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ABSTRACT Ensuring railway safety is a top priority, with a central focus on preventing accidents.
By thoroughly analyzing data from railway accident investigations, we can pinpoint factors and patterns
associated with different types of railway accidents. This proactive approach not only helps reduce the
frequency of such incidents but also significantly boosts overall railway transportation safety. This paper
investigates the impact of various risk factors on railway safety through the analysis of railway accidents
by using data-driven Bayesian networks. First, key data representing the frequency of risk factors directly
derived from railway accident reports are collected and analyzed. Then, the risk factors are incorporated
into causal analysis for different types of railway accidents. Finally, a historical data-driven approach is
utilized to model and gain new insights into the key risk factors causing different types of railway accidents.
Meanwhile, a Tree-Augmented Naive Bayes (TAN) is employed to construct a model of interdependencies
among risk factors, and the model is validated through sensitivity analysis and past accident records. The
research findings demonstrate that the crucial risk factors for all types of accidents include undetected track
damage, train operator skills, load, braking system conditions, train speed, traction system failures, level
crossings, and bridge damage. Additionally, the research results highlight the differential impact of key
factors on different types of accidents, providing a most probable explanation for observing the most likely
configurations in the model for a specific scenario. This work contributes to accident prevention and safety
decision-making.

INDEX TERMS Railway accidents, data-driven, Bayesian networks, risk analysis, tree-augmented naive
Bayes.

I. INTRODUCTION
Most railway accidents, such as derailments, collisions, and
fires, have characteristics of low probability and high conse-
quences. Catastrophic railway accidents can cause great loss
of life, social impact, and environmental damage [1]. The
occurrence of railway accidents is attributed to both inevitable
and accidental factors. To achieve long-term prevention of
railway accidents, it is necessary to analyze and control vari-
ous factors that lead to accidents and evaluate the probability
of risks. Therefore, reducing the risk of railway accidents and
guaranteeing safe, stable, and reliable train operations have
always been a major concern.

The associate editor coordinating the review of this manuscript and
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The models and methods used for accident analysis
can explain and even predict the mechanisms behind the
occurrence of accidents, and implementation of effective
countermeasures [2]. Risk analysis provides an effective
approach to preventing railway accidents. In the research on
risk analysis of railway accidents, historical data analysis
methods are widely used [3], [4]. For instance, Liu et al. [5]
applied knowledge graph theory to analyze railway accidents
and investigated 214 railway accidents in the UK. Using rail-
way accident data from the United States from 2000 to 2016,
Zhang et al. [6] gained new insights into safety assessment
and improvement through statistical risk analysis. Savage [7]
analyzed the distribution of train-pedestrian fatal collision
accidents in Chicago from 2004 to 2012 from a temporal and
spatial aspect. Zhou and Lei [8] investigated the frequency
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of 407 railway accidents/incidents in China based on acci-
dent types, and they revealed how actions and decisions at
higher organizational and managerial levels in the railway
system can cause accidents/incidents errors. The analysis of
historical data is susceptible to sample selection bias, which
may result in inaccurate estimates of accident occurrence
frequency and patterns.

In the field of railways, quantitative safety risk analysis
methods have been widely used, including Failure Mode and
Effects Analysis (FMEA), Hazard and Operability Studies
(HAZOP), Fault Tree Analysis (FTA), Event Tree Analysis
(ETA), Bayesian Networks (BN), etc. For example, Xue and
Yang [9] adopted a functional-based FMEA approach to
investigate the impact of various interface failures between
the railway signaling system and the platform door system
on train operations, Based on this, clear safety requirements
were formulated for the signaling system and safety analysis
conclusions were provided for the platform door system.
Bian and Li [10] identified risk factors in railway hazardous
goods transportation processes and provided references and
suggestions for managing railway hazardous goods trans-
portation safety through HAZOP analysis. Liu et al. [11]
utilized the FTA method to analyze operational accidents on
the Yong-Wen railway in China. Ni and Tang [12] combined
FTA with the Fuzzy Analytic Hierarchy Process (FAHP)
to assess the risk of subway fires and then they proposed
effective measures for preventing and controlling the occur-
rence and spread of subway fires. Li et al. [13] employed the
event tree method to analyze the risk of trains accidentally
entering work areas. Their study provided theoretical and
technical support for optimizing on-site work protectionman-
agement and preventing personal accidents. Baysari et al. [14]
investigated 40 railway operational accidents in Australia
using the Human Factors Analysis and Classification System
(HFACS), focusing on human factors analysis and classi-
fication. Liang et al. [15] developed a general approach
of Causal Statistic Risk Assessment based on hierarchical
Causal Bayesian Networks (CSRA-CBN) to analyze the
various impacting factors which may cause accidents, and
identify the factors which contribute most to the accidents at
Level Crossing (LX), thus allowing for risk quantification.
Liang et al. [16] forward and reverse inferences based on
the BN risk model are performed to predict LX accident
occurrence and quantify the contribution degree of various
impacting factors respectively, so as to identify the riskiest
factors. Quantitative safety risk analysis methods typically
rely on data, and inaccuracies or a lack of representative
data may lead to inaccuracies in the analysis. Additionally,
quantitative safety risk analysis methods may tend to focus
on specific aspects, potentially overlooking the comprehen-
siveness of the entire system.

Weber et al. [17] pointed out that the number of publi-
cations on Bayesian networks in the field of risk analysis
has been increasing every year because of its superiority
in learning structure and inference algorithms. Compared to

other classical reliability analysis methods, BN maintains
its advantage by establishing a multi-state variable model.
For instance, BN has similar characteristics to Fault Trees
(FT), and it is not only suitable for two-state variables but
also can model multiple-state variables and multiple outputs.
To overcome the limitations of FT in terms of static struc-
ture and uncertainty, FT can be mapped into BN [18], [19].
However, as the number of variables increases, the parameters
and related functions will increase substantially, thus increas-
ing system modeling complexity [17]. For example, Markov
Chains (MC) utilize differences between variables to analyze
the probabilities of failure events. MC can represent multiple-
state variables, but as the number of variables increases, the
system becomes more complex. Meanwhile, BN modeling
requires relatively fewer parameters and smaller condi-
tional probability tables. Besides, BN has become a popular
method for railway risk modeling because of its abil-
ity to utilize expert knowledge or data-driven approaches.
Huang et al. [20] presented a data-driven approach called
Bayesian Network-K2 algorithm-Expectation Maximiza-
tion (BN-K2-EM). They processed accident reports as a
fault data matrix and employed the K2 algorithm and
expectation-maximization algorithm to obtain the structure
and parameters of the constructed Bayesian network. Then,
the constructed Bayesian network was applied to predict and
diagnose operational failures in high-speed trains. Li and
Qi [21] analyzed the failure modes in the pantograph system
using expert knowledge and historical data, and they con-
structed a fuzzy fault tree and transformed it into a BNmodel.
When there is insufficient data from relevant accidents,
expert knowledge remains important for railway accident
modeling. Liang et al. [22] proposed a causal reasoning
framework for risk analysis based on BN. This frame-
work combines empirical knowledge with automatic learning
methods by introducing causal structure constraints. The goal
is to identify effective causal relationships while avoiding
inappropriate structural connections. The researchers applied
this framework to the risk analysis of the LX accidents in
France.

The TAN model introduces a tree structure that allows for
conditional dependencies among risk factors while maintain-
ing a relatively low model complexity. This feature enables
TAN to flexibly capture relationships between risk factors.
The tree structure in the TAN model is utilized to represent
conditional dependencies among risk factors, where each
feature node, given a class node, is connected to other feature
nodes. This structure provides a more accurate modeling
of feature dependencies. In comparison to traditional naive
bayes, TAN demonstrates better adaptability to the distribu-
tion of real-world data.

Compared to studies using expert knowledge in BNmodel-
ing, data-driven BN involves fewer subjective biases, and the
analysis results have a certain degree of objectivity. However,
data-driven BN models require collecting more empirical
evidence before widespread practical applications. To bridge
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this gap, this study employs newly collected raw data from
railway accident reports to establish a data-driven BN model
with the risk impact factor (RIF) structure. Based on this,
this paper provides novel insights into distinguishing key risk
factors for different types of railway accidents.

By comprehensively summarizing the current state of
domestic and international research on railway accident anal-
ysis, it has been found that various data analysis approaches
are used to identify relatively independent risk factors from a
large volume of records. As for the modeling of accident pro-
cesses, both domestic and international studies adopt specific
accident analysis models to analyze the occurrence process
of a particular incident or a specific class of accidents. The
effectiveness of the models is mainly validated by accident
statistics. However, there is a scarcity of research in railway
accident analysis that focuses on modeling and exploring the
relationships between different risk factors based on accident
statistical data.

Therefore, this paper conducts a risk assessment of poten-
tial risk factors in railway accidents by establishing a TAN
model. Innovations in this study include: (1) collecting
and analyzing primary data representing the frequency of
risk factors directly derived from railway accident reports;
(2) incorporating each risk factor into causal analyses of dif-
ferent types of railway accidents; (3) employing a data-driven
approach based on historical data to model and provide
new insights into the key risk factors leading to different
types of railway accidents. Addressing the issue of subjective
judgment in risk analysis due to a lack of objective quantifi-
cation, this paper adopts a data-driven approach to induce the
Bayesian network structure from data, effectively mitigating
subjective judgments of experts. While previous risk analyses
often focused on the severity of accidents, this paper sets the
target variable of the model as the accident type, predicting
the potential types of accidents. To address the problem of
local optima in optimizing Bayesian networks, this study
utilizes the TAN method to optimize the naive Bayesian
network, relaxing the assumption of attribute independence
through a tree-like structure.

This paper explores how individual or combined risk fac-
tors influence different types of railway accidents. Based on
the railway accident reports recorded by the RAIB in the
United Kingdom from 2011 to 2020, a preliminary database
was constructed. Then, by utilizing the accident data to
construct an Augmented Naive Bayes model, a data-driven
Bayesian network railway accident analysis approach is pro-
posed. The modeling process of the TAN model is illustrated
in Fig. 1.

The remainder of this article is structured as follows.
Section II elaborates on the methods employed for the
identification of RIFs, TAN-BN structure learning, and sen-
sitivity analysis. In Section III, an analysis is conducted
on the impact of various risk factors on different types
of accidents, elucidating the combinations in which risk
influencing factors manifest and providing reasoned inter-
pretations for the observed outcomes. Finally, Section IV

FIGURE 1. The process of establishing the TAN model.

provides a comprehensive summary and outlook for the entire
paper.

II. METHODOLOGY
A. IDENTIFICATION OF RIFs
To analyze different types of railway accidents under various
risk impact factors, it is necessary to identify and select the
RIFs from accident reports. The data used in this study was
obtained through a systematic analysis of publicly available
railway accident cases from relevant transport organizations
and the RAIB. The accident investigation reports released
by the RAIB provide detailed investigative processes for
significant accidents and incidents that have a great impact
on the railway system. These reports provide comprehensive
and clear material for researchers to reconstruct the accident
scene and understand the process of accident occurrence.

The process of generating RIFs consists of four stages:
(1) online database search, (2) reading and screening of
accident reports, (3) extraction and analysis of accident
report content, and (4) selection of RIFs. In this study,
railway accident reports released by the Rail RAIB from
January 2011 to January 2020 (www.gov.uk/raib) were read
and screened, upon analyzing accident investigation reports,
it was observed that certain accidents occurred due to viola-
tions of traffic rules by pedestrians, passengers, or car drivers,
leading to collisions with trains. As accidents resulting from
such factors do not align with the research objectives and
may potentially compromise the accuracy of the analysis
results, they were excluded from consideration. Additionally,
in some accident reports, a single report documented multiple
incidents. This paper treats such reports as multiple incidents
for the purpose of analysis, and finally, 121 accident inves-
tigation reports were selected as the study sample. Further
refinement and analysis of the reports were conducted, and
through manual analysis of the original railway accident
reports, 43 risk factors were first generated. Then, domain
experts were invited to merge and transform risk factors with
high similarity. Meanwhile, other factors exhibited certain
interdependencies, and notable differences were observed,
so they were retained as separate factors. Finally, a total
of 21 risk impact factors that cause railway accidents were
identified, as listed in Table 1.

Moreover, this study incorporates other external factors
such as the location of railway accidents, occurrence time,
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FIGURE 2. TAN-BN structure learning.

TABLE 1. RIFs contributing to railway accidents.

train speed, and train load as objective risk impact factors.
The definitions of variable states are mostly extracted from

the accident reports, with reference to and consolidation of
variable state classifications in previous relevant studies. For
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TABLE 2. 26 RIFs defined in railway accidents.

instance, the states of ‘‘accident location’’ in the accident
reports are categorized as ‘‘level crossing’’ and ‘‘non-level
crossing’’. Finally, 26 risk impact factors and their catego-
rized states for railway accidents were defined, as listed in
Table 2.

B. TAN-BN STRUCTURE LEARNING
The concept of BN was proposed by Pearl in 1988 [23].
It is a graphical network based on probabilistic problems,
composed of a directed acyclic graph (DAG) and condi-
tional probability distributions (CPDs). The DAG visually
represents the specific structure of the problem, and it
consists of nodes and directed edges. The CPDs quan-
titatively represent the intrinsic relationships between the
nodes. The directed edges between nodes represent the direct
relationships among variables, so they determine the statis-
tical correlations and conditional probability tables (CPTs)
between nodes. By using a large amount of statistical infor-
mation, this paper constructs CPTs to enable the BNmodel to
have good capabilities for stochastic modeling and handling
nonlinear relationships. Based on this, inference functional-
ity is achieved under incomplete, imprecise, and uncertain
information.

There are several data-driven approaches for BNmodeling,
such as the Naive Bayesian Network (NBN), the Augmented
Naive Bayesian Network (ABN), and TAN. TAN is con-
structed based on the NBN by adding directed arcs between

attributes with strong dependency relationships, but there are
some limitations on the connections between each attribute.
This leads to a tree-like graphical model that represents the
dependencies between attributes. Compared to the structure
of an NBN, the TAN structure can fully utilize the depen-
dency relationships among attribute variables. It improves
upon the NBN by extending the structure, thereby preserving
the learning capabilities of BNwhile reducing the complexity
of BN [24], [25], [26]. Therefore, this study establishes a
TAN-BN model to analyze the RIFs of various types of
railway accidents.

A BN is used to encode the joint probability distribu-
tion of a set of random variables, denoted as a variable
U . The BN is represented by DAG with annotations. Let
U = {A1, . . .An,C}, where n represents the number of RIFs.
Variable A1, . . . ,An corresponds to the RIFs, while variable
C represents the class variable (accident type). In the TAN
model, the structure considers the class variable as the root
with no parent nodes, denoted as 5C = ∅ (where 5C
represents the parent set of C within variable U ). Each RIF
has a class variable as its unique parent node, denoted as
variable 5Ai = {C}, 1 ≤ i ≤ n. The BN defines the unique
joint probability distribution over variable U as:

P(A1, . . .An,C) = P(C) · 5n
i=1P(Ai|C) (1)

For all instances of Ai, except for the class variable C serving
as its parent node, at most one other attribute variable can
serve as its parent node. Such a DAG is referred to as a tree
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on {A1, . . .An}. the tree structure on variable A1, . . . ,An can
be described using function π such that there exists a value
i that precisely satisfies π (i) = 0, and there is no sequence
of i1, . . . ik that leads to π (ij) = ij+1, i ≤ j ≤ k and
π (ik ) = i1 (i.e., no cycle). This function is used to define
the tree network, where π(i) > 0, 5Ai = {C, . . .Aπ (i)}; and
π (i) = 0, 5Ai = {C}.

The essence of TAN learning is an optimization prob-
lem, where the TAN structure utilizes the conditional mutual
information between attributes as proposed by Chow and
Liu [24] in the learning and inference processes. This function
is defined as:

IP(Ai,Aj|C)=
∑

aii,aji,ci

P(aii, aji, ci) log
P(aii, aji|ci)

P(aii|ci)P(aji|ci)
, i ̸= j

(2)

where IP denotes the conditional mutual information, aii
represents the ith state of attribute variable Ai, aji represents
the ith state of attribute variable Aj, and ci represents the ith
state of the class variable ‘‘accident type’’. Essentially, the
optimization problem of the TAN model involves searching
for a tree structure definition function π on A1, . . . ,An that
maximizes the log-likelihood and then using this function to
construct the TAN model as the structural form of the target
BN model.

The process of constructing a TAN model mainly consists
of the following five steps:

Step 1: Compute the conditional mutual information
IP(Ai,Aj|C), i ̸= j between each pair of attribute variables.

Step 2: Construct a complete undirected graph with ver-
tices representing A1,. . . , An, and vertex Ai is connected to Aj
with edges weighted by IP(Ai,Aj|C).
Step 3: Construct a maximum-weight spanning tree.
Step 4: Choose a root variable from the attribute variables

and set the direction of all edges to point away from the
attribute variables, thereby transforming the obtained undi-
rected tree into a directed tree.

Step 5: Add a class variable node and arcs between the
class variable node and the attribute nodes to construct a TAN
model.

In Step 3, the process of constructing the maximum-weight
spanning tree is as follows: Firstly, sort the edges in descend-
ing order of their weights. Then, following the principle that
the selected edges should not form cycles, choose the edges
in descending order of their weights. In this way, the tree con-
structed from the selected edges will be the maximum-weight
spanning tree.

C. SENSITIVITY ANALYSIS AND MODEL VALIDATION
1) MUTUAL INFORMATION
Mutual information is a measure provided by probability
theory to quantify the degree of dependence between two
random variables. In this paper, based on the theory of
entropy, mutual information is adopted as an indicator of the
uncertainty of a dataset. Since this paper aims to determine
the relationship between RIFs and specific accident types,

in the calculation of mutual information, ‘‘accident type’’ is
chosen as a fixed variable. The mutual information between
‘‘accident type’’ and RIFs is defined as:

I (s, αi) = −

∑
s,i

P(s, αij) logb
P(s, αij)
P(s)P(αij)

(3)

where, s represents ‘‘accident type,’’ αi denotes the ith RIF, αij
represents the jth state of the ith RIF, and I (s, αi) symbolizes
the mutual information between ‘‘accident type’’ and the ith
RIF. A larger value of mutual information implies a stronger
correlation between αi and ‘‘accident type.’’ Calculating the
mutual information values in this approach allows for the
selection of risk variables by identifying RIFs with minimal
impact. The remaining RIFs, identified as important variables
related to the selected accident type in the model, can be
extracted to alleviate the subsequent computational workload.

2) SENSITIVITY ANALYSIS
Joint probability refers to the probability that multiple condi-
tions occur simultaneously. In this study, the TAN-BN model
is adopted to assign corresponding probability values to dif-
ferent states of the relevant RIFs. The probability distribution
of different states of the class variable or target node can
be calculated by fixing the states of other RIF variables.
The sum of joint distribution probabilities for different states
of RIFs is equal to 1. The specific calculation process is
shown in Eq. (4), where s represents ‘‘accident type’’ and αij
corresponds to the jth state of the ith RIF.

P(s, αij) = P(s) · P(αij|s) (4)

In risk management and analysis, given that multiple risk
influencing factors may concurrently impact the occurrence
of a risk, joint probability offers a method to quantify this
relationship. If the joint probability of two variables is signifi-
cantly higher than the probabilities of each being independent
events, it can be inferred that there is a certain level of
correlation between them.

After RIFs are filtered out through mutual information
calculations, another form of sensitivity analysis, called sce-
nario simulation, can be carried out. The traditional method
of setting scenarios involves fixing all other nodes and then
sequentially updating the states of the target node. This
method is suitable for variables with two states but variables
with more than two states. In such cases, RIFs with multiple
states cannot be used in traditional scenario simulations.

To overcome the limitations of traditional scenario sim-
ulation, Chow and Liu [27] proposed a novel sensitivity
verification method. It determines the influence of different
RIFs in a combinatorial approach. By increasing the prob-
ability of the state that has the maximum impact on the
target variable to 100%, a High-Risk Inference (HRI) can be
calculated for a certain accident type. Similarly, by increasing
the probability of the state that has the minimum impact
on the target variable to 100%, a Low-Risk Inference (LRI)
can be calculated for the same accident type. By calculating
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the average of HRI and LRI, the True Risk Inference (TRI)
under a specific accident type can be obtained. The specific
calculation is defined as:

TRI =
HRI + LRI

2
(5)

Therefore, to compare the impact of other relevant variable
nodes on the ‘‘accident type,’’ the TRI is calculated for each
selected RIF, and then the TRI values for all variables and
all accidents are ranked. In this sensitivity analysis method,
a higher TRI value indicates a greater influence of the corre-
sponding node on the ‘‘accident type.’’

3) MODEL VALIDATION
Sensitivity analysis needs to satisfy the following two criteria
to demonstrate that the proposed research method is reason-
able and logical [28], [29], [30].

Criterion 1: A slight increase or decrease in the prior
probability of each parent node will invariably result in an
increase or decrease in the posterior probability of the child
node.

Criterion 2: The combined effect of probability changes
from property x (evidence) on the value is always greater than
the total impact of changes from the x− y(y ∈ x) property set
(sub-evidence).

Besides, the effectiveness of the proposed BN model is
validated by simulating past railway accidents, and appropri-
ate parameter settings are used to determine if the model can
provide results that reflect real-world situations.

D. MOST PROBABLE EXPLANATION
To observe the connections between the nodes in a BN and
identify the most likely states of the nodes, the TAN-BN
model can be employed to perform re-reasoning for specific
types of accidents and provide a reasonable explanation for
the observed result. The maximum posteriori probability is a
special case and is also known as the Most Probable Expla-
nation (MPE). By setting the class variable state or target
node state to the MPE mode, the BN model can observe the
most likely occurrences of other nodes under specific types
of accidents, known as the most probable RIF states, in this
way, the causes of railway accidents can be predicted to some
extent.

In the MPE mode, each node has at least a confidence
level of 100% for its possible states, indicating the most
likely situation. Other confidence levels represent lower prob-
abilities, scaled accordingly. Some nodes may have multiple
confidence levels of 100%, indicating that the states corre-
sponding to these confidence levels have equal probabilities
of occurrence under a certain type of accident.

III. RESULTS AND DISCUSSION
A. DESCRIPTION OF ACCIDENT TYPES
To generate RIFs in railway accidents, a case analysis was
carried out following the procedure introduced in Section II.
As listed in Table 3, in the quantitative analysis of BN

TABLE 3. Accident types.

modeling, the accident types were defined as dependent
variables, including derailment, collision, conflict, explosion,
attempted incident, overrun point, loss of control, etc. Strictly
speaking, ‘‘attempted incident’’ is not considered an accident
type, and it was included as a category to enrich the accident
cases because of its threat to railway safety operations [31].

B. DESCRIPTION OF ACCIDENT TYPES
To construct the BN model, 26 RIFs were selected
to illustrate their relationship with the dependent vari-
able (i.e., accident types). The Netica software package
(http://www.norsys.com) was used to assist in the calcu-
lations, and the ‘‘Learn Network’’ function based on Eq.
(2) was employed to construct the TAN network. The
constructed BN structure is demonstrated in Fig. 2. After
importing the data, domain experts thoroughly investigated
the constructed TAN-BN network to guarantee that all con-
nections between nodes were meaningful. In this study,
since all the interconnections of the data reflected real-
world scenarios, no adjustments were made in the fine-tuning
process.

Based on the TAN model, the Netica software utilized the
Counting Learning Algorithm (https://www.norsys.com/
WebHelp/NETICA/XCountingLearning_Algorithm.htm) to
perform parameter learning of the CPT in the case. Once
the CPT was modeled, posterior probabilities for each vari-
able could be obtained. By analyzing the probabilities of the
variables, preliminary conclusions regarding railway accident
safety warnings and accident prevention can be made. Based
on this, the following insights are gained.

Fig. 3 represents the results obtained on the TANmodel for
all 26 retained RIFs. Among the accident types, derailment
and collision are the most frequent, accounting for 32.6% and
31.0%, respectively. Compared to historical statistical data,
the results obtained on the TAN model exhibit a high level
of reliability. As shown in Table 4, the predicted probability
for the ‘‘derailment’’ accident type differs from the historical
data by only 1.28%, and the predicted probability for the
‘‘attempted incident’’ accident type only differs by 0.2%.
These minor differences could be attributed to the ‘‘other’’
category, demonstrating the predictive accuracy of the con-
structed model.
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FIGURE 3. TAN-BN parameter learning.

TABLE 4. Comparison of historical data and TAN results.

C. SENSITIVITY ANALYSIS
1) MUTUAL INFORMATION
The mutual information table between ‘‘accident type’’ and
RIFs is presented in Table 5. This table shows that risk
factor variables with higher I (s, αi) values are more indica-
tive of the underlying impact on ‘‘accident type’’. When
‘‘accident type’’ is the parent node, the risk factor variable
‘‘Undetected Track Damage’’ with a mutual information
value of 0.10616 has the greatest influence on the acci-
dent type. Meanwhile, there are many RIFs with mutual
information values smaller than 0.05. In this study, a thresh-
old of 0.05 was chosen for further discussion and analysis.
Based on this, eight variables were selected for further fac-
tor analysis, including ‘‘Undetected Track Damage,’’ ‘‘Train
Driver Skill,’’ ‘‘Load,’’ ‘‘Braking System Condition,’’ ‘‘Train
Speed,’’ ‘‘Traction System Failure,’’ ‘‘Level Crossing,’’ and
‘‘Bridge Damage’’. However, this does not exclude the pos-
sibility of considering more factors with smaller mutual
information values at an appropriate time. From a method-
ological perspective, prioritizing the influential individual
RIFs using the mutual information-based ranking table is an
effective approach.

2) SENSITIVITY ANALYSIS

After the important variables that affect the accident type are
selected, the next step is to analyze how these variables (or
the states of the variables) affect the target variable, i.e., acci-
dent type. Therefore, the joint probabilities of each variable
with ‘‘accident type’’ are calculated, as shown in Table 6.
Table 6 presents the states of each variable that have the
highest and lowest impact on the accident type. For example,
under the case of ‘‘track damage detected,’’ the likelihood
of ‘‘derailment’’ is the highest (63.5%); under the case of
‘‘train driver skills insufficient,’’ the likelihood of ‘‘collision’’
is the highest (34.1%); when the train is in an ‘‘overspeed’’
state, the probability of ‘‘collision’’ is the highest (32.3%);
when the train is in an ‘‘empty load’’ state, the likelihood of
‘‘derailment’’ is the highest (35.7%); when the train is in an
‘‘overload’’ state, the probability of ‘‘explosion’’ is the lowest
(5.00%).

This demonstration demonstrates the impact of specific
states of individual variables on the accident type. Mean-
while, it shows how different states of individual variables
affect the probability of specific accident types. After TRI
sensitivity analysis, Table 7 displays the TRI values of ‘‘train
driver skills’’ for ‘‘collision,’’ and Table 8 displays the TRI
values of risk variables for all accident types. By comparing
the updated values of the target node, it demonstrates that the
model complies with Criterion 1.

Specifically, in Table 7, the first row represents the baseline
scenario, and the subsequent rows represent different scenar-
ios when each state of the variable reaches 100%. To obtain
the degree of impact of RIFs on the accident types, the TRIs
are compared and ranked. The most important variables for
‘‘accident type’’ are given below:

Undetected track damage > Train overload > Traction
system failure > Brake system condition > Level crossing >

Train driver skills > Bridge damage > Train speed
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TABLE 5. Mutual information related to ‘‘Accident Type’’.

Undetected track damage may lead to instability during
train operations, increasing the risk of accidents and causing
train derailments, deceleration, or other safety issues. The
skill level of the driver is directly related to the safety of
operating the train; insufficient skills may result in oper-
ational errors and accidents. Insufficient driver skills can
impact decision-making abilities during emergency situa-
tions, increasing the severity of accidents. Overloading may
cause a decline in train performance, reduced braking system
effectiveness, and an elevated risk of accidents. Accidents
under overload conditions can jeopardize the safety of pas-
sengers and cargo. Brake system failures may lead to brake
malfunction, increasing the risk of collisions. High speeds
may make it more challenging to brake during emergencies,
escalating the likelihood and severity of accidents. Accidents
at high speeds can result in greater impact forces, causing
more serious damage to personnel and equipment. Traction
system failures may result in the train losing power, increas-
ing the risk of railway accidents. Level crossing accidents
may lead to collisions between vehicles and pedestrians or
other traffic participants. The consequences of accidents may
involve injuries to individuals and damage to vehicles. Bridge
damage may cause accidents when trains pass through,
especially on unstable or deteriorated bridges, leading to

train derailments or bridge collapses and causing significant
accidents.

From another perspective, different accident types are
associated with the priority levels of different variables. The
priority list of the most important variables for different
accident types is listed in Table 9. For instance, ‘‘Undetected
track damage’’ is the most critical RIF for ‘‘derailment’’ and
‘‘collision,’’ while ‘‘Exceeding stopping point’’ is the least
important RIF. Additionally, accidents such as ‘‘derailment,’’
‘‘collision,’’ and ‘‘near miss’’ are more frequently caused
by ‘‘Undetected track damage’’ compared to accidents like
‘‘conflict’’ and ‘‘loss of control.’’

3) MODEL VALIDATION
To verify the effectiveness of the model, multiple RIFs were
tested to investigate their combined impact on accident types.
By considering the different states of the parent nodes, the
change value for each state was obtained. ‘‘Undetected track
damage’’ was selected as the first node. The state with the
maximum change value in accident types (i.e., derailment)
increased by 10%, while the state with the minimum change
value in accident types decreased by 10%. This process is
shown as ‘‘∼10%’’ in Table 10. Then, the same method was
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TABLE 6. Joint probability of TAN model.

TABLE 7. TRI of collision risk variable (Train Driver Skills).

applied to the next RIF, and the cumulative change value was
obtained and updated. This updating process continued until
all RIF nodes were included. Similarly, the same updating
process was applied to states 2, 3. . . 8 of the ‘‘accident type’’
until all states were included.

The first column in Table 10 shows the original values in
the TAN model, while the other columns show the updated

change values of the results. Each state of the ‘‘accident type’’
is calculated separately, i.e., each row is computed based on
the state changes of the RIFs within each accident type. It can
be observed from Table 10 that the update values of the target
node gradually increase or decrease as the RIFs change, thus
validating Criterion 2.

The impact of small variations in variables on railway
accidents may be minimal in certain situations, but in other
cases, it could lead to significant outcomes. The occurrence
of accidents is typically the result of complex interactions
among multiple factors, and small changes may trigger chain
reactions in these factors. Particularly in scenarios involv-
ing human operations or decision-making, minor errors or
variations can have substantial impacts on the entire process.
As shown in Table 10, when there is a slight variation in
the human factor ‘‘train driver skill,’’ the probabilities of
accidents classified as ‘‘conflict,’’ ‘‘attempted,’’ and ‘‘loss of
control’’ all increase.

Moreover, railway accidents that were not previously
included in the database were also simulated on the model to
validate its effectiveness. For example, in this study, the RAIB
report R142020 was taken for a case analysis. This event
occurred at 22:44 on March 23, 2020, when a locomotive
collided with the buffer stops at the end of a siding approxi-
mately 700meters south of the Bromsgrove station. Less than
a minute later, a northbound passenger train collided with
the corner of the locomotive. All parameter settings of the
proposed BN model were derived from the accident report as
follows:

(1) The accident occurred on the main line, not at a level
crossing.

(2) The accident occurred in very dark conditions. The
weather was clear and dry, with recorded temperatures rang-
ing from 2◦C to 4◦C. The local area had minimal lighting
conditions.

(3) The locomotive entered the siding, and the driver was
distracted in the driving process, causing the locomotive to
collide with the buffer stops and veer to the left.

(4) The passenger train was traveling towards the Broms-
grove station at a speed of about 85 miles per hour (136
kilometers per hour). Even if the train driver had applied the
brakes upon seeing the headlight in the darkness,he would not
have been able to stop the train before the accident occurred.

(5) After the collision with the buffer stops, the first action
taken by the locomotive driver was to exit the locomotive and
check for any derailment. This process took about 20 seconds,
so the driver did not have time to issue any warnings to the
signaler.

In the accident report, for situations where certain informa-
tion was not recorded or updated, evidence was not collected
from the accident report, and the other nodes maintained their
generic original probabilities. As illustrated in Fig. 4, based
on the above parameter settings, the probability of a collision
occurring between the trains was up to 72.8%. This further
verifies the effectiveness of the proposed model.
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TABLE 8. The TRI of risk variables for all accident types.

FIGURE 4. Verification of the model based on the previous railway accident.

TABLE 9. The priority of important variables.

4) IMPLICATIONS
To observe the connections between related nodes in a BN
and identify the most likely states within the nodes, the TAN-
BN model can provide the MPE based on a determined

accident type. By exploiting the MPE mode of the BN, the
most probable risk factors under the current accident type can
be observed. This method provides a more comprehensive
and reliable solution for analyzing railway accidents, predict-
ing the causes of accident occurrences, and aiding in accident
prevention.

As demonstrated in Fig. 5, under the MPE mode, ‘‘derail-
ment’’ is the most likely accident type, while other RIFs
exhibit their most likely states. That is, train accidents
involving ‘‘derailment’’ usually occur under the following
conditions.

(1) The accident occurs not at a level crossing, between
6:00 and 18:00, with a normal train speed and under good
weather conditions.

(2) The train driver is fatigued, the track timber is rotten
and deteriorated, and maintenance personnel lack sufficient
skills to identify and detect relevant hazards in time.

VOLUME 12, 2024 38641



L. Shi et al.: Data-Driven Bayesian Network Analysis of Railway Accident Risk

TABLE 10. Accident probability with minor variations in variables.

FIGURE 5. The MPE of the BN model.

This result implies that the railway operating group should
review its management assurance procedures related to oper-
ational safety, also, it should takemeasures to ensure effective
monitoring, auditing, and management review of its safety
arrangements. This includes but is not limited to competency
management of operational personnel, traffic acceptance, and
general operating instructions. Meanwhile, train drivers need

to undergo appropriate brake performance tests at a high
speed to ensure effective braking. Besides, considering the
relevant laws, guidance, and good practices applicable in
other industries, a re-assessment of driver health standards
should be conducted to confirm their ability to effectively
control the risks of the driving task. Additionally, the railway
department should address fatigue risks appropriately and
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FIGURE 6. The MPE of the accident type ‘‘out of control’’.

effectively by reviewing and improving its current fatigue
risk management system for safety-critical personnel and
ensuring compliance with relevant industry guidelines and
best practices. For instance, in the case of accident reference
number R092020, as suggested by RAIB, railway staff should
be aware that stationary trains or vehicles may move without
warning when they work or visit maintenance yards, sidings,
and engineering works. Stationary trains or track vehicles
may also conceal trains approaching another line, and staff
must follow the requirements of their training and local
procedures.

Studies have found that operational safety management
has the greatest impact on most railway accidents, including
dimensions of managing safety measures and safety training.
Meanwhile, most railway accidents are caused by unsafe
human behaviors, i.e., human factors. The supervision and
control of train operations are based on human-environment
communication, and improper human operations and delayed
responses can cause serious railway accidents.

Similarly, when ‘‘accident type’’ is selected as state 7 (out
of control), theMPE exhibits multiple 100% confidence bars,
as demonstrated in Fig. 6. In this figure, multiple 100%
confidence bars change when one state is selected. In the case
of selecting the accident type in Fig. 5, the probability of
a train experiencing an ‘‘out of control’’ situation is higher
in the following conditions: accidents generally occurring
between 18:00 and 6:00 in the next day, brake system failure,
traction system failure or in good condition, insufficient skills
of train drivers, and inadequate skills of personnel.

The establishment of a database based on railway accidents
aims to comprehensively understand the safety aspects of
railway systems and implement corresponding improvement
measures. However, when utilizing such a database, it is cru-
cial to acknowledge certain limitations and potential biases.
The railway accident databasemay not be exhaustive, as some
incidents may go unreported, undocumented, or excluded

from the database. This may lead to inaccurate estimations
of accident frequency and types. Reports in the database
may be influenced by preferences and standards of different
organizations and individuals, introducing inconsistencies in
the nature of accidents due to potential overestimation or
underestimation. The timeliness of the database may expe-
rience delays, as the collection and compilation of accident
data may take some time, hindering the timely analysis of
recent changes and trends. Data quality may be impacted
by errors, omissions, or inconsistencies during the collection
and compilation processes, and inaccurate data can result
in misleading conclusions. There may be selective bias in
the database, recording only specific types or severities of
accidents, potentially leading to an insufficiently comprehen-
sive assessment of overall safety. Inconsistencies in variable
selection and definitions within the database, or the absence
of certain crucial variables, may affect a comprehensive eval-
uation of risk factors.

Despite the discussion of limitations associated with the
database, each incident report sourced from the RAIB that we
have chosen comprehensively documents detailed informa-
tion leading to the occurrence of accidents. This includes an
overview of the accident, geographical and natural environ-
ments, personnel conditions, machine and equipment status,
operational conditions of the railway, consequences of the
accident, and a detailed account of all relevant facts before,
during, and after the occurrence of the accident. We have uti-
lized the data records accumulated by the RAIB, a specialized
institution responsible for railway accidents, over the past
decade. The long-term accumulation of such data provides
a comprehensive understanding of accident occurrences over
an extensive time span, mitigating the impact of short-term
randomfluctuations on the results.We are cognizant of poten-
tial biases in the data arising from incomplete reporting or a
tendency to more easily record specific types of accidents.
To address this issue, we conducted a preliminary check of
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data quality and approached potential biases cautiously in our
analysis, ensuring the reliability of the study’s conclusions.
Through the integration of expert experience in establishing
the TAN model, comparative analysis with historical data,
model validation, and sensitivity analysis, the results of these
analyses indicate that our research is founded on a reliable
data basis.

IV. SUMMARY AND OUTLOOK
Compared to previous studies that focused on the causal
factors related to the severity and probability of railway
accidents, this study develops a new quantitative risk anal-
ysis method for railway accidents using a data-driven TAN
approach. How different risk factors influence different
types of railway accidents is investigated from an empiri-
cal and methodological perspective. First, to identify RIFs,
railway accident reports released by the RAIB during the
decade of 2011-2020 are selected to establish a railway acci-
dent database. Based on this, a risk-based TAN model is
constructed to analyze RIFs in railway accidents. Finally,
sensitivity analysis, scenario analysis, and MPE analysis are
carried out to demonstrate the research findings.

By calculating mutual information, RIFs for different acci-
dent types are ranked. The results indicate that the key
RIFs for railway accident types include ‘‘undetected track
damage,’’ ‘‘train driver skills,’’ ‘‘loading,’’ ‘‘braking system
condition,’’ ‘‘train speed,’’ ‘‘traction system failure,’’ ‘‘level
crossing’’, and ‘‘bridge damage.’’

Scenario analysis provides reasonable explanations for the
observed results and reveals the most probable scenarios for
specific accident types. It helps to identify potential hazards
and effectively assist railway authorities in formulating acci-
dent prevention measures.

While our study primarily focuses on the risk analysis
of railway accidents in the United Kingdom, the methods
employed inmodel establishment and performance validation
are applicable to different contexts. Applying the findings of
railway accident research to other geographical locations or
populations may pose certain challenges and limitations. For
instance, railway systems in different geographical locations
may exhibit significant variations, including track design,
technical standards, equipment configurations, and traffic
regulations. This can necessitate consideration and adaptation
to these differenceswhen applying the results elsewhere. Pop-
ulations in different regions possess distinct characteristics,
encompassing cultural, socio-economic conditions, travel
habits, among others. These factors may influence the occur-
rence and severity of accidents. However, these limitations
serve to enhance the transparency of our study, providing
a clear understanding of the complexities and uncertainties
involved when applying research results to other geographi-
cal locations or populations. Consequently, decision-makers
and practitioners can comprehensively grasp the applicability
of research outcomes, fostering collaborative efforts across
regions for a more judicious application of research findings
and enhancing the broad applicability of the study.

Generally, the results obtained by the TAN model demon-
strate the differences in important risk factors causing
different accident types. This provides valuable insights for
accident investigation and prevention. However, the MPE
method has its limitations: its results may change with the
introduction of irrelevant variables and even be deceptive
under the most probable explanation.

Besides, there are limitations in data representation. In this
study, 121 accident investigation reports were involved, and
accident type 4 (explosion) accounted for only 1.65% of all
accidents, i.e., two cases of explosion accidents. To obtain
more representative results, continuous data collection is
needed for model construction. In future work, more focus
will be placed on evaluating variables that are difficult tomea-
sure in accident reports, i.e., studying the impact of human
risk factors on railway accident risk analysis and investigating
individual factors in railway accident risk analysis. Further-
more, employing a multidisciplinary approach that integrates
knowledge from engineering, sociology, psychology, and
other fields facilitates a comprehensive understanding of the
responses, management, and impacts of railway accidents on
diverse geographical locations and population groups. This
approach contributes to a more nuanced comprehension of
the complexity surrounding accident occurrences, thereby
enhancing our ability to effectively address challenges posed
by distinct geographical locations and populations. By imple-
menting the above measures, it is possible to effectively
address the limitations in data representation and the inad-
equacies in research direction identified in the study, thereby
enhancing the accuracy and applicability of railway accident
risk analysis.
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