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ABSTRACT Missions across a variety of disciplines require the interception of multiple targets. In defence
scenarios, targets may pose a threat to sites, while in agriculture the targets may be invasive pests or fruit
ready to harvest. This paper focuses on the cooperative control of a robot swarm for interception missions
of multiple static and dynamic targets while avoiding collisions. We formulate two modifications of the
classical Navigation-Function for a swarm interception mission which are suitable for deterministic and
stochastic scenarios: the Swarm Navigation Function (S-NF) for the deterministic case, and the Swarm
Probabilistic Navigation Function (S-PNF) for the stochastic case. Both functions provide a simultaneous
solution for the problems of target assignment and motion-planning as opposed to the classical approaches
that solve each problem independently.We demonstrate the effectiveness of these functions through extensive
simulations and real-world experiments, comparing their performance with optimal solutions and human
decision-making in similar scenarios. We show analytically that by following the Swarm-Navigation-
Function gradient, the swarm will intercept all static targets while avoiding agent-agent and agent-obstacle
collisions and similarly following the gradient of the Probabilistic-Navigation-Function will almost surely
converge to a target in finite time, while the probability for agent-agent and agent-obstacles collisions
is limited to a predefined value. The complexity of both schemes is linear with the number of targets
and robots, and therefore it is scalable. Although not optimal, these solutions are simple and efficient,
making them suitable for an extended set of real-time and real-life applications. We compare the resulting
Swarm-Navigation-Function trajectories to that of a human in a catch game and an interception virtual
game, the comparison indicates that as the trajectories are similar, human decision-making performs better.
We conclude the paper with a set of simulated experiments and real-world experiments demonstrating the
efficiency of the proposed scheme for dynamic targets.

INDEX TERMS Path planning, robotic swarm, S-PNF, uncertainty.

I. INTRODUCTION
For some robot missions, time and process constraints
require the use of multiple cooperative agents working
simultaneously as a swarm [1], [2], [3]. Individual members
of a robotic swarm appear to be independent, but work
together to create a highly complex performance, where
the performance of the whole is greater than the sum of
its parts. In this paper, we consider the interception of
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multiple targets by a robotic swarm. The swarm robotics
approach offers distinct advantages over other methods,
particularly in scalability and robustness. It has the potential
to efficiently handle complex and expanding tasks, a feat
challenging for individual robots. The redundancy in a swarm
ensures mission success even with individual robot failures,
providing resilience unmatched by single or few robots. Cost-
effectiveness is also a key factor, as using multiple simpler
robots often outweighs the investment in few sophisticated
ones. These benefits collectively make swarm robotics a
highly effective choice for diverse applications, underpinning

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 56321

https://orcid.org/0000-0002-6487-161X
https://orcid.org/0000-0002-0582-4821
https://orcid.org/0000-0001-8246-3727


S. Hacohen et al.: Navigation Function for Multi-Agent Multi-Target Interception Missions

our research focus. Note that targets can be static and/or
dynamic, operating in deterministic or stochastic scenarios.
For example, in an exploration mission in an unknown
environment, the unexplored zones are the (static) targets [4],
[5]. In some scenarios, all targets require interception.
Defense missions might require the elimination of all
(dynamic) targets intruding into strategic zones; whereas
in agricultural missions, interception might only require
approaching the targets, for example scaring awaywater birds
to prevent them raiding aquaculture tanks [6].
The traditional approach to these kinds of problems [7],

is to (a) formulate, decompose, and allocate tasks among
a group of (possibly heterogeneous) agents; (b) enable a
predefined level of communication between the agents;
and (c) ensure coherent behavior. However, the behavior
of a cooperative team becomes harder to predict as the
number of interactions between the team members increases
combinatorically, and each interaction may result in an
unexpected behavior. Furthermore, a failure in an interface
between two agents can have a major effect on the entire
swarm, and these interfaces between agents are often the
most susceptible element in the mission. As a result, the
performance of the team may be lower than the sum of its
parts. Thus, the traditional assignment problem of agents
to tasks is considered to be a fundamental combinatorial
optimization problem [8]. This work, therefore, aims to
integrate task allocation and motion planning into a unified
framework, avoiding the traditional separation of these
components, in order to enhance the overall performance and
predictability of the swarm’s behavior.

We consider a dynamic scenario where a team of
autonomous mobile agents is required to intercept a set of
targets (static and/or dynamic) while avoiding collisions with
obstacles that are scattered in the environment and with
each other. The locations of the agents, the targets, and
the obstacles may be given in a deterministic manner or
by a Probabilistic Distribution Function due to uncertainties
(e.g., limited resolution of sensors, noisy environment).
Beard et al. [9] suggest decomposing such a mission into
three sub-missions: (i) assignment of all agents to targets;
(ii) determining a feasible trajectory for each agent; (iii)
determining asymptotically stable controllers for the motion
of each agent such that all targets are intercepted within a
bounded time period. The problem is known to be NP-hard
as the number of possible assignments grows exponentially
with the number of targets and agents.

For a single robot motion planning task, one can construct
a special suited artificial potential field and follow its
gradient. Providing that the potential field is chosen properly,
this method guarantees task completion with computational
simplicity. Such a function was first introduced as Navigation
Function in [10]). A few attempts have been made to
implement this method for swarm motion planning. For
example, [11] use an artificial potential function to assign
a control law for all swarm members in an aggregational
assignment. The researchers set a repulsive potential for

collision avoidance and an attractive potential that forces the
agents to stay close to each other. In [12] the authors introduce
a method to derive paths for all agents, realizing a set of
distinguishable mutual paths (in the topological sense, i.e.,
a set of non-homotopic braids that represent such paths) by
means of time-varying density functions. Note, however, that
the potential field method inherently suffers from the possi-
bility of local minima, and the extension of the Navigation
Function for a single agent to swarm scenarios is not trivial,
particularly in addressing uncertainties. Therefore, in this
workwe present a solution for swarms that not only (partially)
guarantees the avoidance of local minima for all agents
but also accommodates uncertainties, thereby enhancing the
robustness and applicability of swarm motion planning.

Zhang et al. [13] introduce a method for coordinating the
trajectories of multiple vehicles in real-world driving sce-
narios. They use Bayesian nonparametric learning to create
essential building blocks, and then employ a sampling-based
path planning algorithm to translate the change points of
traffic patterns into actionable paths on the road. In [14],
the authors present an algorithm that extends three types of
single-agent deep reinforcement learning algorithms–policy
gradient, temporal-difference error, and actor-critic–to coop-
erative multi-agent systems. To efficiently apply these
algorithms to a large number of agents, the study combines
them with a multi-agent version of curriculum learning.

Variants of the well-known Navigation-Function were
presented by Dimarogonas, and Kyriakopoulos [15], [16].
The authors presented a scheme for guaranteed collision
avoidance and global convergence of the swarm to the target
configuration. They considered agents’ dynamic models with
holonomic, nonholonomic, and mixed constraints. In their
work, each agent is provided with a designated static target - a
solution that requires a preliminary sub-missions assignment
stage (which as indicated above, we wish to avoid).

In this paper, we provide an extension of the well-
established method for swarm motion planning using the
navigation-function. More precisely, we propose an efficient
motion planner for all swarm members, by extending both
the classical Navigation-Function and the Probabilistic-
Navigation-Function [17]. Our solution does not require
decomposition of the problem into sub-missions, and it
guarantees asymptotic convergence even for a very large
number of agents and targets, as the complexity of the
solution is linear to the number of agents plus the number of
un-intercepted targets. Throughout the paper, we assume that:

1) The only information shared is the agents’ and targets’
locations.

2) Each agent separately performs their own motion
planning.

A. CONTRIBUTION OF THIS PAPER
This paper offers several key contributions to the field
of swarm robotics. Firstly, we introduce the
Swarm-Navigation-Function and the Swarm-Probabilistic-
Navigation-Function specifically designed for deterministic
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and stochastic scenarios to enhance multi-agent target
interception and collision avoidance. Secondly, we provide a
thorough analytical validation of these navigation functions,
demonstrating their effectiveness in dynamic environments.
Thirdly, our research presents scalable control algorithms
with linear complexity relative to the number of agents and
targets, suitable for large-scale applications. Additionally,
we validate our algorithms through extensive simulations and
real-world experiments, highlighting their practical applica-
bility. We also compare our swarm navigation strategies with
human decision-making in similar tasks, offering insights
into their efficiencies. Finally, the potential of these methods
in diverse real-world applications is emphasized.

B. ORGANIZATION & ACRONYMS
The paper is organized as follows: Section I outlines the
motivation and background of the study. Section II details the
development of the Swarm Navigation Function (S-NF) and
the Swarm Probabilistic Navigation Function (S-PNF) which
are swarm-suited extensions of the deterministic navigation
function (NF) and the Probabilistic one (PNF), respectively.
In Section II we introduce our solution for multi-agent
multi-target missions, extending the classical Navigation
Function for swarm applications. This section is divided into
subsections discussing deterministic cases, stochastic cases,
and scenarios involving dynamic targets. Section III presents
the findings from various sets of simulations and real-
world experiments. It includes planar and spatial simulated
experiments, real-world robotic swarm experiments, and
experiments involving human decision-making, all designed
for validating the proposed schemes. The final section inter-
prets the results, explores their implications, and discusses
the potential applications of the study. We conclude with a
summary of key findings and contributions to the field of
swarm robotics.

II. SWARM INTERCEPTION MISSIONS
The main contribution of this article is the introduction
of a solution for a multi-agent multi-target mission. Our
solution is closely related to the classical NF, which solves
the problem of intercepting a single target by a single agent.
We formulate a Swarm Navigation Function (S-NF) and
prove its convergence for the deterministic scenario where all
information is assumed to be known. In Section II-B, we show
how a probabilistic version of the S-NF can be extended for
themore realistic stochastic scenarios [6], where the locations
of the agents and the targets are given by their probability
density functions. Throughout, the geometries are assumed
to be perfectly known.

We mark a bounded workspace by W ⊂ Rd in which
a set of agents A is required to intercept a set of mobile
targets T while avoiding a set of obstaclesO. More precisely,
the i ∈ A agent, located at x(a)i ∈ W , should avoid all
other agents as well as a set of mobile obstacles which
together constitute the set of entities Oi. We further denote

by x(τ )m ∈ W and by x(o)j ∈ W the locations of the m ∈ T
target and the j ∈ O obstacle, respectively. The free portion
of workspace Wi for the ith agent is defined as the subset
of Wfree which is the interior of the space that is free from
entities. The proposed scheme considers spherical agents.
One can include other geometries by following Rimon and
Koditschek’s rational [18] for the deterministic case and [17]
for the stochastic case, nevertheless this is out of the scope of
the current paper.
The Deterministic Case: in this scenario all the entities’

locations are assumed to be perfectly known. So, the problem
to be solved can be stated as follows:

Given a closed environment with a set of agents,
obstacles and targets of known locations, generate
a path for each agent such that after finite time all
targets are intercepted, while collisions with other
entities are avoided.

The Stochastic Case: in this scenario the locations refer to
the expected positions of the centers of the entities, and are
considered to be random variables. We assume that only the
set of independent probabilistic distribution functions of the
locations are available for all entities. Also, we assume that
the random variables are normally distributed, and we denote
such a probabilistic distribution function by p(x) for x ∈ W .
The problem to be solved is follows:

Given a closed environment with a set of prob-
abilistic distribution functions that characterize
the uncertainties of the locations of the agents,
obstacles, and the targets, generate a path for each
agent that maintains the probability for collision
with every other entity below a given allowable
probability 1, and increases the probability for
intercepting a non-intercepted target, such that
after finite time, all targets are intercepted.

We further assume that:

1) All random variables are normally distributed and have
a scalar-matrix as their covariance.

2) All agents are aware of the location probabilistic
distribution functions of the other agents, obstacles, and
targets.

3) The entities are far enough apart. In other word, for all
pairs of entities j1, j2, there is no point x ∈ W where
both probabilities pj1 (x) and pj2 (x) are greater than 1.

The third assumption is required to avoid non-convex
obstacles, which make sense since the agents are expected
to avoid undesirable collisions.

A. THE DETERMINISTIC CASE
The classical NF is formulated in [19] for static deterministic
scenarios with a single agent and a single target as:

ϕ(x) =

(
γ Kd (x)

γ Kd (x) + β(x)

)1/K

(1)
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FIGURE 1. The effect of K on the path curvature and length. Increasing K
decreases the path length. The agents are marked by dark discs, the
targets are the red ⊕, the red lines are the planned paths.

where γd (x) = ∥x − x(t)∥22 is the target function which
calculates the distance to the target location x(t). The
obstacles function is defined as:

β(x) =

(
ρ2
0 − ∥x∥22

)∏
j∈O

∥x − x(o)j ∥
2
2 − ρ2

j (2)

where ρj and x
(o)
j are the radius and the location of the jth

obstacle, respectively. Note that the environment is defined
as the zero obstacle with a radius ρ0 located at the origin,
ensuring that agents do not cross the environment’s boundary.
A function is said to be NF if it satisfies the following
conditions: (a) it is polar; (b) it is admissible; (c) it is a Morse
function; and (d) it is smooth. These conditions are shown to
guarantee convergence from any initial condition to the target.
Because the NF is Morse in nature, it should be of full rank
at any point inWfree (i.e. its Hessian should be regular at all
its critical points). Note however, that the NF nominator is
γ Kd where a proper selection of K guarantees that ϕ is indeed
a NF. Typically, K is chosen to be at least the number of
obstacles (note that this is not the case in all our experiments
where we set K = 1). This makes the NF degenerate
at the target point (a simple equivalent example would be
y = x4). To overcome this, the composition of the above
with the function x 7→ x1/K is applied (which intuitively and
effectively eliminates the power K of the nominator. For the
mathematical line of thinking see Appendix V-A).
To accommodate the classical NF for the swarm case,

we introduce the S-NF ϕi for the ith agent, which incorporates
a multi-target function γ and an obstacles function β which
accounts for all entitiesOi (i.e. all obstacles and other agents).
The S-NF deals with degeneracy in a different way from that
for the classical NF. It has a similar structure to the traditional
NF except that the 1/K power is eliminated, and the targets
function is defined as:

γ (x) =

∏
m∈T

γ Kmm (x) =

∏
m∈T

∥x − x(t)m ∥
2Km
2 (3)

where x(t)m and Km are the location of the mth target and
a parameter related to this target respectively. Note that γ

may be computed once, for all agents. The structure of the
obstacles function, denoted by β, retains its classical NF
configuration, but now encompasses all obstacles and other
agents except the ith agent. Consequently, an agent following
−∇ϕi(x) experiences an increase in distance from all entities
as β diminishes with distance.

Definition 1: The swarm navigation function for the
deterministic case, defined for the ith agent is:

ϕi(x) =
γ (x)

γ (x) + βi(x)
(4)

where γ (x) is defined in Eq. 3, and βi(x) is:

βi(x) =

(
ρ2
0 − ∥x∥22

) ∏
j∈Oi

∥x − x(o)j ∥
2
2 − ρ2

j (5)

Note that since the set of targets is the same for all agents,
for simplicity of notations, we do not provide subscript i in
our notations for γ function, while we do for βi.
Following the gradient of Eq. 4 above for a scenario with

fixed targets where the locations of all agents are known for
every timestamp x(t), one can state (the proof is provided in
Appendix V-A):
Theorem 1: For the deterministic case where all targets

are static, there is an ordered set (K1,K2, . . . ,K∥T ∥) such
that traversing the gradient of ϕi(x) (Eq. 4) in every time
step, with a step size a < max

{[
supx∈Rd ∥∇

2ϕi(x)∥2
]−1

}
almost surely will converge to a target in T , while avoiding
all entities in Oi.
It should be noted that for the purpose of proving

Theorem 1, and Theorem 2 we used the values of Km as a
mathematical tool, nevertheless in all experiments their value
was set to 1, so for all practical uses this value will do.

It also should be noted that an agent that initially begins
to track a specific target can alter its choice and switch to
another target. However, this shift occurs only if another
agent, which is not currently pursuing a target, is closer to
the initial target. Essentially, the target remains engaged by
the first agent unless a closer, unassigned agent is available.

B. THE STOCHASTIC CASE
To solve the stochastic case we follow the same rationales
in the previous subsection - we extend the Probabilistic
Navigation Function (PNF) developed in [17] to the swarm
scenario.

In [17] the authors introduce the PNF for the stochastic
case which is defined similarly to the NF (i.e. as given
in Eq. 1 and Eq. 3) with the exception that the obstacles’
function β is a function of the probability for collision rather
than a geometric function used for the NF. In this study,
the authors prove that the PNF is a navigation function.
Following the gradient of the PNF will reach the target with
probability 1 while bounding the probability for a collision
to a pre-defined probability 1. To accommodate the swarm
case, we introduce the S-PNF (which is also marked by ϕi for
the ith agent):
Definition 2: The swarm probability navigation function

(S-PNF) for the stochastic case is given in Eq. 4 with γ as
defined in Eq. 3 and:

β(x) =

∏
j∈O

(
1 − pj(x)

)
(6)
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where pj(x) is the probability for a collision with the jth entity
at position x, and 1 is a predefined bound on the probability
for collision. (Formal expressions for the probabilities for
collision pj(x) are given in [17]).
Following the gradient of the S-PNF for a scene with fixed
targets, one can state (the proof is provided inAppendixV-A):
Theorem 2: For the case where all targets are static, there

is an ordered set (K1,K2, . . . ,K∥T ∥) such that traversing
the spacetime gradient descent of the S-PNF given in Def.
2 with step size a <

[
supx∈Rd ∥∇

2ϕi(x, t)∥2
]−1

almost surely
converges to a target in T , while avoiding all entities in Oi
up to a probability below the given allowable probability for
collision (1).

C. THE DYNAMIC TARGETS CASE
The solution provided for the case where all targets are static
is very similar by nature to the solution which will emerge
for the case where the targets are moving slowly. For more
details see Palis and Smale 1970 discussion on structurally
stable flows [20]. It is important to clarify that an agent
successfully intercepting a target in a static scenario may not
necessarily achieve the same in a slow dynamic scenario.
That is, the overall convergence properties are maintained.
In other words, when considering the swarm and the targets
as a unified system, the nature of convergence points and
their associated basins remain consistent. Additionally, the
vector fields within the configuration spaces of both static and
dynamic systems can be viewed as continuous deformations
of one another.

In the proposed methodology, each agent independently
recalculates its own S-NF (S-PNF) at every time step. This
autonomous recalibration enables the agents to effectively
intercept the targets while ensuring their safety, particularly
as the targets continue to advance. This approach consistently
ensures safety of the agents as well as target interception
(when an agent is in close enough proximity to the target).
It is pertinent to mention, however, that while this method
does not serve as a definitive proof of interception in dynamic
scenarios, our analysis shows that in every case studied all the
targets were successfully intercepted by the agents.

As discussed below, we used simulations to test our
algorithm for the case of moving targets. We applied two
scenarios:

1) The targets move in a linear fashion and rebound off
the workspace boundary at random angles.

2) The targets move according to a repulsive potential
field, where the agents are the source of repulsion.

We noticed that in all cases the gradient did not vanish.
We also noticed that the algorithm easily converged for any
given speed of the targets as long as they did not exceed the
speed of the agents.

In all these experiments K was set to a unit. However, note
that for the case of fast-moving targets, one can set K to
be such that the length of the trajectories is shorter, thereby
improving convergence success (see Figure 1).

III. RESULTS
Two large sets of simulations were performed. Firstly, a set
of real-world robotic swarm experiments, and secondly, two
types of experiments involving human decision-making to
investigate the performance of our interception solution.

A. METHODOLOGY
In order to validate the proposed scheme, both for the
deterministic and stochastic cases, we conducted several
experimental sets. The experiments consisted of a simulation
set using Matlab framework, and real-world scenario sets.
In the first simulation set, a swarm of simulated agents
is required to intercept 100 simulated targets (static and
dynamic) in 2D scenarios. The number of agents in the
swarm varies from 10 to 100 and all operational parameters
(interception times and trajectory lengths of all agents)
are recorded. In the next simulation set, a swarm of 3D
simulated agents is required to intercept a set of 100 simulated
static and dynamic targets, where the number of agents
in the swarm varies again from 10 to 100. As with the
2D simulation scenarios, all operational parameters are
continuously recorded. The aim of the simulation sets is
to verify the validity of the proposed scheme, and also to
compare its real-time performance with the optimal off-line
solution. In the first set of real-world scenarios, we use a
swarm of 2-6 drones that are required to intercept a set of
1-6 static and dynamic targets, represented by small colored
balls that are located manually in the experimental arena.
In this set of experiments, several static objects are also
located in the arena. The positions of all agents, targets,
and obstacles are determined in real-time using a set of
18 pre-positioned ‘‘OptiTrack’’ Flax13 cameras, providing
accurate 3D estimates of the entities’ positions. In the second
set of real-world scenarios, we compared the performance
of the proposed scheme to the performance of a ‘‘human
swarm’’. In the first experiment in this set, a group of
children paly the ‘‘Tag’’ game. In this game, one group of
5 children chases another group of 5 children while the
other group is trying to escape. A camera mounted at the
top of the experimental arena records the trajectories of
the children from the two groups participating in the game.
The trajectories of the escaping group are then used as an
input to the motion algorithm scheme, and the trajectories
of the chasing group are compared with the trajectories
generated by the algorithm. In the final set of real-world
scenarios, a human user is playing a simple computer game
where the aim is to intercept 10 targets by a swarm of
4 agents (3 computerized agents on one human agent). The
three computerized agents move according to the proposed
scheme, while the actual trajectory of the human agent is
recorded and compared with the trajectory generated by the
scheme. The aim of the experimental setups that involve
human agents is to compare the performance of the human
agents, which is close to optimal, with the performance of
the proposed scheme.
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FIGURE 2. Four timestamps of the interception process of 70 dynamic
targets by 16 agents applying the S-PNF. Agents are represented as dark
discs, ⊕ marking the targets (no obstacles were introduced). The gray
contour lines represent the values of S-PNF of the agent, and the
resulting trajectories are marked depicted as red lines. Targets are
canceled out once intercepted. At time stamp 60 two agents are heading
to the same target. This do not pose any problem, since the agent with
the longer path will at some point will change its goal.

B. PLANAR SIMULATED EXPERIMENTS
The motion planning schemes introduced in this paper hold
for any dimension of the ambient space (e.g. d = 2 for
a swarm of ground robots and d = 3 for a swarm of
drones). To examine them, planar and spatial experiments
were devised. We also examined the implementation of our
motion planner for dynamic targets.

The experimental setup consists of deterministic as well
stochastic scenarios. The workspace is set to be a planner
circular workspace of radius 1 unit length. The agents’ radii
are set to be 0.02. All constant Ki’s are set to be equal to the
total number of agents and obstacles divided by the number of
targets. Here we follow the ‘rule of thumb’ provided by [19]
for the classical NF and by [21] for the PNF. For uncertain
scenarios, we chose 1 = 0.9 and the standard deviation
for the estimation error is simulated as 0.01 length unit. The
maximal agent velocity in both the deterministic and the
stochastic cases is set to be 0.02 length unit/time unit.

(i) Two sets of planar experiments were conducted under
the same conditions with agents intercepting 100 dynamic
targets. The targets’ maximal velocities were chosen to be
standard normal random variables with a mean of 0.5 length
unit or time unit.

(ii) Next, two sets of the planar experiments tested the S-NF
and S-PNF schemes, where agents are required to intercept
30 idle targets that are fixed to their initial random locations;

These experiments were repeated with a varying number of
agents from 2 to 16.

Figure 2 depicts a snapshot set of the stochastic scenario.
At the initial timestamps (and up to a timestamp of about
35) the number of targets is larger than the number of
agents. During this period, each agent is directed towards
a different target. Once all targets have been intercepted
and the mission is completed, the agents spread out evenly
across the entire playground. Repeating the experiments for
the stochastic case, it was found that the agents maintained
safe distances from each other and from the environment’s
boundary, as expected.

It should be noted that an additional set of experiments
were conducted. These demonstrated that our algorithm is
well suited also for the case where the agents share their
sensory data and locations only to the agents in their vicinity.
Nevertheless, this is out of the scope of this paper.

Figures 3 compare the average of the agents’ path
lengths required for convergence (i.e. when all targets were
intercepted) for the set of experiments for the deterministic
(solid red line) and the stochastic scenarios (dashed black
line). Each point on the graphs represents the average of 100
Monte-Carlo runs.

To evaluate the efficiency of our algorithm, we compare
the convergence graphs in the case of a deterministic static
scenario with that of the optimal simulated-annealing (SA)
based motion planner (dashed gray). The optimal ‘‘traveling
salesman’’ graphs and the resulting optimal paths’ overall
length was calculated using a SA procedure, minimizing the
overall length of these graphs. The graphs demonstrate a tight
agreement of the convergence rate to the optimal one from
≈ 10 agents on, for the deterministic scenario with static
targets.

For the SA based algorithm for a swarm with N =

16 agents, the average running time is µ = 9.88 seconds
with a standard deviation of σ = 3.72 seconds, while for
N = 50 the running time is µ = 14.81, σ = 9.87 seconds
(on a Core i7 Processor). The S-NF and the P-NF are based on
analytic function calculations, so their resulting running times
are considerably shorter and more consistent. For example,
for N = 16 agents the running time is µ = 0.04, σ =

0.002 seconds while for N = 50 it is µ = 0.25, σ =

0.003 seconds.

C. SPATIAL SIMULATED EXPERIMENTS
For the spatial case, the world is set to be a cylindrical
playground. The agents’ radii, the playground radius and Ki’s
are set to the same values as for the planar experiments. The
maximal agent velocities set to be 0.02 length-unit/time-unit.

We conducted a set of simulated experiments for testing
the S-NF scheme, where agents were required to intercept
30 idle targets fixed to their initial random locations; These
experiments were repeated with varying number of agents
from 2 to 22. Figure 4.(a) depicts a snapshot of the S-NF
experiment, with black drones and red drones representing
agents and targets respectively.
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FIGURE 3. Convergence for various numbers of agents of radius 0.02 in a
disc workspace of radius 1 unit length. (a) The mean path length per
agent of the S-NF (solid red) and the S-PNF (dashed black) intercepting
100 dynamic targets. Each experiment was repeated 100 times, and the
uncertainty is σ = 0.01; (b) Performances of the S-NF, the S-PNF
compared to the optimal path computed by the SA (dashed gray) for
various number of agents intercepting 30 static targets. Each experiment
was repeated 100 times. The performances are the longest path between
the swarm’s members.

To evaluate the efficiency of our algorithm, we compare
the convergence graph with an optimal convergence line
(gray) calculated in the same manner as for the planar
case. Figure 4.(b) presents the path-length required for
convergence (i.e. when all targets were intercepted) for the
set of spatial experiments for the deterministic scenario
compared with the SA based algorithm optimal convergence
time. Each point in the graphs represents the average of 100
Monte-Carlo runs.

D. REAL-WORLD ROBOTIC SWARM EXPERIMENTS
We examined our algorithmic scheme by using an experimen-
tal setup of a real-world, multi-agent multi-target interception
mission scenario. A swarm of 3 − 6 small unmanned aerial
vehicles (UAVs) (DJI Tello edu) was free to travel in a
cylindrical playground of radius 1.8m and length of 2m and
‘‘intercept’’ several targets.

The UAVs locations were measured by 18 pre-positioned
‘‘OptiTrack’’ Flax13 cameras. As this system provides
accurate positions with a small localization error (< 2mm),
we implemented the S-NF rather than the S-PNF probabilistic
version. To ease the implementation stage, the entire
algorithm computationwas independently calculated for each

FIGURE 4. (a) The spatial experiment set; (b) Performances of the S-NF
(solid red) and the simulated annealing (dashed gray) for a varying
number of idle agents intercepting 30 idle targets. The graph depicts an
average of the swarm’s total path length calculated over 100 Monte-Carlo
runs.

agent (using Matlab) and the control signals were then
transmitted via Wi-Fi to each agent.

In these experiments we also incorporated four static
cylindrical obstacles (r = 7.5cm, h = 2m) which
were randomly located in the workspace see Figure 6.(a)
and (b). The targets (red discs) were placed randomly by the
experimenters. Figure 5 depicts a sequence of frames of the
experiment (A video demonstration is available in [22]).

Figure 7 shows the average time-to-interception for a
varying number of agents intercepting the four targets while
avoiding collision with the static obstacles. As shown, the
average interception time is reduced linearly with the increase
in the number of agents.

E. TWO SETS OF HUMAN BEHAVIOR EXPERIMENTS
The schemes introduced here are not optimal, moreover, opti-
mality is very hard to assess for dynamic scenarios. To have
a sense of the optimality of our solution, an experimental
setup was designed to provide a comparison with human
decisions in similar scenarios. Two experimental setups were
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FIGURE 5. A sequence of frames for a four agents experiment with four
targets and four static obstacles. Random initial conditions (upper left)
and complete interception (lower right).

FIGURE 6. An illustration of the real-world experiment setup and typical
view of an experiment with four agents and four static obstacles.

examined: (i) a real-world game and (ii) a video-game setup.
All participants’ custodians provided an informed consent
after the nature and possible consequences of the study were
explained. In addition, the experiment was confirmed from
the university ethics committee.

(i) A 2.5 meter radius scene was defined on a planar
concrete floor (see Figure 8.(a)). Ten young participants

FIGURE 7. The average time to interception of 3 − 6 agents in real-world
interception experiments.

FIGURE 8. (a) A snapshot of the real-world, human decision making
experimental setup. Red arrows indicate the participant’s current
direction while green arrows indicate the algorithm’s preferred direction;
(b) The setup of the human decision-making computer simulated game.
The human participant’s agent is marked as a red ball, other agents are
the other four black balls, and the targets are indicated by colorful
bubbles with plus signs. (c) Success rates of the tag players vs. the
angular differences between the algorithm decisions and the player
decisions. (d) Success rates of a human player vs. the angle differences
between the algorithm decisions and the human decisions in the
computer simulated game. The red markers are averaged results over
128 participants, the solid line is their resulting linear fit.

(all 12 years old) were randomly divided into two groups,
representing the agents and the targets, playing a variation
of the game ‘‘tag’’. The agent participants were guided to
intercept the target participants. All participants were directed
tomaintain a constant speed throughout the game. A hovering
camera was placed above the scene and all movements
were recorded. Each game lasted until all ‘‘targets’’ were
intercepted, which took 2 − 3 minutes. This procedure was
repeated 20 times to eliminate bias.

To measure the agreement between human decisions,
which we believe is somewhat optimal under dynamic
conditions, we analyzed the agreement of human partici-
pants’ decisions with our algorithm, and the corresponding
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success rate (i.e. the number of interceptions divided by
the number of targets). We used the variance var(θ ) of the
angular difference between the human participant trajectories
and the algorithm’s chosen trajectories as a measure of
agreement with our algorithm. The results are provided in
Figure 8.(c) (a video demonstration is available as movie
in [23]). Clearly, participants whose trajectories corresponded
with our algorithm were more successful.

(ii) A simulated game was designed to examine the
algorithm agreement with human behavior. The game was
designed as having a disc arena with the same proportions as
with the real-world experiment. A single, human-controlled
agent and 4 additional computerized agents were given the
task of intercepting 10 moving targets. The targets moved in a
linearmanner inWfree and randomly changed direction after a
collision with the boundaries. When a target was intercepted,
a new one was randomly generated. The participant’s score
was computed as the total score of the swarm. Figure 8 depicts
the agreement (i.e. the standard deviation of the angle’s
absolute differences between the algorithm and the human
decisions) vs. the success rates (i.e. how many targets were
intercepted by the human participant). As shown in Figure 8,
the success rate of the human participants improves linearly
with the reduction of the difference between the decision
making of the human and the algorithm.

IV. DISCUSSION
The motivation of this work is to introduce an efficient, non-
central solution for a cooperative multi-target interception
mission by a swarm of agents. Each agent constructs
its own artificial potential field and follows its gradient.
We formulated two such functions, one for the deterministic
case where the locations of all the agents, obstacles and
targets are known; and a stochastic function where these are
known as probability distributions. We proved that following
the gradient of such functions results in intercepting all static
targets in a finite time span. Nevertheless, for situations where
the targets move, such proof is out of reach. We therefore
conducted numerical experiments to validate the efficiency
of this scheme.

Figure 3.(b) demonstrates the agreement of the resulting
trajectories of the swarm agents in the planar case compared
with a non-real-time SA procedure which minimizes the
overall length of these graphs. We consider the latter as a
benchmark for optimality for the deterministic static-target
case (in the sense of path length). It was demonstrated that
our solution provides a real-time solution with path lengths
similar to that of the optimal solution but two orders of
magnitude faster.

With regard to the overall resulting path length, the S-
NF, the S-PNF schemes and the optimal solution demonstrate
very close behaviors which almost coincide for large swarms.
For example, for a swarm with N = 16, the average overall
path length an agent traversed was 1.4 unit lengths when
following S-NF based motion planning; and an agent of an
S-PNF controlled swarm traversed along 1.8 unit lengths

compared with the optimal average path of 0.7 unit lengths.
For larger swarms, task allocation is responsible for the
main difference between the optimal solution and that of the
suggested solution.

That is, as more agents or targets are introduced in the
workspace, the resulting trajectories become shorter (see
Figures 3 and 4.(b)) and therefore the governing differences
in behavior may be attributed to the choice of targets.
Furthermore, in such situations, the task allocation mission
is reduced to choosing the nearest target. The same behavior
was observed for the spatial case (see Figure 7), with slightly
less agreement with the optimal solution. This is so since in
the spatial case, the number of potential neighboring agents
grows by n : n2 compared to the planar case. Therefore,
a given agent’s choice of a target in the former case is affected
by more agents than in the planar case. It should be further
noted that in all simulations all targets were intercepted. This
was also the case in all the UAV swarm experiments when the
targets were either stationary or randomly traversing.

The above experiments were conducted to evaluate the
efficiency of the algorithm in terms of the trajectory length.
Nevertheless, optimality is a much more intricate term that
may optimize any combination of the resulting path length,
energy loss, required acceleration (which will manifest as
smooth trajectories), interception success rate etc. Human
decisions, on the other hand, are perceived as close to the
optimal with regard to the above criteria. This is the rationale
behind the last two sets of experiments. It should be noted
that the game depicted in Figure 8.(a), did not accurately
simulate the underlying situation we discussed in this paper,
as the participants did not sense the entire surrounding. For
this reason, we designed a second human-decision game
(Figure 8.(b)) in which the participants could see all targets
and agents simultaneously.

Figure 8.(c) and (d) demonstrate the fact that in both exper-
iments the closer a player’s decisions are to the algorithm, the
more successful the outcome. Here, we consider the portion
of interceptions of each participant out of the overall number
of interceptions as a measure of success.

Furthermore, the resulting trajectories are also not optimal,
as the other agents are avoided without one knowing the
predictions of their trajectories. But it should be noted
that [21] demonstrated how the NF and the PNF solutions
can be further improved by accounting for predictions.

In this paper we consider the case where agents share their
sensory data (i.e. their location, targets locations), to all other
agents. Nevertheless, it is important to note, although out of
the scope of this paper, that additional experiment sets where
conducted with similar results, where the agents share their
knowledge only to agents that are located in their vicinity.

One of the main challenges in multi-robot multi-target
missions is reducing the computation complexity. Planning
a multi-robot multi-target mission is usually divided into two
steps [24]:
1) Assignment of targets to agents, where the suggested

solutions may be based on optimal search or heuristics.
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Obviously, as the number of targets and/or agents
increases, the optimal solution is more complex and
often is not feasible in a bounded time constraint.

2) Trajectory planning: having a set of sub-missions for
the agents, a trajectorymust be generated for each agent
while considering collision avoidance with obstacles
and other agents.

When executed independently, the target assignment step
does not consider the trajectory planning step and vise-versa.
As a result, an optimal solution of one step may cause
inferior performance of the other. So, for optimality, these
two steps should be executed simultaneously. Thus, a realistic
comparison of the proposed swarm interception algorithm
with other models requires adding up the complexities of
target assignment algorithms with the complexity of path
planning algorithms.

Note also that the complexity of target assignment
algorithms is usually given by the count of the number
of ‘‘iterations’’ rather than the number of floating point
operations, though the details of an ‘‘iteration’’ may vary
across architectures [25]. For the following discussion, the
number of agents is marked by n, the number of targets by m
and the dimension ofW is d (the number of obstacles has a
minor effect on the complexity and therefore is not considered
in the discussion).

Gerkey and Matarić [25] provide a thorough survey on
algorithms for task allocation and their respective com-
plexities. For example, [26] introduces a method named
MURDOCH, having a complexity of O(n) for a single
mission task with n agents. In the swarm interception problem
discussed here, the complexity of the MURDOCH algorithm
for the task allocation alone sums up to O(nm). An additional
complexity in the range ofO(nm) is also required for commu-
nication between the agents. The Alliance algorithm [27] also
demonstrates a complexity of O(mn) for the task allocation
itself, and an additional O(m) for communication. Note that
the term ‘‘iteration’’ is interpreted differently in cases where
the tasks are computed simultaneously or sequentially.

Known path planning algorithms are divided into those
that construct a graph (called a roadmap) that represents the
Wfree, and to those that use the idea of a potential field. The
complexity for constructing a Voronoi roadmap is O(n⌈d/2⌉)
- see [28] (e.g. for d = 3 the complexity is O(n2)). The
complexity of the searching through this roadmap is O(E)
where E is the number of edges in the graph (see [29]). For
example, the case of d-simplex enclosing each entity, requires
E ≥ (d + 1)m.
The navigation function algorithm, which exploits the

potential field idea, has a complexity of O(d2n + n2)
(see [10]). The methods available in the literature and
discussed above provide the following:

1) Performing an optimal task allocation that is followed
by a Voronoi graph approach results in a complexity of
O(mn+ n⌈d/2⌉

+ nE).

2) Performing an optimal task allocation that is followed
by a navigation function results in a computational load
for each agent in the range of O(mn+ d2n2 + n3).

On the other hand, Eq. 5, Eq. 3 and Eq. 4 involve
computations of m distances from the targets, and n
distances from the obstacles. Thus, following [10], the overall
complexity of the proposed swarm interception algorithm is
O(d2(m+ n) + (n+ m)2). Note that this suffices for solving
the problem for the entirety of swarm agents. In other words,
this estimation should not be multiplied by n since Eq. 5 and
Eq. 3 are computed only once (because βi =

β

∥x−x(a)i ∥
2
2−ρ2

i

).

A simple calculation leads to the conclusion that our
proposed algorithm is preferable as long as m < nα

with α = 1 + log(n− 1)/log(n), which equates for situations
where the number of targets is about the square of the number
of agents.

V. CONCLUSION & FUTURE WORK
This paper focuses on multi-agent multi-target interception
missions. We introduce two new versions of a navigation
function for a swarm interception mission: the S-NF for
the deterministic case and S-PNF for the stochastic case.
We show that these functions have similar properties to the
original Navigation Function and the Probability Navigation
Function respectively, for scenarios with multiple agent and
multiple targets. We provide analytic proofs that for scenarios
with stationary targets for both schemes the S-NF and
the S-PNF. The S-NF scheme avoids the obstacles for the
deterministic case, and the S-PNF minimizes the probability
of a collision for the stochastic case. The experimental
results show that convergence time decreases linearly with
the number of agents and is robust to uncertainties and
to the dynamics of the targets. We further show that the
computational complexity grows linearly with the number of
agents, since for every additional agent only a single function
is added, which is of practical importance.

The proposed schemes can be implemented in various
practical missions, ranging from defense related tasks where
a swarm of agents is required to protect a strategic zone from
hostile invaders to agricultural missions where a swarm of
pests can damage the crop. In both cases, the threatening
targets can be static or dynamic, operating around various
types of obstacles in 2D as well as 3D environments.
The paper also compares the performance of the proposed
schemes to the behavior of humans during interception-style
games (see Figure 8) and shows that the agents’ trajectories
produced by the S-NF and the S-PNF are similar to, and in
some cases even superior to the trajectories of humans.

The analytical proofs we provided are applicable to
cases where the targets are static. Interestingly, we also
observed convergence in scenarios involving dynamic tar-
gets. This phenomenon, which warrants further exploration,
was consistently noted across all scenarios we examined.
Recalling Farber’s 2003 work on robotics related topolog-
ical complexity [30], it becomes apparent that a deeper
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understanding of dynamic targets necessitates an investiga-
tion into non-structurally stable gradient flows within the
theory of dynamic systems. The authors of this paper intend
to focus future research efforts in this direction.

Additionally, it was observed that our extended NF
approaches for swarm behavior aligns closely with the
strategies humans employ in interception tasks. This parallel
suggests a potential area for further study, as it may provide
valuable insights into both human cognitive processes and
swarm dynamics.

A. DATA AVAILABILITY
The datasets generated and analysed during the cur-
rent study are available in the Google-Drive repository,
at https://bit.ly/3AduVjB.

APPENDIX - PROOF OF CONVERGENCE FOR THE CASE OF
STATIC TARGETS
To formally prove Theorem 1, we need the following
perquisites:
Definition 3: Given φ : Rd

→ R, a point c ∈ Rd

satisfying ∇φ(c) = 0, is called a critical point of φ. If the
Hessian ∇

2φ is positive (negative) definite at c, then it is
a local minimum (maximum) of φ (For semi-positive and
semi-negative definite Hessians this test is not conclusive).
If c is neither a minimum nor a maximum point, it is said to
be a saddle point. A critical point is called isolated if all its
eigenvalues do not vanish. A saddle point at c is called a strict
saddle if ∇2φ(c) has at least one negative eigenvalue.
Theorem 3 (Panageas & Piliouras): Let φ : Rd

→ R be
a twice continuously differentiable function in W such that
all its saddle points are strict saddles, sup

x∈W
∥∇

2φ(x)∥2 ≤

L < ∞, andW is forward invariant, then a gradient descent
procedure with step-size 0 < a < 1/L from any initial
condition almost surely will not converge to a saddle point.

The intuitive idea behind the claim that ϕi(x) (say, the
NF) will almost surely converge to a minimal point, can
be made clear if one thinks of the initial position as being
exactly on a ridge that points towards a saddle point. That is,
being in a subspace W which is of co-dimension 1. In such
a case, the agent is due to converge to the saddle point.
Nevertheless, if one randomly chooses an initial position. this
will happen with zero probability. A more exact description
of the above is that the map g : W → W defined as
g(x) = x − a∇ϕ, deforms a neighborhood of each critical
point diffeomorphically. This implies the existence of a local
stable center manifold W that contains all points that are
locally non-escaping (including the critical point itself). Since
W is of a dimension equal to the number of non-negative
eigenvalues of ∇

2ϕ, and ϕ has the strict saddle property,
one concludes that W has a positive co-dimension which
includes the set of points promised by the Stable Manifold
Theorem, that actually converge to the critical point is a subset
ofW . The theorem of Panageas and Piliouras circumvents the

requirement for ϕ being globally Lipschitz by requiringW to
be forward invariant which is obvious in our case.

Note that the swarm situation differs from the traditional
motion planning problem of a single agent by the fact
that while the agent of interest moves, so do the other
agents. This implies that one cannot apply the Panageas and
Piliouras theorem directly to ϕi since it changes in time.
To overcome this, we think of the swarm movement as being
performed sequentially. That is, for the sake of the proof
alone, we examine how the swarm performs where at every
time step only one agent moves while all others remain still.
It should be emphasized that this does not imply anything
about the practical implementation of our scheme since as far
as the analytical proof concern dt is infinitesimal.

Specifically, at every time step t the i-th agent moves
following the gradient descent of ϕi(x) at t .. Excluding the
case where the agent will fall into a local minima of ϕi(x)
(we shall resolve this later), one should refute a claim that
the agent may converge into a local minimum in one of the
following cases: (1) when some other agent j ̸= i moves; (2)
when the i agent moves while all other agents are still.
(1) The function ϕi domain contains subsetsW which, due

to the Panageas & Piliouras theorem, we prefer the agent
not to enter. Assuming that at time t this did not occur, the
question is whether this may occur due to the movement of
the j-th agent. But note that sinceW are of Lebesgue measure
zero and that the j-th agent moves in steps of finite length α,
this has zero probability of occurrence.

(2) Applying the Panageas & Piliouras theorem again,
implies that this would not end with the ith agent falling into
a local minima.

So, in order to guarantee that the gradient descent scheme
over ϕi, will converge to saddle points with probability zero,
it remains to be shows that:

• At every time step only the targets constitute the
minimum points of ϕi(x) inW .

• ϕi(x) satisfies the strict saddle property inW .
• supx∈W ∥∇

2ϕi(x)∥2 < ∞ (see Lemma 1).

We shall provide the two first requirements in Remark 1 and
Proposition 1.
Remark 1: Since ϕi is the composition σ ◦ ϕ̂ where the

function σ (x) =
x

1+x is strictly increasing, the critical points
of ϕ̂ and ϕi and their corresponding indices coincide [19].
Thus, from now on we shall consider only ϕ̂:

ϕ̂ =
γ

β
(7)

The gradient of ϕ̂ is:

∇ϕ̂ =
∇γ

β
−

γ∇β

β2 (8)

So the following is also essential:
Proposition 1: There is an ordered set (K1,K2, . . . ,K∥T ∥),

such that all the critical points of ϕ̂i(x) that are not located at
the target points, are strict saddles.
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Proof:We start the proof by induction and define:

ϕ̂n :=
1
β

γ
K1
1 γ

K2
2 · · · γ Knn

where 1 ≤ n < ∥T ∥ and Cn as the set of critical points of ϕ̂n
that are not at any of the target points. As per Eq. 3 we can
rewrite ϕ̂ in terms of ϕ̂n:

ϕ̂ = ϕ̂nγ
Kn+1
n+1 γ

Kn+2
n+2 · · · γ

K∥T ∥

∥T ∥

Note that ∇ϕ̂n+1 = ∇ϕ̂nγ
Kn+1
n+1 + ϕ̂n∇

(
γ
Kn+1
n+1

)
. Since ∇ϕ̂n+1

vanishes at c ∈ Cn+1,

∇ϕ̂n = −Kn+1
ϕ̂n∇γn+1

γn+1

A simple differentiation yields the expression for the Hessian
at c that is given by:

∇
2ϕ̂n+1

= γ
Kn+1
n+1

[
∇

2ϕ̂n

−
Kn+1ϕ̂n

γn+1

(
(∇γn+1)(∇γn+1)T

γn+1
(Kn+1 + 1) − 2I

)]
(9)

Note that the Hessian of γi = ∥x − x(t)i ∥
2
2 for all i is the

identity matrix multiplied by two, which corresponds to the
last term of Eq. 9.We pursue the eigenvalue of∇2ϕ̂ which is a
sum of two matrices. Recall Weyl’s inequality [31] that states
that if A and B are two Hermitian matrices then C = A+B is
also Hermitian and a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn
and c1 ≥ c2 ≥ · · · ≥ cn be their respective eigenvalues, then,
ci+j−1 ≤ ai + bj

Next, note that a quadratic form vvT of a vector v ∈

Rd has a zero eigenvalue of multiplicity N − 1, and an
additional eigenvalue ∥v∥2. To confirm this, note that all the
columns of vvT are dependent which associatively implies
that (vvT )v = v∥v∥2. Therefore, the single non-vanishing
eigenvalue of (∇γn+1)(∇γn+1)T

γn+1
is 4 (a trivial derivation due to

γm definition). Moreover, note that given a matrix M with
its eigenvalues λ1, · · · , λn, the eigenvalues of M − I are
λ1 − 1, · · · , λn − 1. This is so since if Mv = λv is satisfied
and (M−I )v = λ′v, then λ′

= λ−1 are eigenvalues ofM−I .
The maximal eigenvalue of the right term is

Kn+1ϕ̂n

γn+1

(
(∇γn+1)(∇γn+1)T

γn+1
(Kn+1 + 1) − 2I

)
,

in Eq. 9 is equal to λmax =
Kn+1ϕ̂n
γn+1

(4Kn+1 + 2).
In order for∇2ϕ̂n+1 to have at least one negative eigenvalue

in a critical point c, the maximal eigenvalue of ∇
2ϕ̂n (the

leftmost term of Eq. 9) must be smaller than λmax . For
convergence, Kn+1 should be set to ensure this requirement,
which is possible since (1)∇2ϕ̂n is bounded as will be proven
in Lemma 1; (2) the step size is finite; (3) at each induction
step, a target is added in a given finite distances from the other
targets implying that there is a minimal finite ϕ̂n(c) > 0. This
implies that c is not a minimal point of ϕ̂n+1. Explicitly, c

may be a maximum or a strict saddle of ϕ̂n+1. To complete
the proof note that inductively one starts with ϕ̂n=1 which
is exactly the classical Navigation Function, and recall that
the original Navigation Function has a single minimum point
at its target. Applying this proposition inductively proves
that one may add targets without damaging the convergence
property.

Since the set of critical points of ϕ coincide with the critical
points of ϕ̂ (Remark 1), applying the Panageas and Piliouras
Theorem proves our claim also for ϕ.

Eq. 8 implies that the critical points are not located at the
boundaries of the obstacles which are not close to the targets.
Based on that and examining Eq. 9, the constant Kn+1 needs
to be a relatively small number. Experimentation shows that
the values for all Kn’s can be equal 1 for convergence.
Lemma 1: The Hessian of ϕi is bounded by

supx∈W ∥∇
2ϕi(x)∥2 < ∞.

Proof: Note that

∇ϕ =
β∇γ − γ∇β

(β + γ )2
, (10)

so the Hessian ∇
2ϕ is:

1
(β + γ )2

(
β∇

2γ − γ∇
2β

−
2

β + γ

(
β∇γ∇γ T − γ∇β∇βT

+ γ∇γ∇βT − β∇β∇γ T
))

(11)

But note that β vanishes only on the boundary of the
obstacles ∂Oi. Also note that γ vanishes only at the target
points T . Given that both are positive inW \ (∂Oi∪T ), their
sum cannot vanish inW which completes the proof.

To complete the proof of Theorem 1, note that a full
discussion and proof that the minimum point of the PNF
(with a single agent) is at the target can be found at
[17]. So, Remark 1 and Proposition 1 also holds for
the S-PNF.

Lemma 1 holds as β vanishes if one of the probabilities
for a collision pj(x)’s equals 1. (e.g. the agent is in the
vicinity of an entity such that its probability for collision
accedes the allowable probability for collision 1). So in
any other case β(x) + γ (x) ̸= 0 in Wi which completes
the proof.

To complete the proof of Theorem 2, note that a full
discussion and proof that the minimum point of the PNF
(with a single agent) is at the target can be found at [17]. So,
Remark 1 and Proposition 1 holds also for the S-PNF.

Lemma 1 holds as β vanishes if one of the probabilities
for a collision pj(x)s equals 1. That is, if the agent is in the
vicinity of some entity such that its probability for collision
accedes the allowable probability for collision 1. So in
any other case β(x) + γ (x) ̸= 0 in Wi which completes
the proof.
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