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ABSTRACT Compliant physical human-robot interaction (pHRI), as well as the accuracy and robustness
of trajectory tracking, are crucial for rehabilitation robots. In this paper, a new sitting/lying lower limb
rehabilitation robot, SUT-SLLRR, has been designed for patients with lower extremity motor dysfunction.
A dynamic movement primitives modulation-based compliance control strategy (DMPM-CCS) has been
proposed for the SUT-SLLRR. The high-level trajectory planner consists of the trajectory generator based
on dynamic movement primitives (DMPs), acceleration layer modulation generator, and velocity layer
modulation generator, which can reshape the reference trajectory to generate desired trajectory within a
constrained joint space through pHRI. Besides, the linear active disturbance rejection controller (LADRC)
is adopted as the low-level position controller to ensure that each joint can accurately and robustness track
the desired trajectory under internal and external disturbances. Simulation and experimental results indicate
that the proposed strategy can provide the compliant pHRI within the constrained joint space and ensure the
accuracy and robustness of trajectory tracking.

INDEX TERMS Sitting/lying lower limb rehabilitation robot, compliance control, physical human-robot
interaction, dynamic movement primitives, linear active disturbance rejection control.

I. INTRODUCTION
With the aggravation of aging, the number of stroke survivors
is projected to reach 77 million globally by 2030 [1]. Since
stroke is an acute cerebrovascular disease with a high dis-
ability rate [2], lower extremity motor dysfunction is often
associated with stroke survivors, which affects their daily
living activities. Rehabilitation training can help them recover
lower extremity motor function or reduce the risk of several
medical consequences secondary to paralysis, such as muscle
atrophy [3]. Compared with traditional rehabilitation, robot-
assisted rehabilitation training can reduce therapists’ physical
consumption, enhance rehabilitation training’s intensity, and
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extend the training time [4]. Furthermore, clinical validation
of lower limb rehabilitation robots (LLRRs) has shown that
they have positive effects in facilitating stroke survivors to
recover motor function [5].

Several types of LLRRs have been designed for the patients
with different movement abilities [6]. They can be divided
into the following three categories: wearable, suspended, and
sitting/lying LLRRs. Wearable LLRRs need the patients to
be able to walk independently, which can assist them in com-
pleting daily living activities, such as sit-to-stand transfer [7],
flat ground walking [8], and going up and down stairs [9].
Compared to wearable LLRRs, suspended LLRRs, such as
Lokomat [10], LOPES [11], and Walkbot [12], can also
provide an approximate natural gait training environment.
Besides, the suspension systems and other auxiliary devices
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can significantly reduce patient mobility requirements. How-
ever, the expensive equipment cost and large footprint make
applying in households more difficult. Sitting/lying lower
limb rehabilitation robots, such as MotionMakerTM [13],
S-LLRR [14], and LLR-Ro [15], provide a compromise solu-
tion between applicability and price, which can assist patients
in achieving single-joint and multi-joint rehabilitation train-
ing in both supine and sitting positions. Based on the above
research, we hope to design a sitting/lying lower limb reha-
bilitation robot to assist patients in completing rehabilitation
training at home.

Control strategies should be reasonably selected according
to the patient’s motor disability level. For patients with weak
residual muscle strength, passive control strategies are usu-
ally needed to assist the affected limb in repeating training
along a predefined trajectory. The proportional-integral-
derivative (PID) controller is commonly used in rehabilitation
robots to help patients follow the reference trajectory [16].
Since rehabilitation robots are highly nonlinear coupled
dynamic systems and receive time-varying internal and exter-
nal disturbances, PID controllers with model-free character-
istics are challenging to guarantee tracking accuracy [17].
An adaptive neural network-based saturated controller was
designed for a LLRR, in which the radial basis function
neural networks and robust terms were adopted to compen-
sate for the unknown dynamics [18]. An output-constrained
controller with finite-time extended state observer was pro-
posed for a lower limb exoskeleton, which can estimate and
compensate for unmeasured joint velocity and lumped uncer-
tainty [19]. Since the model parameters are difficult to obtain
accurately by system identification, the active disturbance
rejection controller (ADRC) has gradually gained attention in
rehabilitation robots [20]. It can achieve accurate and robust
trajectory tracking by relying on the system order. Further-
more, to simplify the control structure and reduce the number
of tuning parameters, a linear active disturbance rejection
controller (LADRC) was proposed based on ADRC [21].
Although the LADRC is suitable for rehabilitation robots, the
passive control strategy rejects the patients’ active contribu-
tion, resulting in patients being unable to participate actively
in rehabilitation training.

Active control strategies are suitable for patients with
residual muscle strength, which can promote their recovery
by encouraging them to participate actively in rehabili-
tation training. Control strategies for rehabilitation robots
typically include the high-level trajectory planner and the
low-level position/torque controller [22]. Many active control
strategies have been proposed by designing appropriate low-
level position/torque controllers. Jamwal et al. proposed an
interactive training paradigm based on impedance control,
which can assist patients in completing various rehabilita-
tion training modes such as isotonic training, active training,
and isokinetic training by changing impedance parame-
ters [23]. In [24], a position-constrained assist-as-needed
control strategy was proposed for a knee exoskeleton, which
can smoothly switch between human-dominated and robot-

dominated modes based on robot assistance level metric.
Compared to the above strategies, the active control strategies
based on the high-level trajectory planner are more conve-
nient to expand their application in different rehabilitation
robots. Admittance control strategies can be designed effi-
ciently by combining the admittance model and traditional
position controller, which can reshape reference trajectory
through physical human-robot interaction (pHRI) [25], [26].
In [25], an admittance adaptive fuzzy control strategy has
been proposed for a walking exoskeleton robot, in which the
integral-type Lyapunov function controller with the distur-
bance observer was designed to ensure tracking performance,
and the admittance model was adopted to make the robot
adapt to human walking intention by shaping step trajectory.
In [26], a variable admittance time-delay control strategy
has been developed for a planar upper limb rehabilitation
robot, in which a sliding mode controller with a time-delay
approximator is utilized to enhance tracking accuracy, and the
admittance model with an iterative optimization algorithm is
used to adjust human-robot interaction compliance based on
estimated human arm stiffness. Although these admittance
control strategies allow patients to participate actively in
rehabilitation training, the admittance model and trajectory
planner are usually independent. Meanwhile, they need to
design an additional smooth constraint function to ensure the
safety of pHRI [27].
In this paper, a dynamic movement primitives modulation-

based compliance control strategy (DMPM-CCS) was pro-
posed for a new self-designed sitting/lying lower limb
rehabilitation robot. Simulations and experiments were per-
formed to verify the DMPM-CCS. The main contributions of
this paper can be summarized as follows:

1) A new sitting/lying lower limb rehabilitation robot
was designed for patients with lower extremity motor
dysfunction, which can assist knee and ankle joints in
independent or collaborative rehabilitation training in
the sagittal plane. Besides, the seat backrest angle, seat
height, exoskeleton length, etc., can be conveniently
adjusted according to the needs of different partici-
pants.

2) The DMPM-CCS was proposed based on dynamic
movement primitives (DMPs) [28] and LADRC.
It relies on dynamic movement primitives modula-
tion to achieve compliant pHRI and restrict abnormal
desired trajectorywithout needing an admittancemodel
and soft saturation function. Besides, the LADRC
was used to compensate for total disturbances and
ensure the accuracy and robustness of trajectory
tracking.

3) Simulations and experimental studies were conducted
to verify the effectiveness of the DMPM-CCS. Results
indicate that the proposed strategy can provide com-
pliant pHRI and ensure the accuracy and robustness
of trajectory tracking. Moreover, the desired trajectory
can be restricted between the upper and lower boundary
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trajectory, avoiding desired trajectories beyond the safe
range of motion caused by abnormal interactions.

II. SYSTEM DESCRIPTION
A. STRUCTURE DESIGN OF SUT-SLLRR
As illustrated in Fig. 1 (a), we designed a sitting/lying lower
limb rehabilitation robot, SUT-SLLRR, to assist knee and
ankle joints in independent or collaborative rehabilitation
training in the sagittal plane. Velcro straps were adapted to
fasten the participant’s calf and foot to the SUT-SLLRR, and
the moveable bracket was designed for the convenience of
robot transportation. As shown in Fig. 1 (b), the servo motor
was used to drive each joint, the output shaft speed of the
motor was reduced through a harmonic reducer to meet the
speed and torque requirements of the rehabilitation training,
and the stop ring and flange can limit the range of motion.
As illustrated in Fig. 1 (c), the height of the SUT-SLLRR
can be easily adjusted by a height handwheel through the
worm gear assembly, leadscrew, coupling, connecting shaft,
and connecting flange. It can facilitate different participants
sitting on the SUT-SLLRR and adjust suitable height for
rehabilitation training. As illustrated in Fig. 1 (d) and (e),
the positions of the knee joint can be adjusted by the gear
rack mechanism through the length handwheel, and it can
be maintained using the gasket, the fixed block, and the
fixed knob. Besides, the switch between sitting and lying can
be achieved by adjusting the angle of the backrest through
the backrest knob. Furthermore, as illustrated in Fig. 1 (f),
the length of the calf exoskeleton is adjustable to fit the
participants’ leg length, which can be adjusted by the axial
sliding of the inner and outer sliding rods, and the fixed knob
and the fastening ring can be used to lock the length of the calf
exoskeleton.

B. CONTROL SYSTEM
The control system comprises two joint actuator modules,
a personal computer, and a data acquisition/output device.
Like [8], the knee joint actuator module is driven by a 220 W
brushless DC servo motor (EC 90 flat, Maxon, Sachseln,
Switzerland). A harmonic reducer (LCD-20-100-C-I, Leader,
Jiangsu, China) with a transmission ratio of 100:1 is con-
nected to the motor, and a 150 Nm torque sensor (M2212A,
SRI, Guangxi, China) is attached to measure joint torque.
Besides, a 100 W brushless DC servo motor (EC 60 flat,
Maxon, Sachseln, Switzerland), a harmonic reducer (LCD-
17-100-C-I-ST, Leader, Jiangsu, China), and a torque sensor
(M2210N4, SRI, Guangxi, China) are applied to constitute
the ankle joint actuator module. The angle of each active joint
is sensed using an incremental encoder (MILE 1024, Maxon,
Sachseln, Switzerland) located inside the servo motor, and
different servo motors are controlled by the same servo driver
(Module 50/5, Maxon, Sachseln, Switzerland). The data
acquisition/output device (NI DAQ, 6341, National Instru-
ments, USA) serves as an interface between the SUT-SLLRR
and a personal computer, which can collect and output signals

FIGURE 1. Mechanical structure of SUT-SLLRR: (a) is the virtual and actual
prototype of SUT-SLLRR; (b) is mechanical structure of knee joint; (c) is
the composition of the mechanism for adjusting seat height; (d) is the
composition of the mechanism for adjusting the anterior and posterior
positions of the knee joint; (e) is the composition of the mechanism for
adjusting the angle of backrest; (f) is the composition of the mechanism
for adusting and locking the length of the calf exoskeleton.

to control the servo driver of each joint. The personal com-
puter with the LabVIEW 2018 software can execute control
strategies and provide visual feedback for the participant,
as shown in Fig. 1 (a).

C. SECURITY PROTECTION
It is essential to protect participants from injury in exper-
iments, which should be considered during the structure
design and control system construction. The software-level
security protection method is designed in which each joint
angle can be restricted within a physiologically safe range of
motion, and it can switch off the SUT-SLLRR automatically
once it detects the angle beyond the safe range. Besides, the
power control-level security protection method is used; the
emergency shutdown buttons are provided for the operator
and participant, helping them switch off the SUT-SLLRR in
time under abnormal circumstances. Moreover, the mechan-
ical structure-level security protection method is designed;
if the former two protection methods fail, the stop ring and
flange can limit the range of motion, which can play a final
protective role for participants even in abnormal controller
and sensor conditions.
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FIGURE 2. The framework of DMPM-CCS for one active joint.

III. METHOD
A. CONTROL STRATEGY FOR SUT-SLLRR
The DMPM-CCS is proposed for the SUT-SLLRR, and the
control framework for one active joint is shown in Fig. 2. The
proposed control strategy consists of a high-level trajectory
planner and a low-level position controller. The high-level
trajectory planner consists of a trajectory generator based
on DMPs, an acceleration layer modulation generator, and
a velocity layer modulation generator, which can generate
desired trajectory within a constrained joint space through
compliant pHRI. Besides, the LADRC consists of a linear
extended state observer (LESO) and a proportional-derivative
(PD) controller, ensuring the accuracy and robustness of tra-
jectory tracking under internal and external disturbances.

It is worth noting that to avoid confusion between the
reference trajectory and the desired trajectory, we provide the
following explanation: 1) The reference trajectory for each
active joint is generated by the trajectory generator based on
DMPs without acceleration and velocity layer modulation; 2)
The desired trajectory for each active joint is generated by
the trajectory generator based on DMPs with acceleration and
velocity layer modulation during pHRI.

B. TRAGJECTORY GENERATOR BASED ON DMPs
The DMPs have good ability of motion learning and motion
generalization, which is useful for encoding and adjusting the
periodic reference trajectory [29]. For the kth joint of the SUT-
SLLRR (k = 1 and k = 2 represent the knee and ankle joints,
respectively), the trajectory generator is defined by nonlinear
differential equations, and the transformation system of the
DMPs is given as follows:

κ żr,k = α(β(gr,k − qr,k ) − zr,k ) + fr,k (φ, r), (1)

κ q̇r,k = zr,k , (2)

Here, fr,k (φ, r) is defined as a linear combination of nonlinear
basis functions

fr,k (φ, r) =

∑m
i=1 ψi(φ)wr,k,i∑m

i=1 ψi(φ)
r, (3)

ψi(φ) = exp(
cos(φ − ci) − 1

2σ 2
i

), (4)

where κ is the positive temporal scaling factor; a smaller
temporal scaling factor value indicates that periodic refer-
ence trajectory has higher frequency; α and β are positive
constants to ensure that the transformation system is in a
critical damping state; gr,k is the position goal; fr,k (φ, r) is
the forcing term obtained by supervised learning; we adopt
the locally weighted regression method [28] in this article;
qr,k and q̇r,k are the reference angle and angular velocity;
zr,k and żr,k are the reference angular velocity and angular
acceleration after expansion or contraction; φ is phase vari-
able; ψi is the ith kernel function; σi and ci are constants that
determine the width and center of the ith kernel function;m is
the number of kernel functions; wk,i is the weight coefficient
corresponding to the kernel function ψi.

The canonical system of the DMPs of is introduced as
follows to solve the time-dependence problem of forcing term

κφ̇ = 1, (5)

where φ is the phase variable, whose initial and final values
are 0 and 1, respectively. Besides, we introduce the following
equation to achieve smooth adjustment of trajectory ampli-
tude

κ ṙ = αr(r0 − r), (6)

where r0 is the amplitude modulation factor, a smaller ampli-
tude modulation factor value indicates that the periodic
reference trajectory has higher amplitude; r is the state vari-
able of amplitude modulation factor; αr is a positive constant
that determines the speed of amplitude modulation factor
change.

C. DYNAMIC MOVEMENT PRIMITIVES MODULATION
It is worth noting that the DMPs can be modulated online and
respond in real-time to dynamic events occurring in the envi-
ronment [30]. As a result, it becomes crucial to implement
the acceleration and velocity layer modulation to ensure that
physical human-robot interaction is compliant and abnormal
desired trajectory can be restricted.

The transformation system of the DMPs after the acceler-
ation layer modulation is given as follows:

κ żd,k = α(β(gd,k − qd,k ) − zd,k ) + fd,k (φ, r), (7)

fd,k (φ, r) = fr,k (φ, r) + Fk , (8)

Fk = Ck τ̂k , (9)

τ̂k =

{
τk , |τk | ≥ τ̄k

0, |τk | < τ̄k ,
(10)

where qd,k is the desired angle for the kth joint during physical
human-robot interaction; fd,k (φ, r) is the forcing term after
the acceleration layer modulation; Fk is the modulation term;
Ck is the sensitivity factor, a smaller sensitivity factor value
indicates the lower robot compliance; τk is the interaction
torque from the torque sensor; τ̂k represents the interaction
torque after truncation processing; τ̄k represents the inter-
action torque threshold, which is the minimum interaction
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torque required for activating the spatial modulation of the
DMPs at the acceleration level. Besides, the transformation
system of the DMPs after the velocity layer modulation is
given as follows:

κ q̇d,k = zd,k + h(qd,k ), (11)

h(qd,k ) = −
1
γ
(

1
(qL,k − qd,k )3

+
1

(qU,k − qd,k )3
), (12)

where q̇d,k is the desired angular velocity; h(qd,k ) is the
repulsive force function; γ is the repulsive force factor; qL,k
and qU,k are the upper and lower boundaries of the desired
trajectory, respectively.

D. LADRC
Although achieving compliant pHRI and restricting abnormal
desired trajectory is crucial for enhancing patient engagement
and safety, the accuracy and robustness of trajectory tracking
are the foundation for rehabilitation training. In this part, the
LADRC is adopted to ensure each joint tracks the desired
trajectory under internal and external disturbances.

The dynamic model of kth joint in the human-robot cou-
pling system can be simplified as follows:

Jk q̈k + Bk q̇k + Gk sin(qk ) + Tksgn(q̇k )

= τA,k + τE,k + τH,k , (13)

where Jk is the inertial of the robotic exoskeleton (including
the participant’s leg); Bk is the viscous friction torque coef-
ficient; Gk is the gravity torque; Tk is the Coulomb friction
torque; τA,k is the control torque; τH,k is the active joint torque
of participants; τE,k is the external disturbances.
Equation (13) can be rewritten as follows:

q̈k = fk + bkτA,k , (14)

fk =
1
Jk

(τE,k + τH,k − Bk q̇k − Gk sin(qk )

− Tksgn(q̇k )) + (
1
Jk

− bk )τA,k , (15)

where fk is the total disturbances consisting of internal
and external disturbances; bk is the compensation factor
determined by dynamic characteristics. We defined the state
variable to xk,1 = qk , xk,2 = q̇k , xk,3 = fk , and the state space
form of (14) can be given as follows:{

ẋk = Axk + BkτA,k + Eḟk
qk = Cxk ,

(16)

where xk = [qk , q̇k , fk ] is the extended state vector, and

A =

 0 1 0
0 0 1
0 0 0

 ,Bk =

 0
bk
0

 ,E =

 0
0
1

 ,C =
[
1 0 0

]
.

Then, the continuous linear extended state observation
to (16) can be given as follows:{

żo,k = [A − LkC]zo,k + [B,Lk ]Dk

θk = zo,k ,
(17)

where zo,k → xk , and zo,k is the state vector of LESO; Lk
is the observer error feedback gain vector; Dk = [τA,k , qk ]T

is the combining input vector; θk = [q̂k , ˆ̇qk , f̂k ] is the output
vector.

It is worth noting that the observer error feedback gain
matrix needs to be designed reasonably to achieve sat-
isfactory observation results. The poles of the observer’s
characteristic equation are set at the same position on the left
side of the complex plane, i.e., Lk =

[
3ωo,k , 3ω2

o,k , ω
3
o,k

]
,

and it follows that

λk (s) = |sI − (A − LC)| = (s+ ωo,k )3, (18)

where I ∈ R3×3 is an identity matrix, and ωo,k is the observer
bandwidth of LESO.

Since the LESO can estimate the external and internal
disturbances in real time, the integrator term used to eliminate
steady state errors in classical PID is unnecessary. Thus,
the linear state feedback control law for the kth joint of the
SUT-SLLRR can be described as follows:

τA,k =
kp,k (qd,k − qk ) − kd,k q̇k − f̂k

bk
, (19)

where kp,k = ω2
c,k and kd,k = 2ωc,k are the proportional and

derivative gain;ωc,k is the controller bandwidth; qd,k and q̇d,k
are the desired angle and angular velocity during pHRI. The
stability analysis of the LADRC for nonlinear systems with
dynamic uncertainties has been considered in [31].

IV. SIMULATIONS AND EXPERIMENTS
A. SIMULATION STUDIES
1) SIMULATION SETTING
Compliant pHRI verification of DMPM-CCS was carried in
MATLAB under different sensitivity factors (C1 = 1,C1 =

2, and C1 = 3), simulation and sample time were set to 30 s
and 0.01 s, respectively. The parameters of the DMPs were
set as follows: α = 25, β = 6.25, αr = 12.5, gr,1 = 0,
gd,1 = 0, κ = 1 and r0 = 0.9. Besides, the interaction
torque threshold, the repulsive force factor, the upper and
lower boundaries of the desired trajectory for knee joint were
set to τ̄1 = 4Nm, γ = 1000000, qL,1 = −0.15rad, and
qU,1 = 1.0 rad. Similar to [32], the dynamic parameters of the
knee joint were set as follows: J1 = 0.35,B1 = 0.486,G1 =

13.55, and T1 = 3.33. For the LADRC, the compensation
factor, the observer bandwidth, the controller bandwidth were
set to b1 = 3.5,wo,1 = 105, and wc,1 = 35. To better
mimic the active torque applied by the human body, according
to [33], the following interaction torque was set to simulate
the active torque applied by the participants:

τ̄H,1(t) = a1 sin(
b1t
10

+ c1) + a2 sin(
b2t
10

+ c2)

+ a3 sin(
b3t
10

+ c3) + a4 sin(
b4t
10

+ c4)

+ a5 sin(
b5t
10

+ c5), (20)
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τH,1(t) =

{
τ̄H,1(t − 10), 10 ≤ t ≤ 23.5
0, otherwise,

(21)

The fitting parameters were set as follows:

a1 = 60.91, b1 = 0.4741, c1 = −0.2221, a2 = 8.315,

b2 = 11.22, c2 = −4.447, a3 = 23.17, b3 = 13.14,

c3 = −2.834, a4 = 17.32, b4 = 13.87, c4 = −0.2997,

a5 = 26.16, b5 = 2.786, c5 = 0.7481.

2) SIMULATION RESULTS
From Fig. 3 (a), the DMPs can be modulated online through
interaction torque, which can continuously generate the
desired trajectory when pHRI occurs, and the desired tra-
jectory gradually converges back to the reference trajectory
once pHRI stops. Meanwhile, increasing the sensitivity factor
enhances the deviation between the desired and reference
trajectories under the same interaction torque. Besides, the
desired trajectory can be restricted between the upper and
lower boundary trajectories, ensuring it stays within a safe
range of motion. In Fig. 3 (b), the control torque is smooth,
except for near-sudden changes in interaction torque. The size
and shape of the control torque are similar to the control
torque generated by the state observer, indicating that the
LESO can effectively compensate for internal and external
disturbances. Furthermore, the control torque generated by
PD is minimal under different sensitivity factors, suggesting
that the precise feedforward compensation from LESO sig-
nificantly weakens the contribution of feedback control.

B. EXPERIMENTAL STUDIES
1) EXPERIMENTAL SETTING
We carried out the robustness and compliant pHRI verifi-
cation experiments on the SUT-SLLRR. In the robustness
verification experiment, we bound 1 kg, 2 kg, and 4 kg
weights at the footplate to simulate different loads and con-
ducted three trials under each load condition. Besides, the
compliant pHRI verification experiment was carried out on
one healthy participant, who was required to apply active
torque during the experiment. Similar to the robustness veri-
fication experiment, we conducted three trials. We evaluated
trajectory tracking performance using average error, exclud-
ing the first and last cycles.

Control parameters should be set reasonably. For robust-
ness verification experiment, the sensitivity factor for each
joint was set to C1 = C2 = 0, the compensation factor,
the observer bandwidth, the controller bandwidth were set to
b1 = 8, b2 = 10,wo,1 = 25,wo,2 = 30,wc,1 = 25, and
wc,2 = 30. Other parameters of the DMPM-CCS were set the
same as that in simulation. For compliant pHRI verification
experiment, the sensitivity factor for each joint was set to
C1 = 2 and C2 = 1, the interaction torque threshold were set
to τ̄1 = 2Nm and τ̄2 = 2Nm, the upper and lower boundaries
of the desired trajectory for knee and ankle joints were set to
qL,1 = −0.15 rad, qU,1 = 1.0 rad, qL,2 = −0.3 rad, and

FIGURE 3. Results of the compliant pHRI verification in knee joint: (a) is
the compliant pHRI performance of DMPM-CCS; (b) is the control toruqe
of DMPM-CCS under preset interaction torque. RT, DT, TT, UB, and LB
represent reference trajectory, desired trajectory, tracking trajectory,
upper boundary trajectory, and lower boundary trajectory, respectively.
PIT, CT, CTGSO, and CTGPD represent preset interaction torque, control
torque, control torque generated by state observer, and control torque
generated by PD, respectively.

qU,2 = 0.3 rad. Other parameters were set the same as that in
robustness verification experiment.

2) EXPERIMENTAL RESULTS
Fig. 4 (a) and (b) demonstrate that the trajectory generator
based on DMPs can generate continuous periodic reference
trajectories for knee and ankle joints. The tracking trajectory
of each joint can accurately follow the reference trajectory,
even when a 4 kg load weight is placed on the footplate.
Additionally, the maximum tracking errors of the knee and
ankle joints are less than 0.08 rad and 0.04 rad, respectively.
As seen in Fig. 4 (c), the knee and ankle joint observation
torques are smooth and show clear periodic characteristics,
ranging from −80 to 50 Nm and −40 to 40 Nm, respectively.
In Fig. 4 (d), the ankle joint duty cycle is smaller than the
knee joint, which is in line with the observation torque.

In Fig. 5 (a) and (b), the trajectory generator based on
DMPs can reshape the reference trajectory, thereby producing
the desired trajectory for the knee joint during physical inter-
action. Once the interaction torque reduces to a small range,
the desired trajectory gradually converges to the reference
trajectory. Even though the interaction torque exceeds 15Nm,
the desired trajectory lies within the upper and lower bound-
aries, consistent with the simulation results. Furthermore,
due to the application of active torque by the participant,
the amplitude of the knee joint duty cycle is larger than
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FIGURE 4. Results of the robustness verification experiment with 4 kg
load weight. The RT, TT, and ET represent reference trajectory, tracking
trajectory, and error trajectory, respectively. The AJOT, KJOT, AJDC, and
KJDC represent ankle joint observation torque, knee joint observation
torque, ankle joint duty cycle, and knee joint duty cycle, respectively.

that shown in Fig. 4 (d). In Fig. 5 (c) and (d), compared
to the knee joint, the tracking trajectory of the ankle joint
can more accurately follow the desired trajectory due to the
smaller interaction torque. Additionally, from 30 s to 100 s,
the trajectory deviation gradually increases with the increase
of interaction torque, and there is a slight chattering in the
duty cycle.

Table 1 shows the quantitative analysis results when using
the DMPM-CCS. During the robustness verification exper-
iment, the mean average error for the ankle joint is only
0.0137 rad when a 1 kg load weight is applied on the foot-
plate, and it remains relatively unchanged even as the load
weight is increased to 4 kg. However, compared with the
ankle joint, the mean average error of the knee joint under dif-
ferent loadweights increased significantly, reaching 132.85%
(1 kg), 136.76% (2 kg), and 143.07% (4 kg). Moreover,
the mean average error of both the knee and ankle joints
increases when subjected to the compliant pHRI verification
experiment. Specifically, compared to results when the load

FIGURE 5. Results of the compliant pHRI verification experiment with
one healthy participant. The RT, DT, TT, UB, and LB represent
reference trajectory, desired trajectory, tracking trajectory, upper
boundary trajectory, and lower boundary trajectory, respectively. TD
represents the trajectory deviation between the desired trajectory and
the reference trajectory.

weight is set to 4 kg, the mean average error of the ankle joint
increases by 8.76%, while that of the knee joint increases by
13.51%. It is worth noting that the maximum average error
of the knee and ankle joints is 0.0379 rad and 0.0153 rad,
respectively, which is well within the acceptable range for
trajectory tracking in rehabilitation training.

V. DISCUSSION
A. COMPLIANT PHRI IN CONSTRAINED JOINT SPACE
Compliant pHRI is crucial for enhancing patient engage-
ment and safety during rehabilitation training. In this article,
the DMPs modulation method is used to design the tra-
jectory generator that considers the interaction torque and
constrained joint space, thereby achieving safe and compliant
pHRI [30]. The DMPs can be used to learn the reference
trajectory for each joint using the locally weighted regression
method [28] and generalize the reference trajectory by adjust-
ing the temporal scaling factor and amplitude modulation
factor [8]. Besides, the spatial modulation of the DMPs at
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TABLE 1. Results of experiments.

the acceleration level is adopted to realize compliant pHRI.
The sensitivity factor is similar to the admittance gain in [22];
increasing its value can enhance robot compliance. Addition-
ally, within a suitable range, the sensitivity factor can ensure
pHRI stability, as the transformation system of the DMPs is a
second-order critical damping system. Moreover, the spatial
modulation of the DMPs at the velocity level is implemented
to prevent the desired trajectory from exceeding the safety
range in joint space. Compared to [8] and [27], it can restrict
the desired trajectory within a safe joint space without design-
ing a soft saturation function. While the actual joint position
depends on the position controller, spatial constraints on the
desired trajectory can be beneficial for ensuring the safety of
rehabilitation training.

B. ACCURATE AND ROBUST TRAJECTORY TRACKING
Ensuring the accuracy and robustness of trajectory tracking
is the foundation for rehabilitation training. Since the unex-
pected behavior of stroke patients, model uncertainties, and
external disturbances [34], [35], how to easily and effectively
achieve accurate and robust trajectory tracking remains a
challenge. In this article, the LADRC consists of the LESO
and the PD controller is adopted to ensure each joint accu-
rately tracking reference/desired trajectory. Although many
model-based controllers, such as the adaptive sliding-mode
controller [36] and the adaptive robust controller [37], have
been proposed to enhance the anti-disturbance ability of reha-
bilitation robots. Furthermore, radial basis function neural
networks [18], finite-time extended state observer [19], and
nonlinear disturbance observer [38] are also embedded in
model-based controllers to strengthen the anti-disturbance
ability. However, the model parameters of the coupling model
are difficult to obtain accurately by system identification, and
controller design and parameter tuning are time-consuming.
In contrast, the LADRC inherits the model-free characteris-
tics of PID controllers and ensure the accuracy and robustness
of trajectory tracking [39]. Besides, the parameter tuning of
LADRC was more straightforward than that of the above
model-based controllers, and only three main parameters
(the compensation factor, the controller bandwidth, and the
observer bandwidth ) to be tuned [21].

C. LIMITATIONS AND FUTURE WORK
This article has several limitations that should be addressed
in future research. Firstly, the torque sensor used to extract
motion intention is prone to several interferences, such as
gravity torque, friction torque, inertial torque, and passive
joint torque [32], which has impact on motion intention
extraction and human-robot synchronization [40]. To over-
come this limitation, the electromyography (EMG)-driven
musculoskeletal model [41] andmuscle synergy-driven adap-
tive network approach [42] will be applied to estimate
active joint torque. Secondly, although passive and active
training for participants can achieved by setting different
sensitivity factors, which may not be applicable to match
the varying motor abilities of different participants. Similar
to [43] and [44], the multi-modal adaptive control strat-
egy based on a motion intention and motion performance
will be developed, helping the SUT-SLLRR match varying
motor abilities. Thirdly, although the spatial constraints on
the desired trajectory are essential, the position controller
with output and velocity constraints will also be used to
enhance the safety of rehabilitation training [45]. Finally,
robot-assisted experiments were performed on the healthy
participant, a patients-based experiment will be carried out
on the SUT-SLLRR to verify the clinical effectiveness of the
DMPM-CCS.

VI. CONCLUSION
In this study, we design a new sitting/lying lower limb reha-
bilitation robot, named SUT-SLLRR, and propose a control
strategy, called DMPM-CCS, for the SUT-SLLRR. Simula-
tion and experimental studies were conducted to verify the
effectiveness of the DMPM-CCS. The results indicate that
the proposed control strategy can generate desired trajectory
within a constrained joint space through pHRI, while ensur-
ing the accuracy and robustness of trajectory tracking. These
findings demonstrate that the DMPM-CCS has immense
potential to be used in various fields involving pHRI, espe-
cially in rehabilitation robots.
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