
Received 29 January 2024, accepted 3 March 2024, date of publication 12 March 2024, date of current version 4 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376418

Scheduled Curiosity-Deep Dyna-Q: Efficient
Exploration for Dialog Policy Learning
XUECHENG NIU , AKINORI ITO , (Member, IEEE), AND TAKASHI NOSE, (Member, IEEE)
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Corresponding author: Xuecheng Niu (niu.xuecheng.p8@dc.tohoku.ac.jp)

This work was supported in part by Tohoku University’s Advanced Graduate School Pioneering Research Support Project for Ph.D.
Students as part of Japan Science and Technology Agency (JST) ‘‘Support for Pioneering Research Initiated by the Next Generation’’
Program, and in part by Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP21H00895.

ABSTRACT Training task-oriented dialog agents based on reinforcement learning is time-consuming
and requires a large number of interactions with real users. How to grasp dialog policy within limited
dialog experiences remains an obstacle that makes the agent training process less efficient. In addition,
most previous frameworks start training by randomly choosing training samples, which differs from the
human learning method and hurts the efficiency and stability of training. Therefore, we propose Scheduled
Curiosity-Deep Dyna-Q (SC-DDQ), a curiosity-driven curriculum learning framework based on a state-of-
the-art model-based reinforcement learning dialog model, Deep Dyna-Q (DDQ). Furthermore, we designed
learning schedules for SC-DDQ and DDQ, respectively, following two opposite training strategies: classic
curriculum learning and its reverse version. Our results show that by introducing scheduled learning and
curiosity, the new framework leads to a significant improvement over the DDQ and Deep Q-learning (DQN).
Surprisingly, we found that traditional curriculum learning was not always effective. Specifically, according
to the experimental results, the easy-first and difficult-first strategies are more suitable for SC-DDQ and
DDQ. To analyze our results, we adopted the entropy of sampled actions to depict action exploration and
found that training strategies with high entropy in the first stage and low entropy in the last stage lead to
better performance.

INDEX TERMS Dialog management, reinforcement learning, deep Dyna-Q, curiosity, curriculum learning.

I. INTRODUCTION
Since human-computer interaction and natural language
processing are in high demand in industry and daily life, and
the task-oriented dialog system has become a hot topic and
deserves further study and research. Dialog policy model is
used to select the best action at each step of a dialog. In a task-
oriented dialog system, the goal of the dialog is to complete
a specific task, such as booking a movie. The dialog policy
should select actions to efficiently achieve the goal.

Dialog policy learning is often formulated as a reinforce-
ment learning (RL) problem [1], [2], in which a dialog agent
executes an action based on the observed state and receives
a reward from the environment acted by real users. However,
optimizing RL agents requires a large number of interactions

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash .

with the environment, which is an expensive and time-
consuming process. Therefore, how to grasp dialog policy
efficiently within limited interactions remains a fundamental
question for RL [3], [4], [5], [6], [7].

A common approach is to encourage the agent to explore
the environment as sufficiently as possible through limited
interactions. In contrast to supervised and unsupervised
learning, reinforcement learning does not contain a large
amount of training data with or without labels prepared
in advance, but rather generates experience through the
agent’s interactions with the environment and continually
optimizes the agent based on feedback from the environment.
Therefore, exploration of the environment is crucial for RL,
and extensive research has been conducted on promoting
agents to explore the environment. Count-based exploration
is an intuitive approach in which each state observed by
the agent is recorded and the agent is encouraged to learn

46940

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-8861-6273
https://orcid.org/0000-0002-8835-7877
https://orcid.org/0000-0003-0868-143X


X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

states with fewer occurrences. The most evident drawback
of this approach is its inability to handle complex and
high-dimensional data. To address this, Bellemare et al.
engineered a model that acquires the distribution of visited
environment states to measure the novelty of states and
encourage agents to observe unfamiliar states [8]. In addition,
to deal with high-dimensional data, Tang et al. suggested
mapping high-dimensional states to hash codes [9], and
Liu et al. introduced embedding networks to encode the state
space [10]. However, a common flaw in such approaches
is that they do not lead agents to explore states that have
never existed before. In recent years, the integration of
quantum mechanics with reinforcement learning is proposed
to facilitate efficient exploration. Representing the priority of
experience and feasible actions in terms of quantum bits lead
to better training performance.

Another method is to model the intrinsic motivation of
the agents. One ingenious strategy is to utilize curiosity
to facilitate state exploration. Pathak et al. [11] proposed
an Intrinsic Curiosity Module (ICM) to model the state
prediction error, which depicts the uncertainty and improve-
ment in RL as a curiosity reward to encourage unfamiliar
dialog states. This research makes some simplifications and
adjustments to ICM to make it more suitable for task-oriented
dialog systems to guide unfamiliar dialog state exploration.
This model leveraged the predictability of a state to depict
its novelty. If the next state can be accurately predicted
based on the current state and the upcoming action to be
performed, it means that the action cannot lead the agent to
see unfamiliar states, and it corresponds to a less curiosity
reward. By contrast, if the next state is difficult to predict, the
corresponding action receives a larger curiosity reward. The
agent executes the action with the largest sum of curiosity
rewards and rewards from the environment.

Furthermore, the RL-based dialog agent faces another
challenge. Generally, an episode of dialog based on RL
is opened up by randomly selecting a user goal from the
entire training dataset. Because the subsequent conversation
revolves around the drawn goal until it is achieved success-
fully, it has an important influence on the subsequent training
process. Random sampling neglects the way humans acquire
knowledge and skills, where they focus on relatively easy
materials before harder ones, and hurts the efficiency and
stability of the training process. To overcome this problem,
Bengio et al. [12] proposed curriculum learning (CL), which
presents relatively easy or simple examples at an early stage,
inspired by human learning habits. Many NLP tasks have
been improved by using a typical CL [13], [14], [15], [16],
[17], [18], [19], [20]. These learning methods employed
different evaluations of training examples and approaches to
adjust the training steps but shared the easy-first strategy.

However, in some studies, the reverse version of CL was
tested and achieved the best performance among various
training scheduler designs [18], [21], [22]. The effectiveness
and application of easy-to-hard and hard-to-easy strategies
are still worth exploring [23]. Chang et al. [21] stated that the

difficult-first strategy is more suitable for cleaner datasets,
whereas the classic CL is beneficial for acquiring policies
through noisy scenarios and leads to faster convergence.
Furthermore, when tasks are difficult for an agent to
complete, earlier presentation of easier samples is preferable
for an effective training process. However, the exact impact of
scheduled training on agent behavior and policy optimization
remains unclear.

This study aims to improve the performance of a task-
oriented dialog system by providing sufficient environment
exploration and a training strategy that matches human
learning habits. Therefore, we propose Scheduled Curiosity-
Deep Dyna-Q (SC-DDQ) which combines CL and a curiosity
reward with dialog policy optimization based on Deep Dyna-
Q (DDQ), where DDQ is a state-of-the-art model-based
dialog system [7], and design a curriculum based on two
opposite learning strategies, which are found to be optimal
in different scenarios. Compared to count-based exploration
approaches [8], [9], [10], and variants of DDQ, SC-DDQ for
the first time adapts the curiosity model which models the
agent’s intrinsic motivation, and introduces it into DDQ to
motivate the agent to explore the environment based on its
intrinsic motivation. In addition, SC-DDQ develops criteria
for classifying the difficulty of training samples based on the
capabilities of the dialog agent and introduces CL into the
training of the dialog agent.

Because the specific application scenarios of easy-to-
difficult and difficult-to-easy learning strategies are not yet
conclusive, in the experimental section, we carried out
four combinations of experiments based on the presence
or absence of the curiosity model and the trend of the
difficulty of the task, aiming to explore the effects of agent
intrinsic motivation and learning strategies on the completion
of the dialog tasks. Preferring more difficult user goals is
effective when experiments are conducted without curiosity
reward while focusing on easier tasks is found to be an
optimal training strategy if the dialog agent selects its action
according to both external and internal rewards.

To determine and analyze the influences of scheduled
training on agent behavior, the entropy of agent action
sampling in each training stage, measuring the agent action
exploration, was employed to characterize the policy strategy.
It is worth noting that entropy is designed to analyze the
experimental data, not part of the algorithm itself. We point
out that a higher entropy at an earlier stage yields better
performance. In other words, at the beginning of learning,
relatively uniform action sampling, namely more sufficient
action space exploration, leads to a higher task success
rate. According to the experimental results, a key factor in
facilitating dialog task completion was encouraging action
exploration during the early training stage.

Compared with [3], [4], [5], [8], [9], [10], SC-DDQ is
more scalable. First, this study makes some simplifications
to ICM which is the original curiosity model. It performs
feature extraction on the state to filter out parts of the state
that are unaffected by action execution. Because almost

VOLUME 12, 2024 46941



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

all elements contained in the representation of the dialog
state in the context of movie ticket booking scenarios
are manipulated by action execution, feature extraction is
discarded in this research, which should be borrowed for
other scenarios whose states do not contain too many
interfering parts. Second, the introduction of CL is mainly
an adaptation of the training sequence; therefore, it can be
easily extended to algorithms other than dialog systems.
Furthermore, our experimental results provide evidence that
different training scenarios can potentially benefit from both
classical CL and its inverse version. This result presents
new ideas for subsequent research on CL. Therefore, the
SC-DDQ framework is scalable to real-world applications
such as cyber defense. Moradi et al. leveraged reinforcement
learning to acquire an attack strategy and allocate defense
resources to protect smart electrical power grids [24], [25].
The main idea of SC-DDQ can be adapted to these two cyber
defense frameworks. For example, the curiosity reward can
be modeled as the prediction error of the defense resource
allocation status, and the order of the training tasks presented
to the agent can be adjusted according to their defense
difficulties.

In summary, our main contributions in this paper are
three-fold:

(1) We propose a curiosity-driven scheduled framework
extended on the Deep Dyna-Q (DDQ) model to improve
the performance and learning efficiency of task-oriented
dialog systems. To the best of our knowledge, this is the
first adaptation of the curiosity model, integrating it into
a task-oriented dialog system. This result is presented in
Section V-A.

(2) We designed learning curricula based on opposite
training strategies and presented both benefits to policy
grasping under different reward settings. Compared with
common applications of CL, this research is not limited
to an intuitive easy-to-difficult training strategy, and for
the first time, opposite training strategies are imple-
mented in different settings of the same framework. This
contribution is presented in Section V-B.

(3) We adopt the entropy of agent action sampling to depict
the behavioral characteristics of the agent, and point out
that guiding the agent to attempt various actions in the
early phase of training facilitates policy optimization,
which is explained in detail in Section V-C.

II. RELATED WORK
A. DEEP DYNA-Q
Our research is based on the Deep Dyna-Q (DDQ) model,
a classic model-based RL dialog system that integrates
planning to improve the task completion rate within limited
interactions [7]. The framework is illustrated in Fig. 1.
It consists of three processes: (1) direct reinforcement
learning, in which the policy model learns from real dialog
experience; (2) planning, in which the world model is applied
to generate a simulated experience to improve the dialog

FIGURE 1. The framework of DDQ.

FIGURE 2. The structure of world model.

policy model; and (3) world model learning, in which the
world model is improved through real experience.

1) DIRECT REINFORCEMENT LEARNING
Dialog policy learning can typically be formulated as a
Markov Decision Process (MDP). An episode of task-
oriented dialog can be regarded as a set of tuples. In each
dialog turn, the policy agent observes the dialog state s
and samples action a. The selection of action a is based
on ε-greed policy, where the action is chosen randomly
with probability ε or to maximize the action-value function
Q(s, a; θ ). The action-value function is accomplished by a
Multi-Layer Perceptron (MLP) with parameters θQ. After
executing this action, the agent receives a reward r from
the environment and observes the user response au. The
dialog state is then updated to the next state s′. The tuple
(s, a, r, au, s′) can be viewed as a piece of experience
and stored in either a real or a simulated experience replay
buffer. The action-value function Q(·) is improved via Deep
Q-network (DQN) [6].

An episode of dialog is launched by sampling a user goal
from a goal set by the user simulator. Each user goal is defined
as G = (inform_slots, request_slots), where inform_slots is a
set of constraints and request_slots is a set of requests. For the
movie-ticket booking task, typical information slots involve
items such as movie names or number of people. Requests
can be theater or start time.

2) PLANNING AND WORLD MODEL LEARNING
In the planning process, the world model, which simulates
the environment, interacts with the policy agent and generates
simulated experiences stored in a simulated replay buffer.
In each planning turn, state s and agent action a are viewed as
inputs to the world model. The world model then generates
its response au, the corresponding reward r , and a binary

46942 VOLUME 12, 2024



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

variable t indicating whether this episode is over, as shown in
Fig. 2. Both direct reinforcement learning and planning were
accomplished using the sameDQNalgorithm, training on real
and simulated experience. Theworldmodel was implemented
as an MLP and tuned based on real experiences during the
world model learning process.

B. CURRICULUM LEARNING
Curriculum learning (CL) is a training strategy in which
the agent initially concentrates on relatively easy data and
progressively moves to harder training samples. This strategy
is inspired by human study characteristics and is beneficial
for accelerating the training convergence speed and enhanc-
ing the agent performance. CL is more implementable and
compatible than multitudinous and complicated frameworks
and models, thereby making it more universally applicable.
In addition, CL makes the best use of the existing data, which
saves resources and time for RL-based tasks.

Typical CL have been used extensively in natural language
processing. Liu et al. [17] employed the mastering level of
current tasks as the difficulty criterion and guided the agent
to grasp easier tasks first. Zhao et al. [19] utilized the total
number of inform and request slots for tasks to identify tasks,
and the task completion rate to adjust the difficulty level of
the next task.

However, the easy-to-hard learning strategy is not always
helpful. In some studies, the opposite version of CL, focusing
on harder examples, brings more significant improvements
to the system. Zhao et al. [18] proposed an opposite CL
strategy, in which the agent was trained on a general training
set and gradually moved to subsets. Moreover, Hacohen
and Weinshall [22] demonstrated that self-paced learning,
a well-known variant of CL, hurts the agent’s performance.
Chang et al. [21] stated that CL is more suitable for training
scenarios with significant noise. By contrast, the training
process of cleaner scenarios would be more efficient using
the opposite CL strategy.

As the effectiveness and applicability of difficult-first and
easy-first strategies are still open to debate, we utilized
the difficulty of user goals as a measurement of dialog
complexity and proposed opposing learning schedules based
on CL and its reverse version. Applying different reward
functions yields a performance boost for the dialog agents
based on the two learning schedules.

C. CURIOSITY REWARD
Curiosity is modeled by state error prediction to promote
the agent to attempt unconversant states [11], [26]. In RL
applications [27], [28], [29], [30], [31], an agent samples an
action and receives a reward after observing the current state.
Subsequently, the entire dialog environment updates to the
next state. If a new state can be predicted accurately before
selecting the following action, it is viewed as a familiar state
for the agent. However, a state that is difficult to forecast is
more informative for the agent. In this study, we integrate

the curiosity model with dialog policy optimization to guide
agents to explore unfamiliar environment states.

In this research, we simplified and adjusted the Intrinsic
Curiosity Module (ICM) [11]. ICM is engineered to play
video games, such as VizDoom and Super Mario Bros, and
it observes screenshots of the game screen as inputs. Because
the game screen often contains many disturbances that are
not controlled by the action, such as the change of scenery in
the background, ICM designs an inverse model to filter out
these disturbing factors and thus performs feature extraction
on the states. Unlike the application scenarios of ICM, the
states in this research are affected by the execution of actions
and contain almost no interference factors. Therefore, the
curiosity model used in this research removed the inverse
model. In addition, ICM calculates the prediction error as the
curiosity reward between the next state and the predicted one
after the agent executes the action and observes the true next
state. In this research, the agent does not execute the feasible
actions individually to observe the corresponding next state
and calculate the curiosity reward; instead, the agent takes
both the curiosity reward and the predicted next state as
outputs for training. This eliminates the need for the agent
to repeatedly step back, but the disadvantage is that at the
early stage of training, the curiosity reward output from our
curiosity model may not be accurate enough.

Previous studies introduced curiosity-based exploration
from a video game scenario into an RL-based dialog system
and achieve performance breakthroughs.Wang andChen [32]
investigated different exploration strategies, including ICM,
in task-completion dialog policy learning and showed
improvements. Doering et al. [33] developed a shopkeeper
robot whose verbal interactions with customers are guided
by curiosity, and it is significantly human-like, compared
to non-curious robots. These studies provide evidence for
the potential effectiveness of the curiosity model in dialog
systems. Therefore, we made some adjustments to the ICM,
integrated it into the dialog system, and believe in its
effectiveness.

III. PROPOSED METHODS
A. OVERVIEW
The common training strategy for dialog agents is to
randomly expose the agent to tasks with different dif-
ficulties, where the training efficiency is low and the
agent’s performance can be hurt. In addition, the dialog
environment acted by real users is too complicated to be
fully explored. Therefore, we propose Scheduled Curiosity-
Deep Dyna-Q (SC-DDQ), a novel and practical framework
applying a curiosity strategy to joint curriculum learning and
RL-based policy learning for task-oriented dialog systems,
implemented based on Deep Dyna-Q to improve the dialog
agent performance.

The proposed framework is illustrated in Fig. 3. The
SC-DDQ framework consists of threemodules: (1) an off-line
task classifier for dividing user goals into three complexity

VOLUME 12, 2024 46943



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

FIGURE 3. The framework of scheduled Curiosity-Deep Dyna-Q.

TABLE 1. Four combinations.

levels; (2) a curiosity policy agent for selecting the next action
beneficial for completing the task and exploring state by using
the current dialog state; and (3) a world model for simulating
a user to generate actions and rewards based on real user
behaviors.

The optimization of SC-DDQ comprises five steps:
(1) warm starting: a hand-crafted dialog policy is employed
to generate experiences; (2) direct reinforcement learning
guided by curiosity: the agent guided by the curiosity model
interacts with real users and generates real experiences. They
are stored in the real experience replay buffer and used to
improve dialog policy; (3) world model learning: the world
model is refined on real experiences; (4) planning guided by
curiosity: the agent guided by the curiosity model conducts
interactions with the world model, where the simulated
experiences are collected and employed to optimize dialog
policy; and (5) curiosity model training: the curiosity model
is optimized using both real and estimated experiences.

In addition, the proposed framework can be equipped
with different policy models and curriculum schedules. Four
combinations are implemented in this research, as shown in
Table 1: (1) policy agent without curiosity equipped with the
easy-first strategy (EFS) curriculum; (2) policy agent without
curiosity equipped with the difficult-first strategy (DFS)
curriculum; (3) curiosity-combined policy agent equipped
with the EFS curriculum; and (4) curiosity-combined policy
agent equipped with the DFS curriculum.

In this research, two opposite types of curriculum training
schedules are proposed, both of which enable the RL dialog
agent to achieve better performance under certain conditions.
To reveal the influence of the training curriculum on the
performance of the agent, the response of the agent in each
turn of the dialog was recorded. These results are presented
in Section V-B.

The structure of the main parts of SC-DDQ is described in
the subsequent subsection. The pseudo-code for the iterative

FIGURE 4. A success task completed by rule-based agent.

SC-DDQ algorithm is shown in Algorithm 1. Line 1 describes
the first step in the optimization, where a rule-based dialog is
conducted. Lines 2-12 show that the off-line task classifier
divides user goals into three levels. Lines 14-17 illustrate that
before launching an episode of dialog a user goal that fits
the curriculum is sampled. The second step of optimization
is described in lines 18-24, where the curiosity policy model
outputs Q-values and curiosity rewards and selects the best
feasible action based on their sum. Line 24 describes the
update of the DQN based on real experiences. The third
step of optimization corresponds to line 25 where the world
model is updated using real experiences. Line 26 illustrates
the fourth step, where the world model, replacing the user
simulator, interacts with the agent and generates simulated
experiences. Line 27 shows that the DQN is optimized by
simulated experiences. The last step of the optimization is
shown in line 28, where the curiosity model is updated using
both real and simulated experiences.

B. TASK CLASSIFIER
In this research, we designed an offline classifier focusing
on booking movie tickets, identifying user goals into three
complexity levels: easy, middle, and difficult. A user goal
comprises two parts: request and inform slots. Inform slots
are constraints known or determined by the user. The request

46944 VOLUME 12, 2024



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

slots are unknown to the user and must be obtained from
the responses of the agent. Table 2 lists all slots. Consider
Fig. 5 (b) as an example. This user goal contains three request
slots: ticket, theater, and start time, and three inform slots:
number of people, date, and movie name. This goal reveals
that the user would like to buy three tickets for Zootopia
tonight, but he/she has yet to decide which theater to go to
and at a specific time. During this episode of dialog, the agent
should provide information about a suitable theater and start
time to satisfy the user’s constraints. In addition, the ticket is
a default slot that always appears in the request slots for user
goals.

Before launching the iterative scheduled SC-DDQ, the
system is opened up with a warm starting phase, where a
rule-based dialog policy [7] is used to interact with users and
generate experiences. As the dialog strategy of the rule-based
agent requires the movie name, start time, city, date, theater,
and number of people in order, a user goal with a limited
number of request slots is a breeze for an agent to achieve, as a
successful example shown in Fig. 4. Therefore, this research
applies the number of request slots as the measurement of the
difficulty of training tasks, rather than the length of dialog,
word rarity, and the total number of requests and inform
slots [13], [18], [34], [35], [36]. The goal classification was
performed offline. In this study, we classified user goals
by the number of request slots, as listed in lines 2-12 of
Algorithm 1.
Fig. 5 shows additional examples of the user goals at

different levels. As shown in Fig. 5(a), goals with only
one request slot are classified as easy and stored in the
easy goal buffer Geasy. Goals with two or three slots
are then classified as middle and stored in the middle
goal buffer Gmiddle. Finally, goals with four or five slots
are classified as difficult and stored in the difficult goal
buffer Gdifficult. At the beginning of the dialog, the user
samples a goal from the corresponding set. In this research,
schedules designed on two opposite training strategies are
conducted, which are Easy-Middle-Difficult (EMD), Easy-
Difficult-Difficult (EDD), Easy-Easy-Difficult-All (EED),
Difficult-Middle-Easy (DME), Difficult-Easy-Easy (DEE)
and Difficult-Difficult-Middle (DDM).

Training on the SC-DDQ framework contained 300 epochs
following the setting of the DDQ [7]. At the beginning of each
epoch, the user simulator selects a goal from the goal buffer
according to a specific schedule, as shown in lines 14 and
15 of Algorithm 1. Taking the schedule Difficult-Middle-
Easy (DME) as an example, from epochs 0 to 69, the user
simulator randomly chooses a goal from the difficult goal
buffer, supposing that the sampled goal is the goal shown in
Fig. 5(c). Then, the user simulator launches this episode of
dialog with the first utterance, for example,when is Deadpool
playing in Los Angeles? Subsequently, the agent performs
an action, such as informing the start time of the Deadpool.
In turn, the user opens the next turn of the dialog, and it
continues until the selected user goal is achieved, or the dialog
is terminated by too many rounds. From epochs 70 to 139,

FIGURE 5. User goals in different difficulty level. UNK means that the
corresponding slot is unknown.

FIGURE 6. The structure of the curiosity policy model.

the user simulator turned to sample goals from the middle
goal buffer. The easy goal buffer was leveraged from epochs
140 to 209. Finally, from epochs 210 to 299, all user goals
participate in the training, namely, the user simulator samples
user goals from the total goal bufferGtotal.

C. CURIOSITY POLICY MODEL
The proposed curiosity policy model is a combination of the
DQN-based agent [6] and the curiosity model, as shown in
Fig. 6. The DQN-based agent Q(st , at ; θQ) is used to interact
with users, and the curiosity model C(st , at ; θC ) is used to
generate a curiosity value to assist the agent in selecting an
action that leads to an unfamiliar state.

During direct reinforcement learning, in step t , the agent
observes state st and chooses an action at to carry into
the next dialog turn. Traditionally, the action at is chosen
according to ϵ -greedy, where we choose a random action
with probability ϵ, otherwise the action is chosen following
the greedy policy at = argmaxa′Q

(
st , a′; θQ

)
. The a′

represents feasible agent actions, and Q
(
s, a; θQ

)
is the

approximated value function, implemented as a Multi-Layer
Perceptron (MLP) parameterized by θQ. To encourage the
exploration of unfamiliar states, we introduce the curiosity
value generated by the curiosity model in this step. The
curiosity model was implemented using MLP C (s, a; θC ).
As shown in Fig. 6, this model takes the current state st
and candidate actions a′ as inputs, and the predicted next

VOLUME 12, 2024 46945



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

state s′t+1 and the curiosity value ca′ as outputs. A larger
curiosity value indicates a larger difference between the
real and predicted next state. For an agent, a state that
cannot be predicted accurately is unfamiliar and informative.
Therefore, the action maximizing the addition of the Q value
and curiosity value is sampled, which can be formulated as
Equation 1:

at = argmaxa′
[
Q

(
st , a′; θQ

)
+ ca′

]
(1)

Subsequently, the agent receives a reward rt from the
environment, observes the next user action au, and updates
to the next state st+1 until it reaches the end of the dialog.
Experience (st , at , rt , au, st+1) is stored in the real replay
buffer Du. We improve the Q value function Q

(
s, a; θQ

)
using real experiences from Du via minibatch SGD. It should
be noted that the weight of the curiosity value cannot be
adjusted for the time being. In other words, curiosity-based
exploration cannot be adjusted adaptively in this study.

In the planning and world model learning process,
as described in the related work section, the world model
is applied to interact with the agent and generate simulated
experiences, which can also be used to improve the dialog
policy. The planning process was similar to that of direct
reinforcement learning. In this process, the environment
is acted by the world model accomplished by an MLP
M (s, a; θM ) as shown in Fig. 2. In each planning turn,
the world model takes the current state st and the agent
action at as inputs. The outputs are user action au, reward
rt , and a binary variable t indicating whether this episode is
over or not. Dialog experiences generated during planning
are stored in the simulated replay buffer Du. The proposed
framework follows the DDQ structure [7], which has two
experience replay buffers Du and Ds for storing real and
simulated experiences, respectively. Because the role of the
world model is to imitate real users, real experiences from
Du were employed for its optimization via minibatch SGD.

In the curiosity model training process, the curiosity
model accomplished by MLP C(s, a, θC ) is refined
via minibatch SGD using experiences from both real and
simulated replay buffers, namelyDu andDs. Its inputs are the
current state st and candidate actions a′, whereas its outputs
are the predicted next state s′t+1 and curiosity value ca′ . The
labels of the predicted next state s′t+1 and the curiosity value
ca′ are the real next state st+1 and state prediction error,
respectively. To define the error of state prediction, we encode
real and predicted next states st+1 and s′t+1 into vectors
φ(st+1) and φ(s′t+1) accomplished by one-hot encoding. The

state prediction error is expressed as
∥∥φ (st+1)− φ

(
s′t+1

)∥∥2.
In addition, in each training stage, the actions selected by

the agent are counted, and sampled action distributions are
generated for each agent. The entropy of the sampled agent
actions was calculated to reveal the impact of the difficulty
level of tasks on the behavior of the agent. It is worth
emphasizing that entropy is employed only for the analysis
of experimental results and is not part of the algorithm itself.

Algorithm 1 Scheduled Curiosity-Deep Dyna-Q
Policy Learning
Input: Dialog user goal set

G total = {g1, . . . , gntotal_user_goals}, N
Result: Q(s, a; θQ),M (s, a; θM ),C(s, a; θC )

1 The rule-based agent generates real experiences and
stores them into Du;

2 forall level ∈ {easy, middle, difficult} do
3 Glevel ← ∅;
4 end
5 for i← 1 to n total_user_goals do
6 switch N request_slot(gi) do
7 case 1 do level ← easy;
8 case 2,3 do level ← middle;
9 otherwise do level ← difficult;

10 end
11 Add gi into Glevel ;
12 end
13 for n← 1 to N do
14 Determine level;
15 Sample a goal g from Glevel ;
16 Set the initial state s0 and the user’s first action a0;
17 t ← 1;
18 while dialog not terminated do
19 DQN Q(s, a; θQ) generates Q-value;
20 Curiosity model C(s, a; θC ) generates

curiosity value ca′ and the predicted next
state s′t+1;

21 Agent executes action
a = argmaxa′ [Q(st , a′; θQ)+ ca′ ], observes
the next user action au, receives reward rt
and updates to the next dialog state st+1 ;

22 Stores the real experience (st , at , rt , au, st+1)
to Du;

23 end
24 Update θQ using real experiences from Du via

minibatch SGD;
25 Update θM via minibatch SGD on real experiences

from Du;
26 World model interacts with the curiosity policy

agent and generates simulated experiences stored
to Ds;

27 Update θQ using simulated experiences from Ds

via minibatch SGD;
28 Update θC using real and simulated experiences

via minibatch SGD;
29 end

IV. EXPERIMENTAL SETUP
A. DATASETS
The raw conversational data in movie-tickets booking
dataset [37]1 is collected via Amazon Mechanical Turk. The

1https://github.com/xiul-msr/e2e_dialog_challenge

46946 VOLUME 12, 2024



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

TABLE 2. The data annotation schema.

TABLE 3. User goals with different number of request_slot. N request_slot is
the number of request slots, N goal is the number of corresponding goals,
and N gset is the total number of goals in the corresponding set.

dataset was manually labeled based on a schema established
by domain experts. The annotation schema has 11 intents and
16 slots, as shown in Table 2. The original dataset contained
up to four request slots for user goals. To thoroughly
explore the effects of the curriculum on dialog policy,
we supplemented nine user goals containing five request
slots. Thus, in total, 137 user goals were pre-generated for
the movie-ticket booking scenario. As shown in Table 3,
there were 61 goals with one request slot, 16 goals with
two request slots, 17 goals with three request slots, 34 goals
with four request slots, and nine goals with five request slots.
Goals with only one request slot are easy. Then, goals with
two or three slots were classified as middle. Finally, goals
with four or five slots were classified as difficult. A total of
991 movies were available. The information for each movie
contains the movie name, date, start time, theater, etc.. There
are 29 feasible actions for the agent and 35 feasible actions
for the real user and the world model.

B. USER SIMULATOR
In this research, an accessible user simulator [38] was
applied to evaluate the SC-DDQ model to ensure that
the training process was affordable and practical. During
training, the user simulator offers rewards and simulated
user responses according to hand-crafted rules to the dialog
agent. An episode of dialog is judged to be successful when
the agent provides a suitable movie ticket that satisfies all
constraints from the user. The reward rules adopted by the
user simulator are as follows: (1) in each turn, a reward of
−1 is fed back to encourage a shorter dialog; (2) at the end
of the dialog, a reward of 2L is provided for success or a
reward of−L is provided for failure, where L is the maximum
number of turns in each episode and is set to 40 in this
research.

C. TRAINING SCHEDULES
Typical CL suggests presenting relatively easier samples
before harder ones, namely the easy-first strategy (EFS). This
study employs both the classic CL and its reverse version

(difficult-first strategy, DFS) and designs several schedules:
EMD, EDD, EED, DME, DEE, and DDM. Following the
original DDQ setting, the entire training process contains
300 epochs [7], that were divided into four stages as evenly
as possible. The first to third stages, each consisting of
70 epochs, use the corresponding goals of the schedule
condition. For example, in the EMD schedule, easy goals are
used from 0 to 69 epochs, middle goals from 70 to 139 and
difficult goals from 140 to 209 epochs. In the last stage,
210-299 epochs, the goals were uniformly sampled from all
goals.

D. EXAMINED METHODS
We analyzed the impacts of the blue easy-first strategy
(EFS) and difficult-first strategy (DFS) by comparing several
task-oriented dialog agents that employed variations of
Algorithm 1.
DQN : A task-completion dialog agent learned by standard

DQN, implemented by direct reinforcement learning
without a curiosity model [6].

DDQ : A state-of-the-art task-oriented dialog agent as
described in the related work section [7].

S-DDQ : A DDQ agent trained following specific schedules.
C-DDQ : A DDQ agent equipped with a curiosity model but

without curriculum learning.
SC-DDQ : A DDQ agent equipped with a curiosity model

and trained following specific schedules.

E. IMPLEMENTATION DETAILS
The DQNQ(s, a; θQ), curiosity model C(s, a; θC ), and world
model M (s, a; θM ) were all accomplished using MLP with
tanh activations. Following the original DDQ settings [7], the
DQN contains one hidden layer with 80 hidden nodes. The
world model had two shared hidden layers and three task-
specific hidden layers, each with 80 nodes. The curiosity
model contained two hidden layers and two task-specific
hidden layers, each with 80 nodes. ε-greedy algorithm was
adopted for exploration. Each network was optimized using
RMSProp. The batch size was 16, and the discount factor was
0.9. The sizes of the real and simulated replay buffers,Du and
Ds, were set to 5000. The target network is updated at the end
of each training epoch. The maximum length of the simulated
dialog was 40. When a dialog exceeded the turn limit, it was
judged as a failure. In addition, to increase training efficiency,
we utilized Reply Buffer Spiking (RBS) [3] and pre-filled the
real experience replay buffer Du in the initial training stage
with a set of real dialog experiences generated by a rule-based
agent [7].

V. EVALUATION
The task success rates and the average number of turns are
presented in Tables 4 and 5, respectively. Each run was
tested on 50 episodes of dialogs. The user goals for testing
were sampled from the corresponding goals of the schedule
conditions. Three main results are presented in the following
subsections.

VOLUME 12, 2024 46947



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

TABLE 4. Success rate results. The stage 1 (S1), stage 2 (S2), stage 3 (S3),
and stage 4 (S4) shows the results at epoch 70, 140, 210, and 300.

TABLE 5. Average turn results. The stage 1 (S1), stage 2 (S2), stage 3 (S3),
and stage 4 (S4) shows the results at epoch 70, 140, 210, and 300.

A. THE EFFECTIVENESS OF THE PROPOSED SC-DDQ AND
ITS VARIANTS
According to the experimental results, SC-DDQ and S-DDQ
achieved outstanding performance compared with classic
dialog agents, such as DQN and DDQ. As illustrated in
Table 4, schedule EMD yielded the highest success rate
on SC-DDQ (0.92) at the final training stage, whereas
schedules DEE and DDM provided the best performance
for S-DDQ (0.94), outperforming DQN (0.74) and DDQ
(0.86) by a large margin. Fig. 7 shows the relationship
between the success rate and the number of turns. This
result clearly shows that a high success rate and small
number of turns were achieved with better training strategies.
In particular, good results were obtained with DDQ using
the difficult-first strategy (DFS) without curiosity (S-DDQ),
or DDQ using the easy-first strategy (EFS) with curiosity
(SC-DDQ). S-DDQ with DFS yielded the best success rate,
whereas SC-DDQ with EFS achieved the smallest number of
turns.

B. THE EFFECTIVENESS OF TWO OPPOSITE TRAINING
STRATEGIES
Both typical CL and its reverse version (difficult-first
strategy, DFS) benefit from the dialog policy without or

FIGURE 7. Success rates and average turns.

FIGURE 8. Success rates at each stage.

with curiosity, respectively. Fig. 8 shows the success rates
for each training stage. The results for the same condition
were averaged. For example, the curiosity_DFS line is
the average of the SC-DDQ with DME, DDE, and DDM
schedules. Overall, schedules designed by the typical CL
(EFS) work better on agents with the curiosity policy,
and DFS is beneficial for those without the curiosity
policy.

Because the training of agents started with RBS, where the
same rule-based policy designed for dealing with easy tasks
was adopted, agents exposed to easy tasks initially showed
a rapid performance boost, and the corresponding success
rate reached 1.00. As the difficulty level of subsequent
tasks increased, success rates decreased. Specifically, when
the model without the curiosity policy attempted to grasp
difficult samples after exposure to easy ones, its success rate
decreased drastically, leading to poor training results in the
final phase. For the model with the curiosity policy, following
EFS, its success rate decreased slightly in the middle of
training; however, it picked up considerably towards the end
of training thanks to the encouragement of state exploration
from the curiosity model. When the agent first focused on
difficult samples, the success rate at the early stage was
lower than that of EFS. However, as the difficulty of the
task decreased and the policy was improved, the success rates
increased. In the final stage, the success rates of both agents
optimized according to DFS decreased, except for schedule
DDM.

46948 VOLUME 12, 2024



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

FIGURE 9. Dialogs with different user goals.

C. OBSERVATION OF ENTROPY OF ACTION SAMPLING
From the results shown in the previous section, we obtained
a high success rate under two conditions: S-DDQ with DFS
and SC-DDQ with EFS. To investigate why these conditions

gave good results and other conditions did not, we introduced
the entropy of sampled actions, which is used to depict the
behavioral characteristics of agents. Agent sampling action
preferences and entropy calculations are explained in the
following paragraph.

When training at different task levels, the agent prefers to
sample different actions. when facing easy tasks, as shown in
Fig. 9 (a), the agent tends to ask more questions instead of
providing information. When facing difficult ones, as shown
in Fig. 9 (b), the actions sampled by the agent tend to
diversify. In other words, the agent attempts to provide
appropriate information to answer the user query instead of
simply asking the user questions.

Furthermore, the order in which the agent meets tasks
of varying difficulty affects action sampling. Therefore,
to explore the effect of training schedules on agent perfor-
mance, we counted the actions employed by the agent in
each training phase and calculated the frequency with which
each action was sampled. For example, Fig. 10 (a), (b), (c),
and (d) show the frequency of actions sampled by the agent
without curiosity equipped with schedule EED. On schedule
EED, the agent is sequentially trained with easy, easy, and
difficult tasks for 70 epochs per training stage. Finally, it is
trained with all tasks for 90 epochs. The vertical coordinate
is the frequency and the horizontal coordinate represents
the 29 possible actions. The entropy of the distribution of
sampled actions is formulated as

H = −
28∑
i=0

P (ai) logP(ai) (2)

Here, ai represents feasible actions. P(ai) is the probability of
choosing action ai during the current training stage. Entropy
represents the degree of uniformity in sampling. A larger
entropy implies that the agent samples actions more evenly
and attempts to perform various actions rather than being
trapped in a few pseudo-optimal actions.

Table 6 lists the entropy values at each stage for all
training conditions. Roughly speaking, in the S-DDQ with
EFS conditions, the entropy values were small in the first
stage and gradually increased in the following stages. The
entropy values of S-DDQ with DFS showed an opposite
trend. In addition, SC-DDQ with EFS showed large entropy
in the first stage, whereas that with DFS showed a random
up-down trend.

VI. DISCUSSION
Unlike traditional CL, in the present study, we observed that
EFS and DFS had different effects on task completion ability
in different task-oriented dialog models. DFS is beneficial
for S-DDQ, whereas the classic CL is helpful for SC-DDQ.
These two combinations share high entropy in the first stage
and low entropy in the last stage, where sufficient action
exploration leads to better performance. Contrary to intuition,
employing a curiosity model designed to explore states is not
always effective for exploring actions.

VOLUME 12, 2024 46949



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

FIGURE 10. Distributions of actions sampled by S-DDQ EED.

To investigate the effects of the final success rate,
we calculated Pearson’s correlation coefficient between the
entropy values at each stage and the final success rate. The
results are shown in Fig. 11. This result shows that entropy
in the first stage positively correlates with the success rate,
whereas entropy in the final stage is negatively correlated
with the success rate. This means that an agent with a high
success rate samples the actions more randomly first, and
the sampling diversity converges in the last stage. If curiosity

TABLE 6. Entropy values of each stage for all training conditions.

FIGURE 11. Correlation between entropy values at each stage and the
success rate at the final stage.

is not employed, training with easy tasks leads to a greater
sampling bias and smaller entropy. This situation can be
avoided using difficult tasks or curiosity. However, if we
use difficult tasks at an early stage when using curiosity, the
action sampling model does not converge and the success rate
does not improve.

VII. LIMITATIONS AND FUTURE WORKS
This research has several limitations. First, the training
schedules offered in this research were manually designed.
Such schedules lack flexibility, and once designed, changes
can not be made during the training process. Second, the
curiosity reward cannot be adaptively adjusted for the time
being. It participates in agent optimization with the same
weight from beginning to end. However, dynamic adjustment
of curiosity is necessary for its application in different
scenarios. Finally, in the early training stage, the curiosity
reward corresponding to each feasible action may deviate
from its actual value. Compared with ICM [11], our curiosity
model outputs the curiosity reward directly before updating
to the next state, which allows the agent to obtain curiosity
rewards before executing the action. Because the agent does
not actually execute feasible actions individually and observe
the next state, it does not obtain the real next state before
acquiring the curiosity reward, and the curiosity reward
output by the curiosity model is a simulation.

By analyzing the entropy of action sampling, we found
that the dialog system exhibits better performance when the

46950 VOLUME 12, 2024



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

entropy tends to decrease. In other words, we advocate that
the RL-based dialog agent could benefit from encouraging
exploration in the early training stage and then gradually
decreasing the level of exploration. Based on our findings,
we plan to add weight to the curiosity reward to make
curiosity-driven exploration more adaptive. Further work
on the gradual discarding of curiosity is worth conducting,
because this is a generic promising path for other RL
problems.

VIII. CONCLUSION
This paper presents a new framework, Scheduled Curiosity-
DDQ (SC-DDQ), for task-oriented dialog policy learning.
With the introduction of a curiosity model and scheduled
training strategy, SC-DDQ outperforms previous classic
dialog agents, such as DDQ and DQN. Moreover, variants
of SC-DDQ were conducted to verify the effectiveness
and influence of a typical CL and its reverse version.
Based on the experimental results, the difficult-first strategy
benefits S-DDQ, whereas the easy-first strategy is preferable
for SC-DDQ. To explore the impact of task difficulty on
the dialog agent policy, we calculated entropy. We found
common trends of entropy, where the agent tried various
actions randomly in the first stage, and converged in the last
stage.

In the future, we plan to control the curiosity-driven explo-
ration during the training process based on entropy trends.
Furthermore, we believe that this curriculum framework can
be applied to improve other RL-based NLP models.

REFERENCES
[1] S. Young, M. Gasic, B. Thomson, and J. D. Williams, ‘‘POMDP-based

statistical spoken dialog systems: A review,’’ Proc. IEEE, vol. 101, no. 5,
pp. 1160–1179, May 2013.

[2] E. Levin, R. Pieraccini, and W. Eckert, ‘‘Learning dialogue strategies
within the Markov decision process framework,’’ in Proc. IEEE Workshop
Autom. Speech Recognit. Understand., Dec. 1997, pp. 72–79.

[3] Z. Lipton, X. Li, J. Gao, L. Li, F. Ahmed, and L. Deng, ‘‘BBQ-networks:
Efficient exploration in deep reinforcement learning for task-oriented
dialogue systems,’’ inProc. AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 1–8.

[4] Y. Wu, X. Li, J. Liu, J. Gao, and Y. Yang, ‘‘Switch-based active deep
dyna-Q: Efficient adaptive planning for task-completion dialogue policy
learning,’’ in Proc. AAAI Conf. Artif. Intell., Jul. 2019, vol. 33, no. 1,
pp. 7289–7296.

[5] Z. Zhang, R. Takanobu, Q. Zhu, M. Huang, and X. Zhu, ‘‘Recent advances
and challenges in task-oriented dialog systems,’’ Sci. China Technol. Sci.,
vol. 63, no. 10, pp. 2011–2027, Oct. 2020.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
7540.

[7] B. Peng, X. Li, J. Gao, J. Liu, and K. Wong, ‘‘Deep dyna-Q: Integrating
planning for task-completion dialogue policy learning,’’ in Proc. 56th
Annu. Meeting Assoc. Comput. Linguistics, 2018, pp. 1–11.

[8] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, ‘‘Unifying count-based exploration and intrinsic motivation,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[9] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. A. I. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, ‘‘#Exploration: A study of count-
based exploration for deep reinforcement learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, 2017, pp. 1–10.

[10] X. Liu, Q. Li, and Y. Li, ‘‘Count-based exploration via embedded
state space for deep reinforcement learning,’’ Wireless Commun. Mobile
Comput., vol. 2022, pp. 1–8, May 2022.

[11] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, ‘‘Curiosity-driven
exploration by self-supervised prediction,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 488–489.

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘‘Curriculum
learning,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[13] E. A. Platanios, O. Stretcu, G. Neubig, B. Poczos, and T. Mitchell,
‘‘Competence-based curriculum learning for neural machine translation,’’
in Proc. Conf. North, 2019, pp. 1–11.

[14] Y. Tay, S. Wang, L. A. Tuan, J. Fu, M. C. Phan, X. Yuan, J. Rao,
S. C. Hui, and A. Zhang, ‘‘Simple and effective curriculum pointer-
generator networks for reading comprehension over long narratives,’’
in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 1–10.

[15] B. Xu, L. Zhang, Z. Mao, Q. Wang, H. Xie, and Y. Zhang, ‘‘Curriculum
learning for natural language understanding,’’ in Proc. 58th Annu. Meeting
Assoc. Comput. Linguistics, 2020, pp. 1–10.

[16] C. Wang, Y. Wu, S. Liu, M. Zhou, and Z. Yang, ‘‘Curriculum pre-training
for end-to-end speech translation,’’ in Proc. 58th Annu. Meeting Assoc.
Comput. Linguistics, 2020, pp. 1–12.

[17] S. Liu, J. Zhang, K. He, W. Xu, and J. Zhou, ‘‘Scheduled dialog policy
learning: An automatic curriculum learning framework for task-oriented
dialog system,’’ in Proc. Findings Assoc. for Comput. Linguistics, 2021,
pp. 1091–1102.

[18] M. Zhao, H. Wu, D. Niu, and X. Wang, ‘‘Reinforced curriculum learning
on pre-trained neural machine translation models,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 34, 2020, pp. 9652–9659.

[19] Y. Zhao, Z. Wang, and Z. Huang, ‘‘Automatic curriculum learning with
over-repetition penalty for dialogue policy learning,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 35, 2021, pp. 14540–14548.

[20] H. Zhu, Y. Zhao, and H. Qin, ‘‘Cold-started curriculum learning for
task-oriented dialogue policy,’’ in Proc. IEEE Int. Conf. e-Business Eng.
(ICEBE), Nov. 2021, pp. 100–105.

[21] H. Chang, E. Learned-Miller, and A. McCallum, ‘‘Active bias: Training
more accurate neural networks by emphasizing high variance samples,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[22] G. Hacohen and D. Weinshall, ‘‘On the power of curriculum learning in
training deep networks,’’ in Proc. 36th Int. Conf. Mach. Learn. (PMLR),
vol. 97, 2019, pp. 2535–2544.

[23] X. Wang, Y. Chen, and W. Zhu, ‘‘A survey on curriculum learning,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555–4576,
Sep. 2022.

[24] M. Moradi, Y. Weng, and Y.-C. Lai, ‘‘Defending smart electrical power
grids against cyberattacks with deep Q-learning,’’ PRX Energy, vol. 1,
no. 3, Nov. 2022, Art. no. 033005.

[25] M. Moradi, Y. Weng, J. Dirkman, and Y.-C. Lai, ‘‘Preferential cyber
defense for power grids,’’ PRX Energy, vol. 2, no. 4, Oct. 2023,
Art. no. 043007.

[26] J. Schmidhuber, ‘‘A possibility for implementing curiosity and boredom in
model-building neural controllers,’’ in Proc. From Animals Animats, 1991,
pp. 222–227.

[27] B. Li, T. Lu, J. Li, N. Lu, Y. Cai, and S. Wang, ‘‘Curiosity-driven
exploration for off-policy reinforcement learning methods,’’ in Proc. IEEE
Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2019, pp. 1109–1114.

[28] P. Wesselmann, Y.-C. Wu, and M. Gasic, ‘‘Curiosity-driven reinforcement
learning for dialogue management,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2019, pp. 7210–7214.

[29] N. Bougie andR. Ichise, ‘‘Fast and slow curiosity for high-level exploration
in reinforcement learning,’’ Int. J. Speech Technol., vol. 51, no. 2,
pp. 1086–1107, Feb. 2021.

[30] J. Li, X. Shi, J. Li, X. Zhang, and J. Wang, ‘‘Random curiosity-driven
exploration in deep reinforcement learning,’’ Neurocomputing, vol. 418,
pp. 139–147, Dec. 2020.

[31] R. Wangananont, N. Buppodom, S. Chanthanuraks, and V. Kotrajaras,
‘‘Simulation of homogenous fish schools in the presence of food and
predators using reinforcement learning,’’ in Proc. 17th Int. Joint Symp.
Artif. Intell. Natural Lang. Process. (iSAI-NLP), Nov. 2022, pp. 1–6.

[32] Y.-A. Wang and Y.-N. Chen, ‘‘Dialogue environments are different from
games: Investigating variants of deep Q-networks for dialogue policy,’’
in Proc. IEEE Autom. Speech Recognit. Understand. Workshop (ASRU),
Dec. 2019, pp. 1070–1076.

VOLUME 12, 2024 46951



X. Niu et al.: Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning

[33] M. Doering, P. Liu, D. F. Glas, T. Kanda, D. Kulic, and H. Ishiguro,
‘‘Curiosity did not kill the robot: A curiosity-based learning system for
a shopkeeper robot,’’ ACM Trans. Hum.-Robot Interact. (THRI), vol. 8,
no. 3, pp. 1–24, 2019.

[34] M. Sachan and E. Xing, ‘‘Easy questions first? A case study on curriculum
learning for question answering,’’ in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics, 2016, pp. 453–463.

[35] A. See, S. Roller, D. Kiela, and J. Weston, ‘‘What makes a good
conversation? How controllable attributes affect human judgments,’’ in
Proc. Conf. North, 2019, pp. 1–22.

[36] H. Cai, H. Chen, C. Zhang, Y. Song, X. Zhao, Y. Li, D. Duan, and D. Yin,
‘‘Learning from easy to complex: Adaptive multi-curricula learning for
neural dialogue generation,’’ in Proc. AAAI Conf. Artif. Intell., vol. 34,
2020, pp. 7472–7479.

[37] X. Li, Y. Wang, S. Sun, S. Panda, J. Liu, and J. Gao, ‘‘Microsoft dialogue
challenge: Building end-to-end task-completion dialogue systems,’’ 2018,
arXiv:1807.11125.

[38] X. Li, Z. C. Lipton, B. Dhingra, L. Li, J. Gao, and Y.-N. Chen, ‘‘A user
simulator for task-completion dialogues,’’ 2016, arXiv:1612.05688.

XUECHENG NIU received the bachelor’s degree
in telecommunication engineering from Beijing
University of Posts and Telecommunications,
China, in 2019, and the master’s degree in com-
puter science from the University of Birmingham,
U.K., in 2020. She is currently pursuing the Ph.D.
degree in communication engineering with the
Graduate School of Engineering, Tohoku Univer-
sity, Japan. Her main research interests include
dialog management, reinforcement learning, and
curriculum learning.

AKINORI ITO (Member, IEEE) received the
Ph.D. degree in engineering from Tohoku Uni-
versity, Japan, in 1991. He is currently a Pro-
fessor with the Department of Communications
Engineering, Graduate School of Engineering,
Tohoku University. His research interests include
foreign language teaching systems, music infor-
mation processing, spoken dialog systems, audio
processing, and automatic speech recognition.

TAKASHI NOSE (Member, IEEE) received the
Ph.D. degree in information processing from
Tokyo Institute of Technology, Japan, in 2009.
He is currently an Associate Professor with
the Department of Communications Engineer-
ing, Graduate School of Engineering, Tohoku
University, Japan. His research interests include
multimedia information processing, music infor-
mation processing, audio coding, speech dialog,
automatic speech recognition, speech synthesis,

and audio information processing.

46952 VOLUME 12, 2024


