well as the change in tie
line power, have all shown enhancements. Moreover, the
SSAMGO-tuned FDVIC technique requires less time to
achieve optimal values compared to the SSAMGO-tuned
conventional VIC technique. The elapsed time for obtaining
the optimal values using the FDVIC approach is significantly
shorter than that required by the conventional VIC technique.
A comprehensive breakdown of these results can be found in
Table 6.

3) DYNAMIC PERFORMANCE OF FDVIC
The proposed FDVIC technique implemented in an MG
power system effectively emulates the behaviour of con-
ventional synchronous generators, which possess inherent
inertia. Fig. 10 depicts the comparison between using FDVIC
to compensate MG with inertia and without using any
technique for inertia controller. It is clear from the results
that the FDVIC technique approach improves the transient
response of the MG. Moreover, it reduces the frequency
fluctuations and enhances the system’s ability to handle the
rapid change in power demand. The results demonstrated
in Table 7 show that FDVIC has faster response times and
reduces settling time by 8.33%, undershoot by 51.24%, and
overshoot by 66.67% for the frequency of MG1. While
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FIGURE 10. The dynamic response of the SSAMGO tuned FDVIC compared with SSAMGO without virtual inertia controller.

FIGURE 11. The dynamic response of the MG1 and MG2 under different virtual inertia constants (50% 150% from its optimal value): (a) The frequency
deviation of MG1; (b) The frequency deviation of MG2; (c) The power deviation of the tie line.

reducing the ST, US, andOS by 63.52%, 71.53%, and 66.67%
for the frequency of MG2, respectively.

Significant enhancements in frequency stability, transient
responsiveness, and overall system stability result from
incorporating the proposed virtual inertia control into anMG.
It allows MG systems to function reliably and efficiently by
reducing the challenges caused by renewable energy’s lack of
inherent inertia.

4) PERFORMANCE EVALUATION OF ESTIMATED VIRTUAL
INERTIA AND VIRTUAL DAMPING
In the simulations mentioned above, the virtual inertia
constant and the virtual damping coefficient are determined
optimally using the SSAMGO algorithm for the FDVIC
controller. In order to assess the robustness of the proposed
FDVIC approach based on the SSAMGO algorithm, the
values of the optimal Hvir and Dvir were varied within the
range of 50% to 150%. The effectiveness of the controller
is showcased by utilizing the FOPID controller parameters
of MG1 and MG2 under normal operating conditions. The
dynamic response of the MG with varying values of the
virtual inertia constant is depicted in Fig. 11. Similarly,
Fig. 12 displays the dynamic response of the MG when the
virtual damping coefficient is changed.

Based on the observations from these figures, we can draw
the conclusion that the proposed FDVIC controller, utilizing
optimal values, exhibits robustness against uncertainties in
the parameters. It effectively maintains the MG frequency
and tie-line power at their reference values within short time
intervals.

5) PERFORMANCE EVALUATION UNDER RANDOM LOAD
DEMAND VARIATION
Fig. 13 demonstrates the application of a random step change
in load demand to MG1, serving as a means to evaluate
the effectiveness of the proposed SSAMGO compared with
other hybrid optimization algorithms. To assess the system’s
response, Fig. 14 displays the frequency response of MG1,
MG2, and tie-line power. This analysis aims to evaluate the
performance of the proposed algorithm inmaintaining system
stability and regulating power distribution in response to
load variations. Based on the findings, it is evident that the
proposed algorithm exhibits faster tuning of the FOPID and
FDVIC responses compared to other optimization techniques
when subjected to sudden load changes. Furthermore, the
tie-line power supplied by the system demonstrates the
ability to adjust in response to varying load demands while
maintaining a consistent output level. These results highlight
the effectiveness of the proposed algorithm in dynamically
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FIGURE 12. The dynamic response of the MG1 and MG2 under different virtual damping coefficients (50% 150% from its optimal value): (a) The
frequency deviation of MG1; (b) The frequency deviation of MG2; (c) The power deviation of the tie line.

FIGURE 13. Random step change load demand.

FIGURE 14. Dynamic response of MG1 and MG2 at a random change load.

adapting to changes in the system, ensuring stability and
optimal performance.

FIGURE 15. Real-time solar input power.

6) REAL-TIME VARIATION OF RESS PERFORMANCE
EVALUATION
In this scenario, the case focuses on analyzing the variation
in power output of solar PV units using real-time monthly
average irradiance data collected from the Subang meteoro-
logical centre was specifically recorded at Universiti Putra
Malaysia [42]. The data spans from January to December
2014 and comprises 200 time slots of 0.5 seconds each,
as depicted in Fig. 15.

To assess the performance of the developed MMG
model, real-time variations in solar power are tested.
The dynamic response of the system is recorded and
presented in Fig. 16, where the proposed SSAMGOalgorithm
is compared with other hybrid optimization algorithms.
The results indicate that the SSAMGO-tuned parameters
for the FOPID and FDVIC controllers exhibit superior
and more consistent responses, characterized by minimal
overshoot and undershoot. This finding suggests that the
SSAMGO algorithm outperforms other tuning methods
in achieving smoother and more efficient control of the
MG system.

The Malaysian Meteorological Department in Kuala
Terengganu collects real-time data on wind power variation
by monitoring changes in wind speed throughout the
year. The location of the department is specified by the
coordinates 5◦23’ N latitude and 103◦06’ E longitude, with
an elevation of 5.2 meters [50]. To evaluate the reliability
of the controller, the wind power variation data is converted
into seconds. Fig. 17 illustrates this process. Additionally,
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FIGURE 16. Dynamic response of the MMG power system under real-time
solar input power.

FIGURE 17. Real-time Wind-turbine Input Power.

Fig. 18 displays the frequency response and tie-line power
deviation resulting from the aforementioned wind power
variation. The analysis reveals that the SSAMGO algorithm
exhibits minimal frequency oscillations and achieves lower
SSE compared to other hybrid optimization algorithms.
Based on this observation, it can be inferred that the
proposed SSAMGO algorithm, which tunes the FOPID
and FDVIC parameters, produces a superior and smoother
response compared to other tuning methods. Furthermore,
it demonstrates minimal undershooting, reduced SSE, and
real-time responsiveness under variations in RESs input
power.

a: THE SECOND SCENARIO
In this section, the impact of the combination of the
proposed FDVIC and DRC technique based on the proposed

FIGURE 18. Dynamic response of the MMG power system under real-time
wind input power.

hybrid SSAMGO on the dynamic performance of MGs is
demonstrated and explained.

In order to evaluate the performance of the proposed
MMG power system model, the simulation incorporates
the combination of the FDVIC techniques from the first
scenario with the DRC controller. The responses of this
combined system are then simulated and analyzed. In the
analysis of the proposed model, it is subjected to sudden
changes in load demand. Specifically, a load demand change
of 0.12 p.u. is applied to MG1, while MG2 experiences
a load demand change of 0.1 p.u. The maximum demand
response load available in the analyzed MGs is 0.036 p.u.,
which corresponds to 30% of the total nominal load of
MG1 (240 kW). Similarly, MG2 has a maximum demand
response load of 0.025 p.u., which accounts for 25% of
its total nominal load (187.5 kW). The value of Toff0
is configured as 10 seconds. Additionally, 1fdb is set to
−0.05 Hz, and 1fprm is set to −0.55 Hz. In the DR
control loop for frequency regulation, 10%, 30%, and 50%
of the responsive loads are utilized. The proposed SSAMGO
algorithm has been utilized to achieve the optimal value
of the DRC parameters. The frequency response of MG1
and MG2, along with the corresponding change in tie line
power, is depicted in Fig 19. The findings strongly suggest
that the combination of FDVIC and DRC techniques in
the examined system offers notable advantages in terms
of frequency regulation. The improvements in frequency
responses, tie-line power changes, and reduction in frequency
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TABLE 8. Frequency deviation and the change in tie line power of MG1 and MG2 of proposed FDVIC combined with DRC techniques.

FIGURE 19. Dynamic response of the MG model with a variation of DRC: (a) Frequency deviation of the MG1; (b) Frequency deviation of the MG2;
(c) The changing power of the tie line.

FIGURE 20. Power participation in the ESS of the FDVIC controller loop: (a) ESS of the MG1; (b) ESS of the MG2.

oscillations, as illustrated in Fig. 19 and Table 8, highlight
the effectiveness of incorporating DRC units into the system.

These results further demonstrate the system’s ability to
successfully mitigate frequency fluctuations, particularly
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FIGURE 21. Bode analysis of frequency stability: (a) the first scenario, (b) the second scenario.

in scenarios with increased renewable energy penetration,
through the integration of demand response support in
isolated MGs.

The efficacy of the proposed virtual inertia controller
technique is illustrated in Fig. 20, showcasing the effective
energy participation from the batteries during the inertia com-
pensation process in the presence of sudden load changes.
These results highlight the rapid and efficient charging and
discharging of the batteries, validating the effectiveness of
the employed method in minimizing frequency deviation
and enhancing power system inertia. It is important to note
that combining the DRC approach with the FDVIC results
in a substantial reduction in active power charging and
discharging of the ESS. This reduction significantly improves

the lifespan of the ESS, indicating the beneficial impact of the
integrated approach.

C. STATE-SPACE MODEL OF MG POWER SYSTEM
(STABILITY ANALYSIS)
The system’s dynamics are modelled by a set of first-order
differential equations that consist of state variables; these are
referred to as state equations or a state-space model [51],
[52]. The state-space analysis governing the MMG system
integrated with RESs presented in Fig. 2 is performed in the
absence of the three controllers’ actions proposed secondary
control loop, virtual inertia control loop, and demand-side
response loop. Also, the analysis is shown for the two MG
system models, considering the change in load disturbances
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in MG1 and MG2. The state space model equations are
illustrated in detail in Appendix B.

Fig. 21 depicts the bode-plot diagram of the frequency
response for the MMG power system, considering the three
controller loop effects in stability analysis. For the first
scenario, the gain margin of 23.3 and 26.4 dB and a
gain cross-over frequency of 7.5 and 2.25 (rad/s) for MG1
and MG2, respectively. For the second scenario, 27.7 and
40.1 dB of the gain margin and 7.26 and 6.27 (rad/s)
of cross-over frequency for MG1 and MG2, respectively.
For the proposed SSAMGO-optimized three-loop controller
parameters of the MMG power system, the Bode analysis
response demonstrates that the closed-loop system is stable.

VI. CONCLUSION
The greater adoption of RESs within MGs has a discernible
influence on the stability of the system’s frequency. This
is primarily attributed to the reduction in the overall
system inertia, which subsequently results in significant
challenges related to frequency stability. Therefore, a novel
approach known as FDVIC is presented, which pertains to
a virtual inertia control scheme. This method is designed
to improve the dynamic response for the low-inertia MMGs
integrated with high penetration of RESs. Furthermore,
an adapted DRC has been integrated with the proposed
FDVIC technique to mitigate the frequency fluctuations
and alleviate the strain on the ESS of the FDVIC during
both discharge and charge cycles. The stress on the ESS
of the FDVIC for MG1 and MG2 has seen a decrease of
49.15% and 51.37%, respectively, during the discharging
period. Furthermore, the power necessary to charge the ESS
of the FDVIC has been reduced by 21.34% for MG1 and
41.47% for MG2. Additionally, FOPID controllers have
been implemented to govern the active power output of
both the biodiesel generators and the Geothermal station of
the proposed MG. The optimal parameters for the three-
loop controller were determined through the utilization
of the SSAMGO algorithm. An extensive assessment of
SSAMGO’s performance was conducted, comparing it to
various other optimization algorithms in different scenarios.
The controllers’ robustness was further confirmed through
testing under concurrent alterations in wind power, solar PV
irradiation, and load fluctuations. The proposed controllers
notably minimized both the OS, US, ST, RT, and SSE
of frequency and tie-line power deviations. The stability
analysis of two scenarios, conducted through Bode analysis,
demonstrates that the calibrated gain values for the three-
loop controllers are apt for maintaining the system’s stable
operation. The simulation results clearly show that the
FDVIC technique proposed in this study provides adequate
inertia to maintain MG stability. The future directions of this
research can be succinctly encapsulated as the application of
the proposed controller to uphold the stability of an MMG
system operating in grid-connected mode, with a specific
focus on real-time applications.

APPENDIXES
APPENDIX A
The parameters of the proposed multi-MG integrated with
RESs:

MG rated power: Pr1 = 2000 kW, Pr2 = 1500 kW; Power
system gains constant: kp1 = 125 Hz/p.u.MW, kp2 = 100
Hz/p.u.MW; Power system time constant: Tp1 = 25 s, Tp2 =

12 s; Frequency bias factor: B1 = B2 = 0.4267 p.u.MW/Hz;
Damping coefficient: D1 = 0.00833 p.u.MW/Hz, D2 =

0.01 p.u.MW/Hz; Droop control: R1 =R2 = 2.4 Hz/p.u.MW;
Equivalent system inertia: Heq.1 = 3.5106 s, Heq.2 =

0.75 s; Tie-line power flow time constants: T12 = T21 =

0.08674 p.u.MW/rad; Biodiesel valve gain: KVA1 = KVA2 =

1; Biodiesel valve actuator delay: TVA1 = TVA2 = 0.05 s;
Biodiesel engine gain: KBE1 = KBE2 = 1; Time constants of
biodiesel: TBE1 = TBE2 = 0.5 s; Gain constant of WT: KWT1
= KWT2 = 1; Time constant of WT: TWT1 = TWT2 = 1.5 s;
Gain constant of PV: KPV1 =KPV2 = 1; Time constant of PV:
TPV1 = TPV2 = 1.8 s; Gain of the turbine of solar thermal: KT
= 1; Charging time constant of the turbine of solar thermal:
TT = 0.3 s; Solar collector gain: KS = 1.8; Solar collector
time constant: TS = 1.8 s; Gain constant of the ESS: KBESS1
= KBESS2 = 1; Time constant of the ESS: TBESS1 = TBESS2
= 0.026 s.

APPENDIX B
The state-space model of the proposedMGmodel is given as:

X•
= AX + B1W + B2u (33)

Y = CX (34)

where A matrix is represented as:

A =


a11 a12 a13 . . . a120
a21 a22 a23 . . . a220
a31 a32 a33 . . . a320
· · · . . . ·

a201 a202 a203 . . . a2020

 (35)

The model will include a total of 20 modelled state variables,
and its vector form is as follows:

X = [X1,X2,X3, . . . . . . . . . ..,X20]T (36)

The state variables that relate to the system parameters are
denoted as:

X

=
[
1f1, 1PBDG, 1Pvl, 1PFO1, 1PGeo, 1Pgl, 1PSTH,

1PT, 1PWTG1, 1Pinertial , 1PDRC1, 1Ptiej , 1f2, 1PBDG2,

1Pv2, 1PFO2, 1PWGG2, 1PFV, 1Pineri 2, 1PDRC2]T

(37)

Following is a description of the state-space equations of the
proposed model:

X•

1 = [a11X1 + a12X2 + a15X5 + a17X7 + a19X9 ± a110X10

± a111X11 − 1Ploall ] (38)

45898 VOLUME 12, 2024



B. A. Fadheel et al.: Hybrid Sparrow Search Optimized Fractional Virtual Inertia Control

where a1 1 =
−D1
2H1

, a1 2 = a1 5 = a1 7 = a1 9 = a1 10 =

a1 11 =
Kps1
2H1

The biodiesel generator state-space model of MG1 is as
follows:

X•

2 = a22X2 + a23X3 =
−1
TBEI

X2 +
KBE1

TBE1
X3 (39)

X•

3 = a31X1 + a33X3 + a34X4 =
−KVA1

R1TVA1
X1 −

1
TVAl

X3

+
KVA1

TVAl
X4 (40)

The geothermal generator state-space model is depicted as
follows:

X•

5 = a55X5 + a56X6 =
−1
Ttg

X5 +
Ktg

Ttg
X6 (41)

X•

6 = a64X4 + a66X6 =
Kg8

Tgg
X4 −

1
Tgg

X6 (42)

The state-space model of the solar thermal power generator
is as follows:

X•

7 = a77X7 + a78X8 =
−1
T5

X7 +
K8

T8
X8 (43)

X•

8a88X8 +
KT

TT
Psolur-themal

=
−1
TT

X8 +
KT

TT
Psolur-themal (44)

The state-space model of the wind-turbine generator of MG1
is as follows:

X•

9 = a99X9 +
KWTGl

TWTGl
Pxind =

−1
TWTGl

X9 +
KWTGl

TWTGl
Prind

(45)

The state-space of the proposed FDVIC controller based on
ESS in the MG1 is as follows:

X•

10 = a101X1 · 1PFDVCl + a1010X10 =
KESS

TESS
X1

· 1PFDVCl −
1

TESS
X10 (46)

The tie-lines of the interconnected MGs system are portrayed
as follows:

X•

12 = 1Pta,i = 2π

 n∑
i=i,i̸=j

TijXi

 (47)

The state-space of the frequency deviation of MG2 is as
follows:

X•

13

= [a1313X13 + a1314X14 + a1317X17+a1318X18 ± a1319X19

± a1320X20 − 1Pload 2] (48)

where a13 13 =
−D2
2H2

, a13 14 = a13 17 = a13 18 = a13 19 =

a13 20 =
Kps2
2H2

The biodiesel generator state-space model of MG2 is as
follows:

X•

14 = a1414X14 + a1415X15 =
−1
TBE2

X14 +
KBE2

TBE2
X15 (49)

X•

15 = a1513X13 + a1515X15 + a15X16

=
−KVA2

R2TVA2
X13 −

1
TVA2

X15 +
KVA2

TVA2
X16 (50)

The state-space model of the wind-turbine generator of MG2
is as follows:

X•

17 = a1717X17 +
KWTG2

TWTG2
Pwind =

−1
TWTG2

X17

+
KWTG2

TWTG2
Pwind (51)

The state-space model of the solar photovoltaic RES is as
follows:

X•

18 = a18 18 X18 +
KpV

TpV
Psolar =

−1
TpV

X18 +
KpV

TpV
Psolar

(52)

The state-space of the proposed FDVIC controller based on
ESS in the MG2 is as follows:

X•

19 = a191X13 · 1PFDVC2 + a1919X19 =
KESS

TESS
X13

· 1PFDVC2 −
1

TESS
X19 (53)

MG disturbance signals considered in this research article
include the change in wind power (Pwind), solar radiation
power (Psolar), solar thermal power (Psolar−thermal), and load
power (Pload):

W = [1Pwixd , 1Psolar , 1Psolar-themal , 1Pload ]T (54)

The control signals of the MMG model are as follows:

u = [1PFO1, 1PFO2, 1Pinetria1 , 1Pinertia 2, 1PDRC1,

1PDRC2]T (55)

The output matrix model of the MG is defined as:

Y = [1f1, 1PBDG1, 1PGe0, 1PSTH, 1PWTG1,

1Pinertial , 1PDRC1, 1f2, 1PBDG2, 1PWTG2, 1PPV,

1Pinertia 2, 1PDRC2]T (56)

∴ Y =
[
1 0 0 0 0 1 0 0 0 0

]T
· [X]T (57)

The above state-space modelling is derived for the low inertia
MMG system integrated with RESs. The operation of the
biodiesel generators with the RESs during the study of the
first scenario and second scenario control technique resulted
in 20 state variables, and this will lead to the order of the
closed loop transfer function being powered to 35.

The proposed model shown in Fig. 2 can be simplified
as shown in Fig. 22 to illustrate the closed-loop control
technique used in this study.
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FIGURE 22. Closed loop control of the proposed MG.

The total response of the interconnected MGs system was
modelled with three controller loops (C1, C2, and C3) as the
following:

R(s)C1G1(s)G2(s) − BiY(s)C1G1(s)G2(s)

−
1
Ri

Y(s)G1(s)

G2(s) − Di(s)G1(s) + Y(s)C2G1(s) − Y(s)C3G1(s)

= Y(s) (58)

∴ Y(s) = Y11(s) + Y12(s) (59)

where

Y11(s)

=
R(s)C1G1(s)G2(s)

BiC1G1(s)G2(s)+ 1
Ri
G1(s)G2(s) − C2G1(s)+C3G1(s)

(60)

and

Y12(s)

=
−Di(s)G1(s)

BiC1G1(s)G2(s)+ 1
Ri
G1(s)G2(s) − C2G1(s)+C3G1(s)

(61)

The closed-loop transfer function of the proposed model
shown in Fig. 22 is used to address the change in the load
demand and the variation in tie-line power in (62) and (63),
respectively.

1f|1Pload =
−G1

1 + G1

[
BiC1G2 +

1
Ri
G2 − C2 + C3

]1Pload

(62)

1f|1Pie =
C1G1G2

1 + G1

[
BiC1G2 +

1
Ri
G2 − C2 + C3

]1Ptie

(63)

By applying the superposition theorem, the closed-loop
transfer function for the total variations of the frequency
response of the proposed MG can be represented as follows:

1f =
−G11Pload + C1G1G21Ptie

1 + G1

[
BiC1G2 +

1
Ri
G2 − C2 + C3

] (64)
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