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ABSTRACT The Indian Ocean Dipole (IOD) is a critical coupled ocean–atmosphere oscillation system
associated with significant weather anomalies in the global climate, particularly in the Indian Ocean rim
countries. The paper presents a novel deep learning (DL) model, which we call the ‘‘spatio-temporal
dilated ConvLSTM (STDNet) model’’, for forecasting the Dipole Mode Index (DMI) using global sea
surface temperature (SST) and heat content (HC) data. The model combines the techniques of dilation and
fine-tuning to learn efficiently from the training data. CMIP6 historical simulation data from 5 modeling
centres for 1861–2014 is used to train themodel. Furthermore, themodel is fine-tuned on reanalysis data from
1871–1973. During the testing period (1982–2019), the dipole correlation coefficient (DCC) was the highest
when compared with state-of-the-art dynamical North American Multi-Model Ensemble (NMME) models,
a convolutional neural network (CNN) and a dilated CNN. On a lead of 12 months, the DCC is 0.40 for
the CNN, 0.44 for the dilated CNN, and 0.51 for the STDNet, and all the NMME models have negative
correlations. The results show that the STDNet efficiently forecasts the DMI at leads of up to 12 months.
The STDNet shows results to overcome the winter predictability barrier.

INDEX TERMS Convolution, deep learning, dilation, dipole mode index, fine-tuning, Indian Ocean Dipole,
winter predictability barrier.

I. INTRODUCTION
The eastern and south-eastern Australian summer bushfires
and the floods in East Africa in 2019/2020 were extremely
severe. They led to the loss of human life, livelihoods, forests,
and biodiversity. These regions are usually theatres for the
weather and climatic manifestations of a unique and inherent
variability mechanism in the Indian Ocean. This air–ocean
coupled dipole mode is called the Indian Ocean Dipole (IOD)
[1]. A similar coupled air–atmosphere process in the Pacific
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Ocean called the El Niño–Southern Oscillation (ENSO) is
also widely acknowledged. In addition to the dipole mode,
there is an ocean-wide interannual SST variability mode in
the tropical Indian Ocean wherein the sea surface temperature
(SST) in the eastern and western parts of the ocean vary
in harmony [2]. In contrast to it, a positive IOD event is
characterised by anomalously cool SSTs in the south-eastern
equatorial Indian Ocean (SEIO) (50◦ E–70◦ E, 10◦ S–10◦ N),
off the coast of Java and Sumatra, and anomalous warming
in the western equatorial Indian Ocean (WEIO) (90◦ E–
110◦ E, 10◦ S–0◦ N); vice versa for the negative phase of
the IOD. The 2019 positive IOD phase was identified as the
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strongest IOD event of the century [3]. The IOD is detected
and quantified using a time-series index called the Dipole
Mode Index (DMI). For an IOD phase to be classified as
positive, the DMI must exceed 0.5 standard deviation for
at least three consecutive months [3]. The IOD results in
significant temperature and rain variability, particularly in the
Indian Ocean rim countries, such as India [5], Africa [6], and
Australia [7].
The IOD exhibits vital characteristics that are critical to its

forecast and prediction. The IOD can result from a combina-
tion of intrinsic processes [1] in addition to remote influences
such as ENSO [4]. A key attribute of the IOD is that its
occurrence–growth–decay is phase-locked with the seasons;
it appears in boreal summer (JJA), maximises in autumn
(SON), and declines in winter (DJF). The interannual vari-
ability of the IOD manifests a biennial trend, i.e., an IOD
event is preceded by an event of opposite polarity [1]. The
IOD events are characterised by amplitude skewness, wherein
the positive IOD phase is comparatively stronger than the
negative equivalent, has more significant climatic impacts,
and is estimated to rise substantially with global warming
scenarios [5]. The IOD skewness is a result of thermocline
feedback; SST responses to a positive IOD (shoaling ther-
mocline) are more significant than those to a negative IOD
(deepening feedback) [8].
The accurate prediction of IOD events advances our

knowledge of climate dynamics and holds immense societal
benefits [9]. The difficulty in predicting Indian Ocean SST
anomalies has been attributed to various factors, namely,
complex geophysical processes like interaction with the
Asian Monsoon system, the remote influences of the ENSO
and forcing associated with atmosphere–ocean intra-seasonal
oscillations that affect the climate of the Indian Ocean
region [10], weak coupling of surface temperatures with sub-
surface variations [11], and high event diversity [12]. The
difficulties are compounded by scarce observations in the
Indian Ocean region. Also, the signal-to-noise proportion is
much worse in the Indian Ocean compared to the Pacific
Ocean [2]. The skilful prediction of the IOD has varied from
3–4 months ahead (one season) to a few seasons ahead (for
strong IOD events). The prediction skill is highly dependent
on the strength of IOD events [13]. The lead time for predic-
tion is higher for the WEIO (almost 5–6 months) compared
to the SEIO (3)–4 months) because of the powerful influence
of the ENSO there [10].
The predictability and persistence of the IOD exhibit

significant seasonal variability [14]. The actualised pre-
dictability of the IOD is impacted by a ‘‘winter predictability
barrier’’ (WPB), wherein irrespective of when the predic-
tion is initiated, the forecast skill for the IOD drops steeply
throughout the boreal winter. The WPB results from weak
ocean–atmosphere coupling in the winter, leading to the rapid
growth of perturbations (resulting in a winter sign reversal of
the IOD index) and, therefore, a sharp drop in persistence [2].
The presence of a lesser-known summer predictability barrier

in IOD predictions has also been demonstrated [15]. Thus, the
potential predictability of the IOD, i.e., the maximum limit to
IOD predictability, is far greater than the existing prediction
skill attained so far, therefore suggesting immense scope to
improve the predictability of the IOD [14], [15].

Various coupled global circulation models (CGCMs) are
employed to evaluate the predictability of IOD events. These
include the National Centres for Environmental Prediction
(NCEP) and the Coupled Forecast System (CFS) [2], [16],
as well as the Geophysical Fluid Dynamics Laboratory
(GFDL) CGCM [17], the NASA season-al-to-interannual
Prediction Project (NSIPP), the POAMA seasonal forecast
model, the SINTEX-F model [18], the ECMWF seasonal
forecast system (ECSys3), and the Community Earth Sys-
tem Model (CESM) [13]. Though instrumental in improving
understanding of IOD events, the dynamical coupled mod-
els need to improve their skill at predicting the IOD with
longer lead times. Forecast systems suffer from prediction
errors, such as the simulation of systematically more consid-
erable IOD variability [19] and peak-season amplitude [12].
An accurate simulation of the mean state of the Indian
Ocean is stymied due to inadequate and erroneous model
initialisation, particularly of sub-surface conditions [16],
inaccurate understanding of the inner dynamics of the Indian
Ocean, as well as the model’s unrealistic simulation of the
ENSO–IOD relationship [14]. Various strategies have been
suggested to improve the prediction skill for IOD events,
such as using multi-model ensembles [10] and including
sub-surface ocean conditions [16]. Some studies have empha-
sised the value of using HC as a potential predictor for
enhancing IOD predictability [20]. Also, it has been asserted
that IOD predictability depends crucially on ENSO pre-
dictability.

Climate scientists have been using traditional machine-
learning methods, such as non-linear Principal Component
Analysis (PCA) for dimensionality reduction in multi-variate
data [21], k-means clustering [22] and Artificial Neural
Networks (ANNs) for forecasting rainfall, such as pre-
diction of All India Summer Monsoon Rainfall (ISMR).
Ratnam et al. [23] applied an ensemble of ANN for fore-
casting the IOD index, exhibiting better forecasting capability
as compared to the North American Multi-Model Ensemble
(NMME). However, deep learning methods have been widely
applied to geoscientific datasets over the last decade.

Deep learning (DL) models have emerged as a promising
tool for application to geoscientific problems. It is argued
that DL models can be optimally designed to extract/learn
from spatial-temporal features to improve geospatial phe-
nomena’ predictability, teleconnections modelling at varying
timescales, etc [24], [25]. Forecasting in earth and climate
systems is of utmost importance as an early warning sys-
tem [26]. Shi et al. [27] used a convolutional long short-term
memory (ConvLSTM) model for precipitation nowcasting.
Shi et al. [28] proposed a self-attention joint spatio-temporal
network for temperature forecasting. Zhang et al. [29] used
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an LSTM for SST prediction over day–month timescales.
Haghroosta [30] predicted a typhoon’s wind speed using a
neural network. The prediction of SST using a Deep GRU
and CNN was attempted, yielding good prediction and per-
formance [31]. Ham et al. [32] demonstrated the functionality
of a CNN in skilful multi-year ENSO forecasts (with a lead
time of up to 1.5 years). Attention layers in neural net-
works were explored in modelling SST and HC [33], and
an encoder–decoder-based deep neural network was used for
ENSO forecasting [34]. The geographic semantics of various
latitudes and longitudes were combined with temporal atten-
tion in modelling the spatio-temporal data for long-horizon
ENSO forecasting [35]. Ensemble empirical mode decom-
position (EEMD) and ConvLSTM were used to forecast the
North Atlantic Oscillation Index [36]. The utility of fully
supervised CNNs can classify severe weather events, for
example, extra-tropical storms, weather fronts, hurricanes,
etc., with reasonable accuracy, as has been demonstrated.
Here, a CNN resulted in a statistically significant increase
in the prediction skill for hailstorm events [37]. A CNN
for semi-supervised bounding box prediction was used to
localise extreme weather events [38]. Vandal et al. [39] used
DeepSD, a stacked super-resolution CNN (SRCNN) architec-
ture, to statistically downscale climate variables. DL models
such as CNNs are superior due to their recognition of spa-
tial structure, weighing of parameters, self-driven feature
selection, and less intensive computational demand [40].
Nonetheless, DL models face significant challenges. A fun-
damental limitation is the interpretability and consistency of
these models with the governing laws of the earth sciences.
The excessive focus on prediction accuracy often results in
very complex models, which become more complicated to
understand and rarely provide insights into the processes
that drive the geophysical phenomenon [41]. DL models are
also constrained by the availability of training data (usu-
ally limited, unlabeled, multi-sourced with diverse noise,
uncertainty levels, etc.), resulting in overfitted models [26].
DL techniques, as standalone methods and in association
with physical models, have been used to predict the IOD.
Nevertheless, DL has not yet been used exhaustively for
DMI forecasting. However, the few existing studies using
DL for IOD prediction have demonstrated superior prediction
skills. Liu et al. [40] used a CNN model that outperforms the
North American Multi-Model Ensemble (NMME) model by
exhibiting lesser sensitivity to predictability barriers and sys-
tematic errors. Similarly, Ratnam et al. [23] used an artificial
neural network (ANN) that performs better than the NMME
for IOD prediction. Ham et al. [32] shows that perfect modu-
lation of two paradigms can effectively be used to fuse a new
model driven by knowledge and data, also show effectively
by Yu et al. [60], [61] in geochemical technologies.
This paper offers a novel DL architecture for skilful pre-

diction of the DMI using SST and heat content (HC) data,
modelled as two channels of an image. The DL models are
trained on the global SST and HC domain rather than just
the Indian Ocean region since it has been elucidated that IOD

and ENSO predictability are intrinsically linked. This helps
ensure that the models learn and integrate signals from the
Pacific Ocean. In addition, the CNN model’s effectiveness
in predicting ENSO at an inter-annual timescale using SST
and HC has already been demonstrated [32]. The study does
not include an explicit heat map gradient analysis as was
produced for ENSO and the IOD [40]. It includes HC only
as an additional predictor, as proposed in [20], for enhancing
IOD predictability. A heat map analysis can be the focus of
our future study. Here, the effort is directed at developing an
efficient DL model that uses data effectively. The proposed
model uses convolutional LSTM and convolutional 3D, along
with fine-tuning and dilation techniques, to enhance the visi-
bility of the convolutional filters, thereby modelling the data
efficiently. The proposed model, STDNet, has been exper-
imentally investigated considering a specialised correlation
coefficient, dipole correlation coefficient (DCC), and root
mean square error (RMSE) and compared with traditional
deep learning architecture and some dynamical models of
the North American Multi-Model Ensemble (NMME). The
results show that the STDNet efficiently forecasts the DMI at
leads of up to 12 months. The NMME models show positive
DCCs for up to 8 months, with only four months of lead on
a threshold DCC of 0.5. The CNN and dilated CNN models
fare better with eight months of lead on the threshold DCC.
The STDNet outperforms all the models, with a 12-month
lead above the threshold DCC. The STDNet shows promise
to overcome theWPB. Furthermore, it has been found that the
proposed STDNet is more effective than other deep learning
frameworks in modelling the complex nature of the IOD.

The main contributions of the paper can be summarized as
follows:

1. A novel deep learning model dilation based deep learn-
ing model with transfer learning for skilful modelling
of IOD.

2. An efficient depiction of the effectiveness of the tech-
nique of dilation in geospatial data.

3. An effective transfer learning approach using reanaly-
sis data to overcome systematic errors from CMIP.

4. The proposed model is providing skilful DMI fore-
cast for 12 months surpassing the state-of-the-art CNN
model and physical models such as NMME.

The paper is further organised into the following sections:
Section II is titled Materials and Methods and includes in its
subsection the mathematical formulation of the fore-casting
problem, the dataset and its sources, and finally, the pre-
liminaries. The proposed model is discussed in detail in
Section III. Section IV presents the experiments and a dis-
cussion of the results. Lastly, the conclusion and future work
are discussed in Section V.

II. MATERIALS AND METHODS
A. DATA
Earth system data have been abundant from a plethora of
sources, such as remote sensing, in-situ observations, and
model simulation outputs. The Coupled Model Intercompari-
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son Project (CMIP) is the appraisal of these ‘‘state-of-the-art’’
global coupled climate (GCM) models. These models are
detailed numerical/physical representations of the ocean,
atmosphere, land, and cryosphere, which are coupled and
interact to simulate global climate. The model output and
observations share many forms of uncertainty. The models
suffer from specific simulation errors. Nonetheless, these
simulate large-scale regional climate and variability reason-
ably well.

The study utilises SST and ocean HC (in units of ◦C) as
key variables to forecast the DMI. SST is a fundamental vari-
able in weather prediction and atmospheric simulations. It is
essential to understand the ocean’s interaction with the atmo-
sphere. HC, which mainly offers information on the ocean’s
upper thermal structure, is an essential parameter for ini-
tialising forecasts over seasonal-to-decadal timescales [42].
Also, the rate of ocean heat absorption due to anthropogenic
climate change plays a crucial role in influencing the future
SST and sea level [43]. HC (as used in the study) is the
monthly averaged two-dimensional field of oceanic potential
temperature (⊖), which is depth-integrated from the surface
to certain specified depths, described as (1). This study uses
an integration depth of 0–300 m since the upper oceanic
layers are considered the key source of predictability for
seasonal forecasting [44].

θ =

∫
θ (x, y, z) dz (1)

This study is based on historical climatic simulations from
five models that participated in CMIP6 (Table 1). These
models provide data for both SST and HC as used in the
study. The models used in this study show only positive
skewness as per the observations. Also, the models in our
study show both a positive (example IPSL-CM6A-LR) and
negative (example EC-Earth3) amplitude bias compared to
the observations. In fact, the model results for MPI-ESM1-
2-HR are very close to observations. The greater number
of models used in the present study rather than a singu-
lar model helps in a better and balanced training of the
deep learning models. The model output used is based on
historical simulations from 1850 to 2014 (∼1.5 centuries).
The present study is based on the model’s native grid. For
any experiment, every simulation of an ensemble of runs
by a model is uniquely identified through realisation (initial
conditions), initialisation (procedure, i.e., algorithms used),
physics (model parameterisations), and forcing index (ripf
indices). The study is based on a single ensemble member
from each model, i.e., r1i1p1f1.

Ocean reanalyses utilise data assimilation techniques to
aggregate diverse ocean observations and model data to
estimate the ocean state. It underpins the initialisation of
sub-seasonal to inter-annual forecasts and predictions of
ocean dynamics [45]. The study has used Simple Ocean Data
Assimilation (SODA) reanalysis data (103 years of monthly
mean SST and HC) to fine-tune the deep learning models.
Furthermore, the Global Ocean Data Assimilation System

(GODAS) reanalysis data was used for model validation.
However, a cooling period of 8 years was introduced to ensure
the independence of validation from testing and fine-tuning
(Table 2).
It is also of utmost importance to validate the per-

formance of models. The forecast skills of the proposed
models were compared with the suite of dynamic model
forecasts from the NMME models. The NMME fore-
casting system is composed of a set of state-of-the-art
coupled models. The NMME forecast data is accessible
from 1982 to the present at different lead times. The
study has utilised forecasts from six models that have con-
tinuous data, namely, CMC1-CanCM3, CMC2-CANCM4,
COLA-RSMAS-CCSM3, COLA-RSMAS-CCSM4, GFDL-
CM2p5-FLOR-A06, and GFDL-CM2p5-FLOR-B01 [46].

TABLE 1. CMIP6 models used in the study.

TABLE 2. Reanalysis data and testing data used in the study.

B. FORMULATION OF THE DMI FORECAST PROBLEM
The paper architects ConvLSTM and Dilated-CNNs and pro-
poses a new and unique STDNet model for the forecasting
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of the DMI. The main goal of IOD forecasting is to use
historical and reanalysed SST and HC data frames to forecast
the DMI of the region of interest (ROI). Suppose our ROI is
denoted by a M × N grid, where M and N are latitudes and
longitudes, respectively, and each grid point represents two
observations (SST and HC). Therefore, we can represent a
frame of observation as X ∈ R2×M×N , where R is the field
of the observed features, and K ∈ R, where K is the DMI.
The periodic observation can be represented as a sequence of
tensors: X1,X2,X3, . . . . . . ..,Xt . Now, as the IOD is seasonal
in nature, the spatio-temporal DMI forecasting problem to
predict the DMI given three months of observations can be
determined by (2):

K̂ = f (Xt+l |Xt ,Xt−1,Xt−2) (2)

where K is the DMI, Xt+l is the predicted frame, and lis the
lead time.

The historical simulations of SST and HC fromCMIP6 cli-
mate modelling groups have been used to train the prediction
models (Table 1). The study applies the fine-tuning technique,
using the SODA data to train the models optimally. The
prediction models are, thereafter, validated with the GODAS
data. The data covers the area of 0◦–360◦ E and 55◦ S–60◦ N.
As the data from the three sources are at different resolutions
(Table 2), they were further interpolated into a 72× 24matrix
using the Climate Data Operators (CDO) bilinear interpola-
tion tool. This allowed consistency amongst model spatial
grids as well as promoted computational efficiency without
losing essential data. The CDO and National Centre for
Atmospheric Research (NCAR) Command Library (NCL)
were used for the data pre-processing. The anomalies were
calculated as the monthly deviation from the base climatol-
ogy. The DMI labels were calculated as the difference in SST
between the EEIO and the WEIO. The variables/predictors
for SST and HC are modelled as two channels of an image.
Rather than giving the model six different frames of SST
and HC, three frames of these two-channel images are fed
to the model as inputs. The idea behind the formulation
is to preserve the pixel-level relationship between the two
variables spatially.

C. PRELIMINARIES
1) CONVOLUTIONAL LAYER
A convolution layer was proposed by LeCun et al. [55], where
CNN was proposed for image processing tasks. The purpose
of a convolutional layer is to obtain meaningful features from
the input image, which can further be used for classification,
segmentation, or other image-processing tasks. The layer
works by applying a set of filters (kernels) to the input image
and producing a set of output feature maps. Each filter is a
small matrix composed of weights that slides over the input,
performing element-wise multiplication and summing up the
results to produce a single value in the output feature map.
A con-volution layer can extract different feature types from
different locations using multiple filters. The output feature
map of a single filter at a particular location in the input image

can be calculated as follows:

Oi,j =

k−1∑
m=0

k−1∑
n=0

Ii+m,j+n ×Wm,n (3)

where Oi,j is the value of the output feature map at location
(i, j), Ii+m,j+n is the value of the input image at location
(i+ m, j+ n), Wm,n is the weight of the filter at position
(m, n), and k is the size of the filter.
For a sequence of images, such as videos, Ji et al. [56] pro-

posed 3D convolutional neural networks. In a 3D convolution
layer, a set of 3D filters is applied to the input data as follows:

Oi,j =

k−1∑
m=0

k−1∑
n=0

k−1∑
p=0

Ii+m,j+n,k+p ×Wm,n,p (4)

where Oi,j,k is the value of the output feature map at location
(I , j, k), Ii+m,j+n,k+p is the value of the input image at loca-
tion (i+ m, j+ n, k + p), Wm,n,p is the weight of the filter
at position (m, n, p), and k is the size of the filter in each
dimension.

2) ConvLSTM
ConvLSTM was introduced by Shi et al. [27] to counter the
drawbacks of FC-LSTM. Primarily, conventional FC-LSTMs
flatten the inputs to a single dimension, thereby losing all
the spatial features. ConvLSTM captures the spatial features
of 3D input data by re-placing matrix multiplication with a
convolutional operator at each gate in the LSTM cell. In other
words, the future state of a cell in a grid can be determined
by ConvLSTM by using the inputs and past states of its
local neighbours, which can be achieved by using convolution
operators for state-to-state and input-to-state operators. The
basic formulations of ConvLSTM are given as (5) – (10):

it = σ (Wxi ⊛ Xt +Whi ⊛ Ht−1 +Wci ⋄ Ct−1 + bi) (5)

ft = σ
(
Wxf ⊛ Xt +Whf ⊛ Ht−1 +Wcf ⋄ Ct−1 + bf

)
(6)

C̃t = tanh (Wxc ⊛ Xt +Whc ⊛ Ht−1 + bc) (7)

Ct = ft ⋄ Ct−1 + it ⋄ C̃t (8)

ot = σ (Wxo ⊛ Xt +Who ⊛ Ht−1 +Wco ⋄ Ct + bo) (9)

Ht = ot ⋄ tanh (Ct) (10)

where σ denotes the sigmoid function, ⊛ represents the con-
volutional operator, and ⋄ represents the dot product. Xt are
the inputs,Ct are the cell outputs,Ht are the hidden states, and
it , ft , ot are the input, forget, and output gates, respectively.

3) DILATED ConvLSTM
The size of the region in the input that is used to produce
the feature is known as the receptive field (RF). Therefore,
a larger receptive field will make certain that no important
information is omitted. Dilation is applied to local operations
like convolution; therefore, we introduce dilation to the con-
volution operation in ConvLSTM. The dilated convolution
operation will learn features from a larger receptive field.
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A dilated convolution operation is performed by intro-
ducing ‘‘holes’’ between pixels, which are basically gaps
or zeros between the values of the kernel. The number of
gaps is governed by the dilation rate, r. Figure 1 shows the
convolutional kernel with different dilation rates. For a kernel
of size k, the size of the dilated kernel will be as follows:

kr = k + (k − 1) × (r − 1) (11)

FIGURE 1. Dilated convolution kernels with dilation rates of (a) 1, (b) 2,
and (c) 3.

The dilation operation in a convolution can be stated as:

Y = X⊛̃Wkr (12)

where Y is the output, X is the input, ⊛̃ is the dilated convolu-
tion operator, andWkr is the kernel. Thus, in the ConvLSTM
equations, the convolution operator can be replaced by the
dilated convolution as operator shown in (13)–(18).

it = σ
(
Wxi ⊛ X̃t +Whi ⊛ H̃t−1 +Wci ⋄ Ct−1 + bi

)
(13)

ft = σ
(
Wxf ⊛̃Xt +Whf ⊛̃Ht−1 +Wcf ⋄ Ct−1 + bf

)
(14)

C̃t = tanh
(
Wxc⊛̃Xt +Whc⊛̃Ht−1 + bc

)
(15)

Ct = ft ⋄ Ct−1 + it ⋄ C̃t (16)

ot = σ
(
Wxo⊛̃Xt +Who⊛̃Ht−1 +Wco♦Ct + bo

)
(17)

Ht = ot ⋄ tanh (Ct) (18)

III. PROPOSED DMI FORECAST MODEL
In this section, we discuss our proposed STDNet model for
forecasting the DMI in detail. The study uses SST and HC for
3 consecutive months, i.e., St−2, St−1, St, as the predictors.
For DMI forecasting, we have defined the lead months as the
number of intervening months between the latest month for
which observation data are used for the forecast and the mean
of the three-month forecast target season.

The STDNet model shown in Figure 2 is composed of
three staged ConvLSTM blocks called Dilated ConvLSTM
(DCL) blocks. The dilation rates of the three DCL blocks
are set at 1, 2, and 3. This was chosen to ensure that the
spatial features are extracted at multiple levels. For the first
block with a dilation rate of 1, it performs as a standard
convolution operation; therefore, for a filter size of k = 3,
the receptive field k_r = 3, as per (11). With a dilation rate
of 2 and k = 3, the receptive field k_r = 5. Similarly, for
the third block, the dilation rate is 3, and thus, the receptive
filed k_r = 7. This setting ensures that spatial signals from
different levels are captured in a serial way. A DCL block has

two maximum pooling layers and batch normalisation with
dropout between them. The filter size of maxpool layers is set
at 2, which extracts the maximum values from a 2 × 2 grid.
The batch normalisation layer standardises the activations
by first determining the mean and the variance, as shown
in (19) - (21).

µ =
1
n

∑
i

Z i (19)

σ 2
=

1
n

∑
i

(
Z i − µ

)2
(20)

Z (i)
norm =

Z (i) − µ
√

σ 2 − ϵ
(21)

Furthermore, a CNN3D convolves over the entire time
sequence features from the DCL blocks for spatial features
to produce the predicted frame. Two fully connected dense
layers and a single output layer (the predictand) provide the
final predicted DMI value. The input images were convolved
with an 8 × 4 convolutional kernel/filter in the first convolu-
tional process and subsequently with a 4 × 2 convolutional
kernel. The value of the convolutional matrix is specified by
iteration to minimise the cost function (defined as the average
squared difference between the predicted and true values).

The convolutional process of CNN extracts key local
features frommulti-dimensional global geospatial data. It cal-
culates the dot products between the convolutional filter and
input data. The output of the convolutional process is a feature
layer, which is further flattened to a vector. A fully connected
layer is then used to predict the final DMI value.

IV. RESULTS AND DISCUSSION
The study predicts the DMI (predictand) using three running
successive-month SST and HC anomaly maps (predictors)
over the Indian Ocean region. The analysis investigates the
reliability of DL models that use multi-dimensional geo-
graphical variables to forecast a uni-dimensional index. The
predictors SST anomaly and HC maps are modelled as two
different channels of a month, and a further three consecutive
months of data are provided as input to the STDNet model to
forecast the DMI at a particular lead. The lead time refers to
the difference between the middle of the target season and the
last observed data. The model is described in Figure 3.

DL requires an abundance of data for training; therefore,
to counter this limitation (as there are only 12 spatio-temporal
data points for each year), the transfer learning (TL) approach
has been utilised. The STDNet model is first trained with the
historical simulation datasets (CMIP6), and then the model
is trained to find the suboptimal weights. Furthermore, the
model is initialised using these suboptimal weights and fur-
ther trained with the SODA dataset. For training, the learning
rate was set to 0.005, whereas for the fine-tuning phase, the
learning rate was fixed at 0.0005. The learning rate during
the fine-tuning phase was kept low to avert overfit. For the
forecast, mean squared error and the correlation skill are used
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FIGURE 2. STDNet architecture.

FIGURE 3. Fine-tuning model with a STDNet for DMI forecasting.

for evaluation, which are given as follows:

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(22)

where N is the number of instances, Y is the ground, and
Y ^_i is the predicted value. The dipole correlation coefficient
(DCC) is defined as the cost function:

DCC l =

12∑
m=1

∑
y=s

(
Yy,m − Ȳm

) (
Py,m,l − P̄m,l

)√∑e
y=s

(
Yy,m − Ȳm

)2 ∑e
y=s

(
Py,m,l − P̄m

)2
(23)

where P and Y denote the predicted and the observed values,
respectively, P̄m and Ȳm,l are the climatologies with respect
to l (leadmonths) andm (calendarmonth), y denotes the target
forecast year, and s and e represent the validation years.

DL approaches have been explored in conjunction with the
physical models for studying the domain of the IOD. Table 3
lists and compares the attempts made to forecast the IOD
using deep learning models. Essentially, CNN and ConvL-
STM have been shown to give promising results; however,
they are only able to provide skilful predictions for up to
7 months of lead time. Different combinations of predictor
variables have also been explored. Liu et al. [40] showed that
SST is a very effective predictor for DMI. Sarkar et al. [58]
augmented SST and wind along with 81 other atmosphere
and sea parameters for IOD forecasting with a lead time of
7 months. Further attempts with LSTM, CNNs, and artificial
neural networks were made. Ham et al. [32] have shown that
HC is an excellent predictor for coupled ocean–atmospheric
events. Therefore, this study explores the predictability of
SST and HC for the DMI.

The associated correlation skill (DCC) and RMSE of the
NMMEmodels and ConvLSTM, Dilated-CNN, and STDNet
models are compared (Figures 4 and 5). Herein, we consider
a DCC value of 0.5 as a threshold for skilful forecasting.
A decline in the forecast skill is indicated by a reduction in
DCC as the lead time for the models increases. The results
demonstrate that the DL models, particularly the STDNet,
exhibit the highest forecasting skills. The STDNet starts off
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TABLE 3. Deep learning techniques in IOD prediction.

FIGURE 4. DCC comparison with lead times.

with very high skill, varying between 0.9 and 0.8 for a lead
period of up to 4 months. It possesses the skill (DCC of 0.6)
to forecast the DMI with a lead time of 8 months. Thereafter,
the model predicts the DMI with a moderate skill of ∼0.5 up
to leads of 12 months. The forecasting skills of ConvLSTM
and Dilated-CNN mimic each other closely. These models
can forecast the DMI with a skill of 0.5 and a lead time of
8 months. This is marginally lower than that of the STDNet.
After eight months, the skills drop to 0.41 for a 4-month lead
period.

FIGURE 5. RMSE comparison with lead times.

It is noteworthy that the ability to forecast the DMI drops
rather steeply for the NMME dynamic models, particularly
after a lead forecast of up to 4 months. On the other hand, the
models proposed in this paper maintain forecasting fidelity
for up to a year, wherein the skill decreases gradually as
the lead time increases. This clearly demonstrates that the
deep learning models, and specifically the STDNet, outper-
form the NMME dynamic models for forecasting the DMI.
Seasonal phase locking is a defining feature of the IOD.
Subsequently, the forecast skill of the DMI varies with the
seasons. However, as discussed in Section I, the predictabil-
ity of the IOD is dampened by the existence of the WPB,
wherein the forecasting skill diminishes rapidly across the
winter season. In addition, there is a late boreal spring/early
summer predictability barrier wherein the predictive skill for
the starting months before May is very constrained.

The seasonal forecast skill of the DL and NMME models
is evaluated by calculating the DCC between the ensemble
mean anomaly and the observed anomaly for each of the
12 months of the hindcast forecast as a function of the initial-
ising month. Seasonal forecasts yielding correlation values
greater than 0.5 are deemed skilled. The seasons are defined
as consecutive running months, such as boreal autumn, which
is September-October-November (SON); winter, which is
December-January-February (DJF); spring, which is March-
April-May (MAM); and summer, which is June-July-August
(JJA). Here, the study compared the DMI seasonal fore-
cast skill from the ConvLSTM, Dilated-CNN, and STDNet
models with the ensemble forecasts from the state-of-the-art
NMME models. It is evident from Figure 6 that the ConvL-
STM and, mainly, the STDNet models are much less affected
by the WPB and SPB.

The heatmap analysis of the seasonal forecast signal is
shown in Figure 6. The marked cells have a DCC greater
than 0.5. The predictive skill for the DMI in boreal autumn
(SON) is limited to 3–4 months (∼1 season) in the NMME
models. The skill thereafter diminishes rapidly (OND and
NDJ seasons). However, predictability recovers in the late
winter. On the other hand, the models used in our study
have redictive skills for the DMI for as long as 6–7 lead
months for the SON season. Also, there is no decline in
the predictive skill thereafter. The STDNet model showcases

75788 VOLUME 12, 2024



M. Janmaijaya et al.: Novel Model Based on Spatio-Temporal Dilated ConvLSTM Networks

FIGURE 6. Heatmap analysis of forecast signals.

high skill through the boreal winter, with lead months as high
as 12 months.

The NMME models can predict SST variability for boreal
spring (MAM) with lead months varying from 5–6 months,
whereas the DL models have the skill to predict with 8–9
months of lead. Hence, the models demonstrate the potential
to significantly overcome the SPB as well (Figure 6). It is
important to note here that the DMI sign in the boreal spring
is opposite to the preceding boreal fall sign. It can, thus,
be concluded that the better performance of the DL models
compared to NMMEmodels in DMI prediction is largely due
to their ability to overcome the loss of skill during winter and
late spring/early summer by weakening the WPB and SPB,
respectively.

The sub-surface HC is an effective variable for identify-
ing the precursors and underlying physical processes for the
IOD, which significantly enhances the predictive skill of our
models. It has been pointed out and reiterated by Wajsow-
icz [2] that HC enables predictive skill to return if there is a
loss of skill in forecasting weak SST signals during boreal
winter (particularly December) and again in boreal summer
(in May).

V. CONCLUSION
This paper has proposed a novel deep learning model, STD-
Net, for forecasting the DMI for leads ranging from one
month to twelve months and has been assessed in compari-
son with other competitor models (CNN, Dilated-CNN) and
dynamic NMME physical models. Of these models, the STD-
Net model has demonstrated the highest skill in forecasting
the DMI, with lead times as high as twelve months. It is
quite evident, in comparison with other DL models, that
the STDNet is a highly sophisticated model with abundant
training and fine-tuning exercises. The model has demon-

strated efficacy in overcoming the seasonal predictability
barriers often encountered in IOD prediction. The analysis
of observational and reanalysis datasets in the present study
has demonstrated that the advancement in the prediction skill
of the deep learning model is due to the sub-surface signals,
particularly the HC data averaged over the upper layers of
the ocean. The HC holds cues and memory to identify and
understand the key underlying physical processes. Also, the
study focuses on both the eastern and western poles of the
tropical IOD rather than focusing on the predictability of
SST anomalies at each pole in isolation. For a lead of twelve
months, where the dynamical NMME models have shown a
negative DCC, the CNN and Dilated-CNN have a 0.40 and
0.44 DCC, respectively, and the STDNet has a significant
DCC of 0.51.

The proposed STDNet model holds significant promise
for multi-year prediction of IOD events in the future. Future
research may also extend the study to analyse the predictabil-
ity of the IOD in association with ENSO. The existence of
the IOD as a physical entity and its independence/dependence
from ENSO has been questioned and widely studied. Also,
more observational and reanalysis data, such as equatorial
winds and HC in the middle of the ocean (up to 700 m in
depth), could be integrated to improve the prediction skills
of the STDNet and other deep learning models. SST, along
with HC, has been shown to be good predictors for the DMI.
However, the predictive power of the STDNet with only the
SST can be compared with the present HC-enhanced predic-
tor. Moreover, examining how the model performs without
fine-tuning would bring about its raw predictive strengths.
Another exciting avenue would be to assess how well our
model can predict the DMI as simulated by CMIP6 using
cross-validation techniques. This would help us understand
our model’s ability to handle complex climate simulations.
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Finally, a key question remains about the dilation step in
our model’s architecture: What if we skip it? Exploring this
could uncover whether this step is essential for capturing the
nuances of temporal changes or if we can maintain model
efficiency without it. These areas offer promising directions
for enhancing our understanding and capabilities in cli-
mate forecasting with deep learning. Nevertheless, the study
demonstrates that deep learning techniques hold immense
potential to improve the predictability of geophysical phe-
nomena in addition to dynamical physical models.
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