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ABSTRACT The welding stud is a widely used part in automobile manufacturing, and its welding quality
plays a crucial role in component assembly efficiency and vehicle quality. In welded stud target inspection,
the complex body environment and different lighting conditions will have a certain impact on the inspection
accuracy, and most of the existing methods have limited efficiency. In this paper, in order to solve the
problems of low accuracy and slow speed in the stud target inspection process, we propose an innovative
welding stud target inspection method based on YOLOv7. First, the EfficientFormerV2 backbone network
is adopted to utilize the new partial convolution, which can extract spatial features more efficiently, reduce
redundant computation, and improve the detection speed. Secondly, the bounding box loss function is
changed to NWD, which reduces the loss value, accelerates the convergence speed of the network model, and
better improves the detection of studs. After the test, the improved YOLOv7 network model is better than the
traditional network in both speed and accuracy of welded stud target detection. (1) The mAP0.5 increased
from 94.6% to 95.2%, and the mAP0.5:0.95 increased from 63.7% to 65.4%. (2) The detection speed
increased from 96.1 f/s to 147.1 f/s. The results of the study can provide technical support for the subsequent
tasks of automatic detection and position estimation of body welding studs.

INDEX TERMS Welding studs, object detection, EfficientFormerV2, NWD, YOLOv7.

I. INTRODUCTION
In the process of automobile manufacturing, studs are the
key parts to connect and fix the automobile body with other
parts, and there can be hundreds of studs on each vehicle, and
there are many different models [1], [2], [3]. The studs are
mainly fixed on the metal surface of the car body by welding.
If the welding position has a large deviation or the stud
model welded on the surface is inconsistent with the design
program, it may lead to subsequent assembly difficulties or
even being unable to complete the assembly, which will have
a greater impact on the reliability and stability of the whole
car. Therefore, for accurate detection of the location and type
of welded studs, timely detection of leakage welding, wrong
welding, and other issues, for the enhancement of automotive
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raw for the body stud welding quality detection problems,
in the past, due to technical reasons, the detection of the
main relies on two ways: first, through the artificial visual
confirmation of the work piece studs whether to be placed,
the method exists in the high cost, low efficiency, heavy
workload, large detection error, and other shortcomings [4],
there will still be leakage welding and wrong welding. The
second is to detect through the sensor; the detection accuracy
of this method is higher, but the detection time is longer, and
because of the limitation of the body size, the size of the
stud cannot cover the different sizes of studs and cannot meet
the needs of the modern industry for on-line, high-precision,
high-efficiency measurement.

In automotive instrumentation inspection, welding process
quality control, sheet metal contour tracking measurement,
and other fields, machine vision inspection has become
increasingly prevalent as computer and image processing
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technologies continue to advance [5]. This is primarily due to
the non-contact nature of the inspection, rapid speed, and high
accuracy of machine vision inspection. In 2014, Wang et al.
utilized the method of monocular vision to extract the feature
information of the welded studs through the techniques of
edge detection, feature extraction, etc., and finally through the
computational model to realize the measurement of the posi-
tional offset and tilt angle offset of the welding stud [4]. The
method can better meet the measurement needs of automotive
and other manufacturing industrial fields, but the positional
accuracy and angular accuracy are low. SONG et al. pro-
posed an edge detection algorithm that utilizes morphology
and wavelet transform to accurately identify bolt structures,
which is verified to have strong noise immunity but can only
handle images with simple backgrounds [6].
In recent years, people have begun to widely apply deep

learning methods to machine vision target detection in differ-
ent scenarios, including fruit detection [7], [8], [9], vehicle
detection [10], ship detection [11], [12], defect detection
[13], [14], [15], behavior detection [16], [17], etc., and
have achieved good results. Compared with traditional tar-
get detection algorithms, deep convolutional networks can
automatically learn multi-level feature models from training
data and have strong generalization and feature extraction
abilities. Deep learning-related algorithms are mainly classi-
fied into two categories: one is single-stage target recognition
models, such as the YOLO (You Only Look Once) series
and the SSD series; the other is two-stage recognition mod-
els, such as R-CNN and Faster R-CNN. Currently, some
researchers have already applied these deep learning network
structures to study target detection. In 2019, Lian proposed a
detection method based on VGG and Faster RCNN models
to study and experiment on the missing problem of stud
nuts on top of automotive gold parts, which can get the
location information of the picture where the stud nuts are
located, but the number of samples in the method is small,
the mAP value is only 30.4%, and there is no detection of the
specification dimensions or information such as the vertical
angle [18]. Since single-stage algorithms only need to scan
the image once to produce detection results, they have higher
efficiency compared to two-stage algorithms. Zhang et al.
introduced an enhanced SSD network that utilizes multi-
window, multi-scale fusion to rectify the drawbacks of the
conventional SSD, namely its lack of sensitivity to small
targets, and the mAP was improved to 43.2% [19]. Yang
et al. used an improved YOLOv3-tiny network to recognize
bolts, and the mAP increased from 81.3% to 83.9%, but the
method is only applicable to the angle at which the cam-
era shoots the object vertically [20]. In order to solve the
problems caused by the missing bolt detection of steel struc-
ture canopies in passenger stations of high-speed railroads,
Wang et al. used the YOLOv4 convolutional neural network
algorithm to establish a bolt missing detection system, which
first annotates the bolts of the steel structure canopies and
the contact network collected in the field, and utilizes the
data enhancement operations, such as CutMix and Mosaic,

which are used to increase the diversity of the training data,
and finally the accuracy of the system category recognition
reaches more than 85%, but the method is more prone to
overfitting phenomena [21]. Zhang et al. got around the
problems with current detection methods by combining a
lightweight YOLOv4 neural network with the photometric
stereo method to find welded stud positions on targets [22].
A good answer to the issue is the proposed stud position
detection system, which combines deep learning and pho-
tometric stereo for target detection in industrial production.
Although the designed stud position detection system offers
a foundation for integrating deep learning with photomet-
ric stereo for target detection in industrial production, the
approach is unsuitable for mass production and has a high
equipment cost. Wang et al. propose a bolt detection and
positioning system based on a neural network and RGB-D
camera that employs lightweight YOLOv5s-T to identify the
bolts and screen the main bolts, realizing the fast guidance
of the end of the 6-degree-of-freedom robotic arm to the
fastening point of the bolts [23]. The mean average accuracy
of the method reached 94%, but the FPS was only 5.83.

Despite the achievements in stud detection, there is still
a lot of room for improvement in detection accuracy and
speed for different bolt targets in industrial automated on-
line inspection. Therefore, how to further improve balanced
detection accuracy and speed is still a challenging issue.
In addition, when the ambient light changes, the possible
leakage of detection and the decrease in confidence level
are also urgent problems to be solved. Based on the above
discussion, this paper proposes a target detection algorithm
for body stud recognition in an automated production shop
environment to realize a two-way improvement in detection
speed and accuracy for the body stud target detection task.
This paper primarily presents the following contributions:

(1) Replace the backbone network of the YOLOv7 algorithm
with EfficientFormerV2, so that the network reduces
memory access and redundant computation and improves
the computing speed of the detection process.

(2) Replace the loss function with NWD to solve the problem
of slow convergence and low efficiency of the model
during the training process, which effectively improves
the performance of the network in accurately detecting
small targets with welded studs.

(3) Propose an improved YOLOv7 algorithm applied to
the task of detecting welded stud targets in automobile
bodies, and conduct ablation experiments and compar-
ative tests of the improved YOLOv7 algorithm on the
stud dataset. Compared with the existing algorithms, the
improved YOLOv7 algorithm in this paper shows signif-
icant improvements in detection accuracy and speed.

The rest of the paper is organized as follows: Section II
introduces the real-time target detector, YOLOv7. Section III
describes the improved YOLOv7 algorithm in detail.
In Section IV, the experimental dataset and parameter settings
are presented, and the results of the ablation and comparison

41532 VOLUME 12, 2024



H. Huang et al.: Efficient Object Detection and Recognition of Body Welding Studs

FIGURE 1. Structure of YOLOv7 model.

experiments are given. Section V summarizes the algorithm
proposed in this paper and gives an outlook for future work.

II. RELATED WORK
TheYOLO family of algorithms is a typical class of one-stage
target detection algorithms released in 2015, and YOLOv7 is
a more advanced version of the family with excellent speed
and accuracy in the range of 5 FPS to 160 FPS [24]. In real-
time image and video analysis, etc., YOLOv7 is able to
quickly and accurately detect multiple objects and provide
their position and category information, so in this paper,
we choose the YOLOv7 model for stud detection [25]. The
YOLOv7 network is mainly composed of the following parts,
and the network structure of YOLOv7 is shown in Fig. 1.
(1) Input: in YOLOv7, following theMosaic data enhance-

ment method proposed by YOLOv4 [26], four pictures are
randomly cropped and then spliced into one picture for train-
ing, enriching the dataset to improve the training efficiency
while the training and inference costs remain unchanged.
Following this, the training set is employed to calculate the
optimal anchor points in an adaptive manner. The image
is then resized to a standardized dimension prior to being
transmitted to the backbone.

(2) Backbone: the main function of the backbone is to
extract the feature information of the target. The YOLOv7
backbone network consists of the CBS module, the MP

module, and the ELAN module. The convolutional layer,
batch normalization layer, and activation function comprise
the CBS module, which forms a standard convolutional
block. The downsampling operation is carried out by the MP
module, which comprises the maximal pooling layer and the
CBS module and has upper and lower branches. The ELAN
module is an efficient aggregation network that enhances the
network’s learning capability.

(3) Head: The Head part fuses the feature output from
the Backbone and continues to extract features, generating
a priori frames for classification prediction based on the
strengthened features, which mainly include the SPPCSPC
module, the MP module, the ELAN-H module, and the REP
module. The SPPCSPS module introduces the CSPC struc-
ture on the basis of spatial pyramid pooling [27], so that it
has one residual edge and is stacked with the feature layer
after the maximum pooling process, reducing the amount of
computation while increasing the accuracy. The REP module
is divided into the training module and the inference module,
which combines the different convolutional layers and batch
normalization layers into one convolutional module when
training the model and reparameterizes the parameters in the
training module to the inference module when reasoning on
the network, which accelerates the network reasoning under
the condition of guaranteeing the performance of the model,
reducing the model complexity but reducing the prediction
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FIGURE 2. Improved YOLOv7 network structure.

performance. The complexity of the model is reduced, but
the prediction performance is not degraded.

III. METHOD
This research presents an updated YOLOv7 detection net-
work model that is optimized on the YOLOv7 backbone
network and loss function in order to increase the speed and
accuracy of body stud target recognition. Figure 2 depicts
the fundamental architecture of the network. In this paper,
the backbone network is EfficientFormerV2, the original
network topology is replaced, and NWD (Normalized Gaus-
sian Wsserstein Distance) is utilized in place of the loss
function. The first image is fed into the backbone network
for EfficientFormerV2 after data enhancement; the second
and third blocks of EfficientFormerV2 are connected to the
Head part’s CBS module and Concat layer for input features,
respectively; the final EfficientFormerV2 block of the back-
bone network is connected to the SPPCSPC feature fusion
module to achieve an effective connection between the head
part and the backbone network; since the training sample
imbalance problem’s impact on the bounding box regression
process cannot be adequately taken into account by the CIoU
loss used in YOLOv7, the NWD loss is proposed to lessen
the negative effects of low-quality anchors on the bounding
box regression process and increase the contribution of high-
quality anchors.

A. EFFICIENTFORMERV2 BACKBONE NETWORK
In the original YOLOv7 backbone network, for the input
image, four convolution operations are performed by the CBS
module to obtain the underlying features, and then the MP
and ELAN modules extract the fine-grained features. Such
a structure will use a lot of repeated feature information,
resulting in too many redundant operations, which increases
the latency of the model. When inspecting welded studs, the
high latency will make the time cost increase significantly.
Therefore, without affecting the accuracy of the model, this
paper proposes to replace the original YOLOv7 backbone
network with a more efficient EfficientFormerV2 network
structure. The network structure of EfficientFormerV2 is
shown in Fig. 3.
EfficientFormerV2 [28] is an improvement on the previ-

ous version [29], which achieved higher performance with
smaller models and faster reasoning. Two significant issues
with the previously effective Vision Transformer (ViT) were
its large model size and inability to be used on mobile
devices. In order to generate efficient networks with low
latency and small size based on the referenceMobileNet, Effi-
cientFormerV2 uses a fine-grained federated search method.
It uses a depth-separable convolutional layer with the same
kernel size in place of the Query mixer’s average pooling
layer, adhering to the standard ViT architecture and enhanc-
ing performance without adding latency. On the ImageNet
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FIGURE 3. The EfficientFormerV2Block model structure diagram.

dataset validation set, the network outperformsMobileNetV2
by 4% while keeping the same latency and parameter counts.

Four stages of hierarchical design are used by Efficient-
FormerV2 to capture features at 1/4, 1/8, 1/16, and 1/32
of the input resolution, respectively. Like its predecessor,
EfficientFormer, EfficientFormerV2 does not use inefficient
non-overlapping patches; instead, it embeds the input pic-
ture from a small kernel convolutional stem. In the first
two stages, just a uniform feed-forward network (FFN) is
used to capture high-resolution local information; in the sub-
sequent two stages, local FFNs and global MHSA blocks
are used. In addition, building on previous versions, Effi-
cientFormerV2 introduces fine-grained joint size and speed
searches, resulting in extremely fast inference and smaller
model sizes, outperforming previous techniques and becom-
ing a powerful backbone for a variety of downstream tasks.

Replacing the backbone of YOLOv7 with Efficient-
FormerV2 effectively reduces memory access and latency.
With this improvement, the inspection process is capable of
being completed in less time by the model, resulting in higher
frames per second (FPS).

B. NWD LOSS FUNCTION
The loss function of YOLOv7 consists of 3 parts: localization
loss, confidence loss, and classification loss, and the compu-
tational representation is as follows:

Lloss = λ1Lobj + λ2Lcls + λ3Lbox (1)

where Lobj denotes the confidence loss; Lcls denotes
the classification loss; Lbox denotes the localization loss;
and λ1, λ2, λ3 are the balance coefficients. Both confi-
dence loss and classification loss are calculated using the
binary cross entropy loss function; confidence loss is cal-
culated for all samples, classification loss is calculated
for positive samples only, and localization loss is calcu-
lated using CIoU (Complete-IoU) as the regression loss

FIGURE 4. IoU analysis of stud targets vs. other larger targets.

function (LCIoU ), calculated as:

LCloU = 1−IoU +
p2(b, bgt )

c2
+ αν (2)

α =
v

(1 − IoU ) + v
(3)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (4)

where p2(b, bgt ) represents the Euclidean distance between
the two centroids and IoU indicates the consistency of the
metric aspect ratio; The weight parameter is represented by
α; the aspect ratio similarity between the real and predicted
boxes is represented by v; the diagonal distance of the mini-
mum enclosing box is represented by c; the width and height
of the real box are represented by wgt and hgt , while the
predicted box’s width and height are represented by w and
h. Bounding box regression is a key part of figuring out how
well target localization worked, and the original YOLOv7
network’s CIoU loss didn’t take into account the issue of
training sample imbalance. High-quality anchors exhibit a
high IoU with the real box, meaning they closely align with
the target. Conversely, a small IoU of real frames paired
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with low-quality anchors suggests a poor match with the
target. Because of the anchor base’s limitations, only a small
percentage of the many anchors generated are high-quality
enough to match the target object, leading to a significant
imbalance between positive and negative samples that inter-
feres with the model’s training process.

As demonstrated in Fig. 4(a), a slight positional deviation
between the pre-tested frame and the real frame causes the
IoU value to significantly decrease (from 0.51 to 0.09) when
the body studs are actually detected because the stud target
has a small area share in the entire image; for the normal-sized
target, as demonstrated in Fig. 4(b), the positional deviation
only causes a minor modification to the IoU (from 0.87 to
0.62). It is evident that the IoU is not suitable for body stud
detection and is highly sensitive to the positional deviation
of small targets. Instead of using the IoU, the Normalized
Gaussian Wasserstein Distance (NWD) is used in this work
to assess the similarity between the predicted frame and the
real frame using a two-dimensional Gaussian distribution.

Since the actual stud target is not precisely rectangular,
there will be some background pixels in the bounding box.
The foreground pixel studs are mostly found in the cen-
ter of the bounding box, whereas the background pixels
are scattered around the borders. In order to improve the
separation between the foreground and background pixels,
a two-dimensional Gaussian distribution describes the bound-
ing box. The stud pixels in the bounding box’s center are
given the greatest weight, and the weight value decreases as
one moves toward the boundary. The two-dimensional Gaus-
sian distribution N (µ,

∑
) for the horizontal bounding box

R = (cx , cy,w, h) (where (cx , cy) represents the coordinates
of the center point and w and h stand for the bounding box’s
width and height, respectively) is calculated as follows:

µ =

[
cx
cy

]
(5)

∑
=

[
w2

4 0
0 h2

4

]
(6)

The Wasserstein distance can still be used to determine the
degree of similarity between the real and predicted frames,
despite the fact that the values of KL dispersion (Kullback-
Leibler divergence) and JS dispersion (Jensen-Shannon diver-
gence) are meaningless and constant, respectively, due to
the absence or negligible overlap area between the two.
Hence, the Gaussian distribution distance between the pre-
dicted frame Ra = (cxa, cya,wa, ha) and the actual frame
Rb = (cxb, cyb,wb, hb) is computed utilizing the Wasserstein
distance:

W 2
2 (Na,Nb)=

∥∥∥∥∥
([
cxa, cya,

wa
2

,
ha
2

]T
,

[
cxb, cyb,

wb
2

,
hb
2

]T)∥∥∥∥∥
2

2

(7)

where W 2
2 (Na,Nb) is the Gaussian distribution distance

between the prediction frame and the real one; (cxa, cya) is the

coordinates of the center point of the prediction frame, and
wa and ha are the width and height of the prediction frame,
respectively; (cxb, cyb) is the coordinates of the center point of
the real frame, and wb and hb are the width and height of the
real frame, respectively. The Gaussian distribution distance
is normalized in exponential form and expressed as follows,
given that it is a distance metric and not a similarity metric:

NNWD(Na,Nb) = exp

−

√
W 2

2 (Na,Nb)

C

 (8)

where C is a constant related to the dataset. In addition,
CIoU computes the aspect ratio of the two bounding boxes
by taking into account the distance between the centroids
of the overlapping regions. However, the aspect ratio has an
impact on the loss function in situations where the predicted
box and the actual box do not overlap or overlap completely
in the context of stud target detection. As the NWD is more
suitable for the measurement of small target studs and is more
sensitive to changes caused by positional deviation, it can also
reflect the similarity between the predicted and actual frames.
As a result, the NWD is utilized as the loss function (LNWD)
in this paper. The expression for NWD is:

LNWD = 1 − NNWD(Np,Ng) (9)

where Np and Ng denote the Gaussian distribution of the
predicted and true frames.

C. EVALUATION METRICS
The experiments in this paper use several metrics to measure
the model’s detection performance, including Precision (P),
Recall (R), mean Average Precision (mAP), and Frames Per
Second (FPS) for all classes. P is the proportion of samples
predicted by the model to be positive categories that are
actually positive, i.e., how many of the samples predicted to
be positive are actually positive samples. TP (True Positives)
refers to the number of samples correctly predicted by the
model to be positive, i.e., the number of positive samples
that are correctly identified. FP (False Positives) refers to the
number of samples incorrectly predicted as positive by the
model for samples of negative categories, i.e., the number of
FN (False Negatives) refers to the number of samples that the
model incorrectly predicts as positive classes, i.e., the number
of positive samples that are incorrectly identified as negative
samples. TN (True Negatives) refers to the number of samples
that the model correctly predicts as negative classes, i.e., the
number of negative samples that are correctly identified. FP
and FN are related to the probability of wrong and missed
tests. P is calculated as:

P =
TP

TP+ FP
× 100% (10)

R is the proportion of all actual positive samples that are
correctly identified, indicating the ability of the model to
detect true positive samples. R is calculated as:

R =
TP

TP+ FN
× 100% (11)
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Precision and Recall are often contradictory performance
metrics, where the higher the value of one, the lower the other,
so it is necessary to combine these two evaluation metrics
in conjunction with Average Precision (AP) and assess the
performance of the model. In calculating mAP, the Average
Precision (AP) of each category needs to be calculated first,
which represents the average value of detection accuracy for
that category in the dataset. Then the AP values of differ-
ent categories are averaged to obtain mAP. The calculation
process of AP and mAP is shown in Eqs. (12) and (13),
respectively:

AP =

∫ 1

0
P(R)dR (12)

mAP =

n∑
i=0

AP(i)

n
(13)

where n denotes the number of categories to be detected
in the dataset. In this experiment, n = 5, i.e., 5 different
models of welded studs. The FPS frame rate is the number
of images that can be predicted by the network per second.
The larger the FPS, the faster the network’s inference is. The
higher the FPS of the model, the better it can meet real-time
detection needs. The FPS calculation process is shown in
Equation (14):

FPS =
1000
t

(14)

where t denotes the time in milliseconds required for the
model to infer the image. When measuring the accuracy of
target recognition, we need to set a threshold for the inter-
section ratio between the prediction frame and the ground
truth. Only when the intersection area of the two exceeds
the specified threshold is it recognized as correctly identified.
This ratio is measured by the change in IoU values at different
thresholds, and the recognition accuracy for each category is
presented as mAP values. In evaluating the model’s detection
performance for stud targets, we used mAP0.5 as a metric
for average accuracy, setting the threshold at 0.5, and also
examined themAP0.5:0.95 values, which gradually increased
at intervals of 0.05 in the range of 0.5 to 0.95.

IV. RESULTS AND DISCUSSIONS
A. DATASET
The dataset used in this study was taken at the site of a domes-
tic automobile manufacturing workshop, and the object of
the study is the body-in-white welded studs. Because in
the actual inspection task, different parts of the body are
made of different materials, and the light reflected from the
metal surface has different energies, which can lead to the
phenomenon of light and dark, and there are some reasons
such as blocking the light from the body parts, it is neces-
sary to complete the inspection task under different lighting
conditions, so we design two shooting modes: dark-light
and bright-light environments. After removing the duplicated
and blurred images, the stud image data set consists of

1397 images, including 650 images in the dark light envi-
ronment and 747 images in the bright light environment.
Labelimg software was employed to manually label the stud
dataset. The labeling box was selected to be the stud’s tiniest
outer rectangle, and the labeling information file generated
after labeling was of xml type, storing the file name of the
stud image, the position information of the four corners of the
rectangular box in the labeling area, and the type of labeling
information. The training set, test set, and validation set are
divided in the ratio of 6:2:2 for model training, testing, and
validation.

B. EXPERIMENTAL CONDITION
The experiments in this paper use the Windows 10 operating
system and the Pytorch deep learning framework to train and
test the models. The software environment is CUDA 11.3,
CUDNN 8.2, and Python 3.8. The CPU used for training the
dataset is 13th generation Intel(R) Core (TM) i5-13600K(F)
3.50 GHz 32 G, and the GPU is NVIDIA GeForce RTX
4070. In addition, the batch size in the optimizer, the learning
rate, and the epoch number are set to 16, 0.001, and 300,
respectively, and the image resolution size is set to 640 ×

640.

C. EXPERIMENTAL RESULTS
To verify that the enhancements made to our model for body
implant target detection have improved in terms of precision
and acceleration, we conducted comparative experiments on
different stud detection models. We used Precision, Recall,
mAP0.5, mAP0.5:0.95, and FPS values as metrics to eval-
uate the performance of our models. We first compared the
initial Yolov7 model with models incorporating the Efficient-
Formerv2 and NWD loss functions, respectively, and Table 1
displays the outcomes of the experiments.

The data presented in Table 1 after replacing Efficient-
FormerV2 with the backbone network of Yolov7, the PFS
is increased from the initial 96.1 to 144.9, and the detection
speed of the image is increased by 50.8%. However, the
mAP0.5 is slightly decreased by 0.1%, and the effect of the
accuracy is not obvious.

In order to further improve the accuracy of the model,
we replaced the loss function of the original Yolov7 model
with NWD, which is more suitable for measuring small
objects, and this replacement resulted in a 0.4% increase
in mAP0.5. Therefore, we can conclude that replacing Effi-
cientFormerV2 alone slightly reduces the accuracy of target
detection but significantly improves the detection speed;
replacing NWD alone improves the detection accuracy but
is still limited in the detection speed.

In order to make progress in the performance of the model
in both speed and accuracy, we use EfficientFormerV2 as the
backbone and optimize the loss function part of the network
using NWD. In order to verify the trend of the accuracy
change of this paper’s algorithm during the iteration process,
the loss curve of 300 epochs of iteration of the model testing
process as well as the mAP0.5 curve were compared with the
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TABLE 1. Target detection model results.

TABLE 2. mAP0.5 for five body stud.

TABLE 3. Experimental results of different attention modules with EfficientFormerV2 backbone.

TABLE 4. Comparison of our model with traditional welding studs target detection model.

FIGURE 5. Performance of different models in training.

other 3 algorithms, as shown in Fig 5. The indicators grad-
ually stabilized after 40 epochs, and the dataset converged
faster, which illustrated that the parameters of the target

detection model in this paper were set reasonably. Compared
with the other three algorithms, the curve fluctuation during
the training process of this paper’s method is small, the
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FIGURE 6. Experimental results of body stud target detection. (a) dark light condition; (b) bright light condition.

model fitting effect is better, and the method shows better
performance in body stud target detection.

Our model outperforms the YOLOv7 and YOLOv7+
EfficientFormerV2 networks by 3.1% and 0.3%, respectively,
in terms of detection accuracy, with a P-value of 93.7%.
The R-value is 93.7%, greater than the 1.7% and 0.2%,

respectively, of the YOLOv7+EfficientFormerV2 and
YOLOv7+NWD networks. The percentages of mAP0.5 and
mAP0.5:0.95 were 95.2% and 65.4%, respectively, higher
than YOLOv7 by 0.6% and 1.7%. The model in this study
delivers an FPS improvement of 144.9 in terms of detection
speed, which is higher than the 96.1 FPS improvement of the
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original YOLOv7 model. The experimental results show that
the method in this paper outperforms YOLOv7 in terms of
both accuracy and speed.

The corresponding mAP0.5 for five different body studs is
shown in Table 2. The experimental results show that, com-
pared with YOLOv7, our model improves the mAP0.5 values
by 1%, 0.1%, 0.6%, 1%, and 0.5% for stud types 1–5, respec-
tively. At a threshold of 0.5 for the IoU, our model has an
superiority in target detection for these five types of studs,
which signifies an enhanced target detection performance for
these body studs within the specified IoU threshold.

To evaluate the effectiveness of various loss functions,
in this paper, while keeping the backbone network of Effi-
cientFormerV2 unchanged, the loss function CIOU of the
original YOLOv7 is replaced with EIoU, GIoU, SIoU,
and NWD, respectively, and Table 3 shows the perfor-
mance of the above-mentioned five loss functions applied to
YOLOv7+EfficientFormerV2.

An analysis of the performance of the five loss func-
tions shows that compared to CIoU, P, R, mAP0.5, and
mAP0.5:0.95 using the NWD loss function model are 0.3%,
1.7%, 0.7%, 0.1%higher, and the FPS is 2.2 higher; compared
to EIoU, P, R, and mAP0.5, mAP0.5 using the NWD loss
function model are 0.7%, 3.1%, 2.1%, and 1.5% higher,
and the FPS is 4.3 higher; and compared to WIoU, P, R,
mAP0.5, and mAP0.5 using the NWD loss function model
are 4.3 higher: 0.95 are 0.7%, 3.1%, 2.1%, and 1.5% higher,
respectively, and FPS is 4.3 higher; compared to WIoU, P,
mAP0.5, and mAP0.5:0.95 are 5.4%, 1.0%, and 2.6% higher,
respectively, using the NWD loss function model, with P
being 0.1% lower, and FPS being 4.3 higher; and compared to
SIOU, P, R, mAP0.5, and mAP0.5:0.95 are 5.4%, 1.0%, and
2.6% higher, respectively, and P is 4.3 lower; and compared
to SIOU, the P, mAP0.5, and mAP0.5:0.95 are 3.2%, 1.2%,
and 3.3% higher, respectively, with a lower recall of 0.6%
and a higher FPS of 6.3. From the above analysis, it is clear
that the comprehensive advantages of model training using
the NWD loss function are more obvious, with the highest
detection precision and the fastest detection speed.

The comparison results of our proposed network with the
traditional target recognition network for body stud detection
are shown in Table 4. Our model outperforms the other listed
algorithms in terms of P, mAP0.5, andmAP0.5:0.95, showing
excellent model quality. As far as mAP0.5 is concerned,
our method improves the performance over Faster-RCNN by
5.5%. In addition, it outperforms YOLOv5s, YOLOv7, and
YOLOv8 of the YOLO family by 1.3%, 0.6%, and 1.2%,
respectively. The results show that our method shows better
performance than the other algorithms in the table in terms
of mAP0.5. In terms of mAP0.5:0.95, it outperforms Faster-
RCNN by 8.2% and outperforms YOLOv5s, YOLOv7, and
YOLOv8 of the YOLO series by 5.0%, 1.7%, and 3.5%,
respectively. In addition, the model proposed in this paper
performs well in terms of detection speed, with an FPS
value of 147.1 frames per second, which is a big improve-
ment compared with the original YOLOv7 model; however,

there is still a gap compared with the current state-of-the-art
YOLOv8.

To confirm the method’s capacity for generalization as
shown in this paper, we conducted a comparison experiment
using YOLOv7 and our model on some randomly selected
images in the body stud dataset, and the outcomes of the
experiment are illustrated in Fig. 6.
The outcomes of the experiment demonstrate that our

model as well as the YOLOv7 model can accurately rec-
ognize five different types of studs under different light
intensities. However, in darker environments, YOLOv7 has
a misdetection phenomenon, as shown by the red wireframe
in Fig. 6(a), identifying other parts of the bodywork as the
No. 5 stud, which does not occur in our model, and it can be
observed that our proposed improved method improves the
confidence level of the stud identification more substantially,
which effectively improves the performance of the target
detection, identification, and classification of the bodywork
studs.

V. CONCLUSION
To resolve the issues pertaining to the slow inference speed
and the low target detection accuracy in the automatic body
stud detection environment in the current vehicle manufactur-
ing process, an improved YOLOv7 target detection algorithm
is proposed. We replace the original YOLOv7 backbone with
the EfficientFormerV2 model with a lightweight network
structure to speed up the detection of features by the network.
We replace the original loss function with NWD, which
allows the network to get additional accurate feature details
for smaller targets. Ablation experiments were conducted on
the automobile body welded stud dataset. With an average
detection accuracy of 95.2% on the test set, the enhanced
YOLOv7 algorithm obtains a 0.6% improvement, according
to the experimental results. The improved YOLOv7 model
reaches 147.1 f/s in real-life scenarios, which meets the
accuracy and real-time requirements of automated online
detection. Compared with other mainstream algorithms, the
improved YOLOv7 algorithm in this paper is more suitable
to be applied to automated online detection tasks with effec-
tiveness and superiority.

In future work, we will apply the improved YOLOv7
algorithm to the task of automatic body stud detection and
position estimation to verify the performance of the algorithm
in this task.
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