
Received 9 January 2024, accepted 1 March 2024, date of publication 11 March 2024, date of current version 25 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376472

Hardware Reduction for FSMs With
Extended State Codes
ALEXANDER BARKALOV 1, LARYSA TITARENKO1, KAMIL MIELCAREK 1,
AND MAŁGORZATA MAZURKIEWICZ 2
1Institute of Metrology, Electronics and Computer Science, Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 65-417 Zielona
Góra, Poland
2Institute of Control and Computation Engineering, Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 65-417 Zielona Góra,
Poland

Corresponding author: Kamil Mielcarek (K.Mielcarek@imei.uz.zgora.pl)

ABSTRACT A method is proposed for reducing chip area occupied by logic circuits of FPGA-based Mealy
finite state machines (FSMs). The proposed method aims at optimization of FSM circuits implemented with
look-up table (LUT) elements of FPGA chip. The proposed method combines positive features of such state
assignment methods as extended (ESCs) and composite (CSCs) state codes. The method is based on finding
a partition of the set of internal states by classes of compatible states. To reduce LUT count, we propose a
special kind of states codes named mixed state codes. These codes include two parts. The first part includes
the maximum binary codes of states as elements of some partition class. The second part consists of the
code of corresponding partition class. Unlike CSCs, the proposed approach allows obtaining partial state
codes having different lengths. Unlike ESCs, all partial state codes consist of the same variables. Using
mixed state codes allows obtaining LUT-based FSM circuits with exactly two levels of logic. The first level
generates partial Boolean functions. The second level combines them into FSM outputs and input memory
functions. If some conditions hold, then both levels consist of single-LUT circuits. Example of FSM synthesis
based on mixed state codes is shown. The conducted experiments prove that the proposed approach allows
reducing hardware compared with FSMs based on JEDI, one-hot state codes, CSCs and ESCs. On average,
the proposed method reduces the value of LUT count by 6.21% compared to CSC-based FSMs and 22.21%
compared to ESC-based counterparts. The advantages of the proposed approach grow with the growth of
FSM complexness. An additional positive effect of the proposed method is a slight increase in the operating
frequency.

INDEX TERMS Mealy FSM, FPGA, LUT count, synthesis, extended state codes, composite state codes,
mixed state codes.

I. INTRODUCTION
Now, various digital systems are widely used practically in
all spheres of human activity [1], [2], [3]. These systems
include a lot of combinational and sequential devices [3], [4].
It is very important to improve the basic characteristics of
digital systems (price, hardware amount, performance, power
consumption) [4]. In this article, we propose a method aimed
at reducing the area of sequential devices. We use the model

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdallah Kassem .

of Mealy finite state machine (FSM) [5] to represent the
sequential devices.

This model is viewed as a starting point of the sequential
device design process [6]. This has led to the emergence
of a significant number of FSM-based design methods [7].
As a rule, all these methods are associated with the solution
of some optimization problems [8], [9]. In the design
process, such problems are solved as reducing the chip
area occupied by the resulting FSM circuit, increasing its
operating frequency and reducing the consumed electrical
power. If there is no single criterion for the optimality of the
FSM circuit, then the designers strive to achieve a balance

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 42369

https://orcid.org/0000-0002-4941-3979
https://orcid.org/0000-0003-4027-7541
https://orcid.org/0000-0001-5487-5468
https://orcid.org/0000-0003-4724-7628


A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

of its main characteristics [10]. Many studies show that the
chip area occupied by an FSM circuit has a decisive influence
on both the performance and power consumption [11].
Due to it, our current article is devoted specifically to the
problem of reducing the required chip area. The proposed
method focuses on Mealy FSM circuits implemented with
field-programmable gate arrays (FPGAs) [12], [13], [14]. The
proposed method combines approaches related to the use of
extended state codes (ESCs) [15] and composite state codes
(CSCs) [16].

In our study, we focus on the FPGA chips of the
company AMD Xilinx [17]. This choice is due to two facts.
First, FPGAs are widespread in modern digital design [12].
This determines our choice of FPGA as a basis for the
implementation of FSM circuits. Secondly, the company
AMD Xilinx is the largest producer of FPGA chips [17].
This determines the choice of their chips Virtex 7 [18] in our
current research. To evaluate the required chip area, we use
the widely used approach described in [10]. In this case,
the area is estimated as a number of look-up table (LUT)
elements (LUT count) in an FSM circuit.

The main goal of the proposed method is the reduction of
LUT count in Mealy FSM circuits. We analysed positive and
negative features of extended state codes [15] and composite
state codes [16]. Both approaches are based on finding
minimum possible number of classes of compatible states.
In ESC-based FSMs, the total number of code bits (extended
code length) exceeds significantly their minimum possible
number inherent in maximum binary state codes (MBCs).
This leads to increasing the number of flip-flops in FSM state
memory. In addition, this increase leads to a complication
of the interconnect system. But for ESCs, partial state codes
can have different lengths for different classes. This reduces
the number of classes. In CSC-based FSMs, the same state
variables create partial state codes for all classes. This reduces
the total length of state codes compared to equivalent ESC-
based FSMs. But due to it, CSC-based FSMs require more
classes than their ESC-based counterparts. This can lead
to reducing performance of CSC-based FSMs compared
to ESC-based FSMs. In our current article, we propose a
method eliminating the mentioned drawbacks and combining
together positive features of both CSC- and ESC-based
FSMs.

The main contribution of this paper is a novel design
method aimed at reducing the LUT counts in circuits
of two-level FPGA-based Mealy FSMs compared to
equivalent FSMs with either extended or composite state
codes. The resulting FSMs combine positive features of
ESC-based FSMs (the different partial state code length
for different classes) and CSC-based FSMs (the minimum
possible length of state codes). Combination of these features
leads to so-called mixed state codes (MSCs) proposed in
our current article. The proposed method of state assignment
provides a variable length of partial state codes for different
classes (minimizing the number of classes) and minimizing
the overall bitness of state codes.

The rest of the article is organized as follows. The essential
information about LUT-based Mealy FSMs is discussed in
Section II. The Section III includes a short analysis of related
works. The main idea of the proposed method is shown in
Section IV. An example of MSC-based FSM synthesis is
shown in Section V. Section VI includes the experimental
results and their analysis. The short summary is shown in
Section VII.

II. ESSENTIAL INFORMATION CONCERNING LUT-BASED
FSM DESIGN
AMealy FSM may be represented by a state transition graph
(STG) [19]. From an STG, three sets could be derived. They
are: 1) a set of states A = {a1, . . . , aM }, 2) a set of inputs
X = {x1, . . . , xL} and 3) a set of outputs Y = {y1, . . . , yN }.
After the step of state assignment [5], it is possible to get two
systems of Boolean functions (SBFs) [19]. They represent
the dependences of FSM outputs and input memory functions
(IMFs) on FSM inputs and state variables. The state variables
form a set T = {T1, . . . ,TR} Each state variable corresponds
to a single bit of state code C(am). The minimum code
length corresponds to so-called maximum binary state codes
(MBCs) [20]. The length of MBCs is determined by the
following formula:

R =
⌈
log2M

⌉
. (1)

The state codes C(am) are kept into the state code register
(RG). In the case of FPGA-based FSMs, the RG includes the
flip-flops of D type [21]. To change the content of RG, the
input memory functions are used. The IMFs form a set D =

{D1, . . . ,DR}.
An FSM circuit is represented by two SBFs:

D = D(T ,X ); (2)

Y = Y (T ,X ). (3)

The SBFs (2)–(3) represent so-called P Mealy FSM [5].
It includes two logic blocks and the state code register. One
of these blocks generates functions from SBF (2). The second
block generates IMFs (2). These functions enter the RG to
set a next state code. In the beginning, the RG is cleared
using a pulse Start. The resulting code consists of zeros; it
corresponds to the initial state a1 ∈ A. The values of IMFs
determine the code of a next state. This code is written into
RG using a pulse Clock. In this article, we do not show the
architecture of P Mealy FSM due to its triviality.

To get the systems (2)–(3), the initial STG should be
transformed into a direct structure table (DST) [5]. Also,
a DST can be obtained using a state transition table (STT)
[19]. Both STG and STT are interchangeable. At the same
time, there are elementary procedures for converting one form
to another [19]. In our paper, for representing a Mealy FSM,
we use an STG.

An STT includes the following columns [5]: a current
state am; a next state aS ; an input signal Xh which is a
conjunction of inputs (or their complements) determining

42370 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

a particular interstate transition ⟨am, as⟩; a collection of
outputs Yh generated during the transition ⟨am, as⟩; h is
a column including the numbers of interstate transitions
(h ∈ {1, . . . ,H}). The number of STT rows is equal to the
number of arcs in the equivalent STG.

To transform an STT into the equivalent DST, it is
necessary to assign state codes. This is a state assignment
step [19]. This step is reduced to the replacement of states
am ∈ A by their binary codes C(am). The current state codes
are placed into the columnC(am) of DST, the next state codes
are placed into the column C(as). In the case of D flip-flops,
the values of IMFs are created on the base of the next state
codes. These functions are placed into the column Dh of
DST.

In this paper, we consider a case when the circuit of P
Mealy FSM is implemented using internal resources of FPGA
chips. A lot of configurable logic blocks (CLB) could be
found in chips produced by AMD Xilinx [17]. Each CLB
includes LUTs, dedicated multiplexors, flip-flops and tools
of fast internal interconnect [22]. All these components are
programmable. The logic functions are implemented using
LUTs. The number of LUT inputs could be increased with
the help of dedicated multiplexers. Each bit of state codes
corresponds to a flip-flop’s output. To get an FSM circuit,
it is necessary to connect CLBs by tools of a programmable
routing matrix [22].

A LUT has SL inputs and a single output. Any Boolean
function depending on up to SL variables is generated
using only a single LUT [20]. The value of SL is rather
small [14]. For example, there is SL = 6 for basic LUTs
of the Virtex-7 family [18]. But the functions (2)–(3) can
be very complex. It is quite possible that the numbers of
arguments of sum-of-products (SOPs) of these functions
exceed significantly the value of SL . To generate such
complex functions, it is necessary to represent each of
them as a composition of partial Boolean functions (PBFs).
Each PBF has no more than SL arguments. To optimize
the resulting compositions, it is necessary to apply various
methods of functional decomposition (FD) [23]. Although
these methods allow implementing an FSM circuit, they have
one negative quality: FD-based FSMs are represented by
multi-level circuits with complicated systems of ‘‘spaghetti-
type’’ interconnections [20].
In LUT-based FSMs, the flip-flops of RG are distributed

among LUTs generating functions (2). Due to it, the RG is
hidden inside the slices generating IMFs. So, LUT-based P
Mealy FSMs have only two blocks. In the further material
of this article, we denote a block consisting of LUTs as a
LUTer.

In the best case, there is exactly a single level of LUTs
in the circuit of P FSM. This is possible if each function
fi ∈ D∪Y depends on no more than SL arguments. However,
for sufficiently complex FSMs, the number of LUT inputs is
not enough to implement single-level FSM circuits. So, rather
complex FSMs are represented by multi-level LUT-based
circuits. To improve the basic characteristics of LUT-based

FSM circuits (LUT count, maximum operating frequency,
power consumption), it is necessary to improve the existing
design methods.

In addition to reducing the number of LUTs, it is very
important to optimize the system of connections between
different CLBs of an FSM circuit. As shown in [11], the
interconnections are responsible for: 1) around 70% of power
consumption and 2) the major part of FSM circuit latency
time. This can be done using such methods of structural
decomposition as: 1) twofold state assignment [24], [25],
2) extended state assignment [15] or 3) composite state
assignment [16].

III. RELATED WORK
Over the past fifty years, a huge number ofmethods have been
developed to optimize the characteristics of FSM circuits.
Since the 1980s, most of the developedmethods have focused
on FPGA-based FSMs [20], [26], [27], [28]. These methods
should be applied if the number of arguments NA(fi) exceeds
the number of LUT address inputs (at least for a single
function fi ∈ D∪Y ) [20]. As a rule, the known designmethods
can improve only a single characteristic of an FSM circuit
(either the LUT count or the latency time or the value of power
consumption) [29], [30], [31], [32], [33]. There are also
methods that attempt to balance two or three characteristics
of the circuit [34], [35], [36], [37], [38]. The main goal of
the method proposed in this article is reducing the chip area
occupied by a LUT-based FSM circuit. As it is done in [10],
we use the LUT count of a circuit to evaluate the occupied
chip area.

Now, there are various methods of state assignment
improving the LUT counts. These methods reduce the
number of arguments in functions fi ∈ D ∪ Y [20].
The reduction can be done by lengthening the state codes. The
method of one-hot assignment is very popular in FPGA-based
design [20]. In this case, the number of code bits is equal to
the number of states, M. Sometimes, for optimization, it is
enough to increase the number of code bits by only 2 or 3,
as it is possible when using the algorithm JEDI [39]. So, the
number of code bits can differ from ⌈log2M⌉ to M. As the
examples of CAD tools, we can note such systems as SIS [39],
ABC by Berkeley [40], Vivado [41] by AMD Xilinx [17],
Quartus [42] by Intel (Altera) [43].

Currently, there is no single best method which always
gives the best results (for any FSM). For example, in [44],
there are compared FSM circuits based on maximum
binary and one-hot state codes (OHCs). As follows from
research results reported in [44], the one-hot codes improve
FSM characteristics for rather complex FSMs (when there
is M > 16). However, there are other important factors
influencing the circuit characteristics. These factors are:
1) the number of FSM inputs and 2) the distribution of FSM
inputs between the states. For example, the results shown
in [45] prove that using OHCs loose against MBCs if L > 10.
From this brief analysis, it is clear that the characteristics of

LUT-based circuits depend on the total number of inputs and

VOLUME 12, 2024 42371



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

state variables, L+R. Obviously, this value determines which
state assignment method should be used for a particular FSM.
To be sure which method should be applied, it is necessary to
apply both MBCs and OHCs. Due to it, we have investigated
the efficiency of these both methods in our research. As a
base for comparison with our proposed method, we use
the algorithm JEDI [39], the MBC-based method Auto and
the OHC-based method One-hot of Vivado [41] by AMD
Xilinx [17]. Our choice of Vivado is due to its focus on AMD
Xilinx FPGA chips. Our choice of JEDI is determined by the
fact that JEDI is one of the best MBC-based methods [8].
To optimize the characteristics of FSM circuits, various

methods of structural decomposition (SD) [20] can be used.
The main idea of SD-based methods is the elimination of
direct dependence between FSM inputs xl ∈ X and state
variables Tr ∈ T , on the one hand, and outputs yn ∈ Y
and IMFs Dr ∈ D, on the other hand. Due to it, an FSM
circuit is represented as a composition of big blocks having
their own systems of input and output variables. Each block
implements some system of PBFs. In this article, we propose
a new SD-based FSM design method. This method combines
features of methods based on extended state codes [15] and
composite state codes [16].We use the term ‘‘mixed state
assignment’’ to define the proposed method. As a result of
applying this method, the states are encoded by the so-called
mixed state codes. To understand the proposed method,
we should analyse its predecessors discussed in articles [15],
[16].

Like both ESC- and CSC-based design methods, the
proposed method is based on finding a partition 5A =

{A1, . . . ,AK1
} of the set A by classes of compatible

states [24], [25].There are Mk states in the class Ak ∈ 5A.
Including a state am ∈ A in a class Ak ∈ 5A can change
the value of NAk , where NAk is a number of variables on
which transitions from the states already included into this
class depend. A state am ∈ A is compatible with states from
class Ak ∈ 5A if the inclusion of this state in this class does
not lead to the condition

NAk > SL . (4)

The value of NAk is a result of summation the numbers
Lk and Rk . The value of Lk is equal to the number of FSM
inputs on which transitions from the states am ∈ Ak depend.
These inputs create a set X k ⊆ X . The value of Rk is equal
to the minimum number of bits required for encoding of the
states am ∈ Ak . Each class Ak ∈ 5A determines sets Y k ⊆ Y
(a set of outputs generated during the transitions from states
am ∈ Ak ) and Dk ⊆ D (a set of IMFs generated during the
transitions from states am ∈ Ak ).

Each class corresponds to some sub-table of the initial STT.
The number of FSM inputs in this sub-table is equal to Lk .
This is a feature common to all methods discussed below. But
there are different approaches for determining the value ofRk .
Now we will analyse the features of ESC- and CSC-based
FSMs.

FIGURE 1. Architecture of PE Mealy FSM.

In the case of ESC-based FSMs, the value of Rk is
determined as

RK =
⌈
log2(Mk + 1)

⌉ (
k ∈ {1, . . . ,K1}

)
. (5)

In (5), the number 1 is added to Mk to take into account the
relation am /∈ Ak .
To encode states for all classes of 5A, it is necessary RE

variables, where

RE = R1 + . . . + RK1. (6)

To encode states, the variables τr ∈ τ are used where T =

{τ1, . . . , τRE }. To encode states am ∈ Ak , we use a set τ k ⊂ τ .
The variables τr ∈ T k form partial state codes PC(am) where
am ∈ Ak . There are K1 fields in the extended state codes
CE(am). The k-th field corresponds to the set Ak ∈ 5A. For a
state am ∈ Ak , only some of variables τr ∈ T k are non-zero.
All other fields include only zeroes.

The following sets correspond to each class Ak ∈ 5A:
X k , Y k , Dk , T k . Using a sub-table of DST which represents
transitions from states am ∈ Ak , the following systems of
PBFs can be obtained:

Dk = Dk (T k ,X k ); (7)

Y k = Y k (T k ,X k ). (8)

In [15], architecture of Mealy FSM based on ESCs is
proposed. We denote this FSM by the symbol PE (Fig. 1).
In PE Mealy FSM, a block LUTerk implements SBFs

(7)–(8). These partial functions enter a block LUTerT Y . The
functions (8) are transformed into outputs yn ∈ Y . The
partial IMFs enter informational inputs of flip-flops from
the corresponding CLBs. These flip-flops create the hidden
distributed state code register RG. If there is Start = 1, then
all flip-flops are zeroed. This corresponds to the code C(a1).
A particular edge of the synchronization pulse Clock allows
changing the contents of RG.
The PBFs (7)–(8) enter a block LUTerT Y . This block

transforms PBFs into final SBFs

D = D(D1, . . . ,DK1); (9)

Y = Y (Y 1, . . . ,YK1). (10)

42372 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

The functions (9)–(10) are just disjunctions of corresponding
PBFs.

A positive feature of ESC-based approach is the ability
to choose codes of different lengths for states from different
classes. This flexibility allows including an arbitrary number
of states in any particular class. The only condition for
including a state in a class Ak ∈ 5A is the condition

Rk + Lk ≤ SL . (11)

If condition (11) holds, then each PBF from SBFs (7)–(8) is
generated by a single LUT. Obviously, a state am ∈ A cannot
be included in a class Ak ∈ 5A if the inclusion leads to the
violation of condition (11).
This feature is positive, because it keeps the number of

classes to a minimum. This allows optimizing the number
of LUTs for the first logic level of the circuit. However, the
property of possible variability of the length of state codes
has a negative side. Namely: the total number of bits of codes
determined by (6) can significantly exceed the minimum
required value represented by (1). This leads to a significant
number of flip-flops and partial IMFs in the circuit, which
increases the LUT count for the first circuit level. It also
increases the requirements for the synchronization tree,
which in turn leads to an increase in power consumption [46].

All noted shortcomings are not inherent in CSC-based
FSMs proposed in [16]. In this case, all state codes have
the same length. This method is also based on creating the
partition 5A = {A1, . . . ,AK2

} of the set A by classes of
compatible states [25]. The states am ∈ Ak are encoded
by partial codes PC(am). For each class, there is the same
number of bits (RS ).

In [16], we did not show the approach used for finding
the value of RS . In [16], we used the following approach.
Obviously, the value of RS should not exceed the value SL−1.
We changed RS from 1 to SL − 1 and implemented the FSM
circuit. Then we chose a value of RS that minimized the total
number of LUTs in the FSM circuit. This value was taken as
the number of bits used to encode the states of each class.
Thus, the number of partial code bits is the same for all
classes:

RS =
⌈
log2 max(M1, . . . ,MK2)

⌉
. (12)

Obviously, in the case of CSCs, the maximum amount of
states for any class Ak ∈ 5A is equal to 2RS . To encode
states, the state variables are used. They create a set S =

{S1, . . . , SRS}.
To distinguish the classes, they are encoded by binary

codes C(Ak ). These codes include RC bits, where

RC =
⌈
log2 K2

⌉
. (13)

To encode classes, the class variables are used. They create a
set V = {v1, . . . , vRC }.
To create composite state codesCC(am), the variables from

the set T = V ∪S are used. Each code CC(am) is represented
by a concatenation of class code C(Ak ) and partial state code

FIGURE 2. Architecture of LUT-based PC FSM.

PC(am) [16]. So, the total number of code bits (RCC ) is equal
to the result of summation RC and RS :

RCC = RC + RS . (14)

As shown in [16], the value of RCC does not exceed the value
of R+ 2.
For CSC-based FSMs, each class Ak ∈ 5A determines

the sets X k , Y k , Dk . These sets determine functions of LUTs
creating the first level of FSM circuit. In [16], we propose
architecture of PC FSM based on composite state codes. This
architecture is shown in Fig. 2.
In PC FSM, a block LUTerk generates the following PBFs:

Dk = Dk (S,X k ); (15)

Y k = Y k (S,X k ). (16)

A block LUTerTY transforms these PBFs into final values
represented by the following SBFs:

D = D(V ,D1, . . . ,DK2); (17)

Y = Y (V ,Y 1, . . . ,YK2). (18)

To create SBFs (17)–(18), it is necessary to multiply each
PBF by a conjunction Vk of class variables. The conjunctions
Vk are determined by the class codes C(Ak ).
The block LUTerTY includes a hidden register. This

register is controlled by pulses Clock and Start. There are
RCC flip-flops inside of LUTerTY . Their outputs correspond
to class and state variables from the set T = T ∪ S.

A positive feature of CSC-based approach is practically
minimum amount of used flip-flops forming a register RG.
Compared to equivalent ESC-based FSMs, this reduces:
1) the requirements for the synchronization tree and 2) the
number of LUTs generating IMFs. The disadvantage of
CSC-based approach is the constant number of bits (RS ) used
to encode the states within each class Ak ∈ 5A. This leads to
an increase in the number of classes K2 in relation toK1. If for
some class the difference1k = SL −Lk −RS is positive, then
this class could be supplemented with1k states and, possibly,
reduce the total number of classes, K2. In turn, reducing the
number of classes can reduce the number of LUTs and their
levels in the resulting FSM circuit.

VOLUME 12, 2024 42373



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

Thus, each of the considered approaches (PE and PC
FSMs) has its positive and negative qualities. In this article,
we propose an approach which allows combining the positive
qualities of the discussed FSMs and reducing their inherent
disadvantages.

IV. MAIN IDEA OF THE PROPOSED METHOD
The proposed method is based on finding a partition 5A =

{A1, . . . ,AK } of the set A by K classes of compatible
states. We denote a resulting FSM by the symbol PEC . The
subscript EC emphasizes that the proposed model combines
the positive properties of PE and PC FSMs. As a result, the
states are encoded by so-called mixed state codes EC(am)
proposed in this article. Each MSC consists of a class code
C(Ak ) and partial state code PC(am).
Our approach has the following peculiarities. Unlike partial

state codes used in PC FSMs, the partial codes used in PEC
FSMs can have different lengths, which is inherent in PE
FSMs. Now, the number of variables forming partial codes
for states am ∈ Ak is determined as

Rk =
⌈
log2 Mk

⌉
. (19)

As opposed to CSC-based FSMs [16], the length of the partial
codes is defined as

RS = max(R1, . . . ,RK ). (20)

So, the total number of variables in the set S is equal to
RS . However, for a particular class Ak , only a part of these
variables may be used. This part forms a set Sk . Now, each
class Ak ∈ 5A is represented by the following systems of
PBFs:

Dk = Dk (Sk,X k ); (21)

Y k = Y k (Sk,X k ). (22)

To encode classes, we use variables vr ∈ V . The set V
includes RV elements where

RV =
⌈
log2 K

⌉
. (23)

Totally, the proposed mixed codes have REC bits, where

REC = RV + RS . (24)

The set Dk includes partial functions Dk1, . . . ,D
k
REC , the set

Y k includes partial output functions yk1, . . . , y
k
N .

The SBFs (21)–(22) are transformed into FSM outputs
yn ∈ Y and IMFs Dr ∈ D. The transformation is represented
by the following SBFs:

Dr = V1D1
r + . . . + VKDKr ; (25)

yn = V1y1n + . . . + VK yKn . (26)

The following relations exist in (25)–(26): r ∈

{1, . . . ,REC } and n ∈ {1, . . . ,N }. As follows from
(25)–(26), the functions Dr ∈ D and yn ∈ Y are multiplexer
functions. To generate these functions, it is necessary to use
N + REC multiplexers. The partial functions (21)–(22) are

FIGURE 3. Architecture of PEC FSM.

used as data inputs of these multiplexers. Each multiplexer
selects a particular PBF using the class variables vr ∈ V .

So, SBFs (21)–(22) determines a block of partial functions.
The SBFs (25)–(26) determine a block of final values. This
block should include flip-flops keepingmixed state codes. So,
the proposed PEC FSM has an architecture shown in Fig. 3.
In PEC FSMs, the blocks LUTer1–LUTerK form the first

circuit level. A block LUTerk generates PBFs (21)–(22). The
block LUTerTY forms the final values of functions (25)–(26).
This is the second circuit level. The block LUTerTY includes
the hidden register RG consisting of RCE flip-flops. The RG
is controlled by pulses Start and Clock .

In the common case, the following conditions hold:

K ≤ K1; (27)

K < K2; (28)

RC < REC ≪ RE . (29)

As follows from relations (27)–(28), our approach provides
the minimum possible amount of classes. This can result in
reducing the numbers of LUTs and their levels in the blocks
generating functions yn ∈ Y and Dr ∈ D. As follows from
(29), the proposed approach provides practically the same
amount of flip-flops in equivalent CSC- and MSC-based
FSMs. So, these FSMs can have practically the same values
of power consumption. Also, the registers of PEC FSMs
have significantly fewer flip-flops than equivalent ESC-based
FSMs. Due to it, we can expect that the proposed FSMs
provide better values of power consumption than ESC-based
FSMs. The experiments reported in Section VI show that
our approach allows improving the basic characteristics of
LUT-based circuits of Mealy FSMs.

In this paper, we propose a synthesis method for PEC
Mealy FSMs. The proposed method produces the logic
circuits of LUT-based FSMs. We start the synthesis process
from an FSM state transition graph. The proposed method
includes the following steps:

1) Transforming initial STG into equivalent STT.
2) Constructing the partition 5A with minimum possible

cardinality number.
3) Creating sets of class and state variables (vr ∈ V ,

sr ∈ S).

42374 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

FIGURE 4. State transition graph of Mealy FSM F1.

4) Encoding of FSM states by mixed state codes EC(am).
5) Creating tables of blocks LUTer1–LUTerK .
6) Deriving SBFs (21)–(22) for each block of PBFs.
7) Creating table of block LUTerTY .
8) Constructing SBFs (25)–(26) representing LUTerTY .
9) Implementing the LUT-based circuit of PEC Mealy

FSM using internal resources of a particular FPGA
chip.

The second step is executed using the approach proposed
in [24]. This is a greedy algorithm creating the classes
of compatible states with maximum possible cardinality
numbers. This results in minimizing the value of K . During
this step, the classes are created in a way minimizing the
number of shared outputs. This leads to reducing the LUT
count in the circuit generating SBF (26). Any multiplexer
from the second level of an FSM circuit is implemented by
a single LUT if the following condition takes place:

RV + K ≤ SL . (30)

If condition (30) is violated, then the multiplexers could be
implemented as single-level circuits. This is possible, if the
number of partial functions for a given function does not
exceed the value SL − RV .

V. EXAMPLE OF SYNTHESIS
We use the symbol Pi(Fj) to show that the model of Pi Mealy
FSM (i ∈ {E,C,EC}) is used to implement the circuit of an
FSM Fj. In this Section, we show how to design the circuit
of Mealy FSM PEC (F1). The circuit should be implemented
using 5-LUTs (LUTs with SL = 5). The synthesis process
starts from an STG shown in Fig. 4.
Step 1: To transform an STG into the equivalent STT,

it is necessary to transform each arc of STG into a line of
STT [5]. There are the following columns in the STT [5]: am
(a current FSM state); aS (a next FSM state); Xh (the input
signal written above the h-th arc of STG); Yh (the collection
of outputs yn ∈ Y written above the h-th arc of STG); h
(the number of transition where h ∈ {1, . . . ,H}). The input

TABLE 1. State transition table of FSM F1.

signals are conjunctions of some FSM inputs xl ∈ X (or their
compliments). For arc number h, the vertex from which the
arc emerges corresponds to the current state, and the vertex
that the arc enters corresponds to the next state (state of
transition).

There are H = 33 arcs in the STG (Fig. 4). So, it should
be 33 lines in the equivalent STT. The following can be
found from analysis of Fig. 4: 1) FSM transitions depend on
L = 7 variables xl ∈ X ; 2) during these transitions, N =

11 outputs yn ∈ Y are generated; 3) there are M = 14 nodes
in STG (Fig. 4). This determines the sets X = {x1, . . . , x7},
Y = {y1, . . . , y11} and A = {a1, . . . , a14}.

The transition from STG to STT is executed in the trivial
way [5]. In the discussed case, the STT is represented by
Table 1.
Table 1 includes H = 33 lines. We hope there is a

transparent connection between the STG (Fig. 4) and STT
(Table 1).
Step 2: Using the greedy approach [24], Table 1 and

5-LUTs, we have obtain the partition 5A = {A1,A2,A3}. So,
there is K = 3. There are the following classes Ak ∈ 5A:
A1 = {a3, a7, a10, a12, a13, a14}, A2 = {a1, a4, a5, a8},
and A3 = {a2, a6, a9, a11}. So, there is M1 = 6 and

VOLUME 12, 2024 42375



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

FIGURE 5. Outcome of state assignment for FSM PCE (F 1).

M2 = M3 = 4. These classes determines the sets X1
=

{x3, x5}, Y 1
= {y3, y4, y8, y10, y11}, X2

= {x1, x2, x4},
Y 2

= {y1, y2, y6, y8, y9, y11}, X3
= {x2, x6, x7} and Y 3

=

{y1, y3, y5, y7, y11}. This gives L1 = 2, L2 = L3 = 3.
Step 3:To execute this step, it is necessary to find the values

of RV and RS . This is done using the outcome of the previous
step. Using (19) gives R1 = 3 and R2 = R3 = 2. Using
(20) gives RS = 3. So, the partial codes are created using
the state variables sr ∈ S = {s1, s2, s3}. The states am ∈

A1 are encoded using all elements of the set S. Other states
are encoded using only variables s2, s3 ∈ S. Using (23) gives
RV = 2. This determines the set V = {v1, v2}.

Using (24) gives the value REC = 5. The set T includes
5 elements: T = {v1, v2, s1, s2, s3}. These variables are
represented by the outputs of flip-flops distributed inside
LUTerTY .
Step 4: To encode states, we use the approach proposed in

the article [25]. It allows minimizing the number of partial
IMFs. One of the possible outcomes is shown in Fig. 5.
It includes three Karnaugh maps with partial codes for each
class Ak ∈ 5A.
To encode classesAk ∈ 5A, we should use the codewith all

zeros to encode the class which includes the initial state a1 ∈

A. In the discussed case, this is the class A2. So, we choose the
following class codes for our example: C(A1) = 01, C(A2) =

00 and C(A3) = 10.
Using class and partial state codes gives the mixed

state codes EC(am). For example, the following codes
can be obtained: EC(a1) = 0000 (it follows from
Fig. 5b and C(A2) = 00), EC(a2) = 1010 (it follows from
Fig. 5c and C(A3) = 10), EC(a3) = 01100 (it follows
from Fig. 5a and C(A1) = 01) and so on. The tables of
LUTer1–LUTer3 are based on the partial and mixed state
codes.
Step 5: Each block LUTerk is represented by its direct

structure table. A DST includes all columns from the
equivalent STT and three additional columns. The additional
columns contain: partial state codes of current states (the
column PC(am)); mixed codes of next states (the column
EC(as)); partial IMFs Dkr ∈ Dk required for loading the
value of EC(as) into RG (the column Dh). The LUTer1 is
represented by Table 2. The table is based on 11 lines of

TABLE 2. Table of LUTer1.

TABLE 3. Table of LUTer2.

Table 1 (lines 6, 16, 17, 23–25, 29–32). The LUTer2 is
represented by Table 3. The table is based on 11 lines of
Table 1 (lines 1, 2, 7–12, 18–20). The LUTer3 is represented
by Table 4. The table is based on 11 lines of Table 1 (lines
3–5, 13–15, 21–22, 26–28).
Step 6: The partial functions are represented by SOPs

(21)–(22). All these SOPs are created in the same way.
Bellow, we show partial SOPs for functions D1 and y1.

Using Table 2, we can derive the following SOPs:

D1
1 = s1s̄2s̄3 ∨ s̄1s̄2s̄3x̄3x̄5 ∨ s̄1s2s̄3x̄3;

y11 = 0. (31)

Using Table 3, we can derive the following SOPs:

D2
1 = s̄2s̄3x1 ∨ s2s3x2 ∨ s̄2s3x̄4x̄1;

y21 = s̄2s̄3x̄1 ∨ s2s̄3x1 ∨ s̄2s3x4. (32)

Using Table 4, we can derive the following SOPs:

D3
1 = s̄2s̄3x̄7x6;

y31 = s2s̄3x2 ∨ s̄2s̄3x7 ∨ s2s3x7 ∨ s2s̄3x̄2x7. (33)

We hope there is a transparent connection between
Tables 2–4, on the one hand, and formulae (31)–(33), on the
other hand. There is y11 = 0, because there is no symbol y1 in
Table 2.
Step 7: The table of LUTerTY is constructed on the base

of tables of partial functions (in the discussed example we
should analyze Table 2–Table 4). This table includes a column

42376 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

TABLE 4. Table of LUTer3.

TABLE 5. Table of LUTerTY .

with functions Dr ∈ D and yn ∈ Y . Other columns contain
number of blocks (1, 2,. . ., K). In the discussed case, this
block is represented by Table 5.

There are symbols ‘‘+’’ and ‘‘−’’ in Table 5. For example,
if some partial function Dkr ̸= 0, then there is the symbol
‘‘+’’ at the intersection of row Dr and column k. Obviously,
if some partial function ykn ̸= 0, then there is the symbol ‘‘+’’
at the intersection of row yn and column k .
Step 8: The circuit of LUTerTY is represented by SBFs

(25)–(26). They are constructed in the following way. If there
is the symbol ‘‘+’’ at the intersection of row Dr and column
k, then a SOP of function Dr ∈ D includes the term Vk · Dkr .
In this term, the member Vk is a conjunction corresponding
to C(Ak ). Obviously, if there is the symbol ‘‘+’’ at the
intersection of row yn and column k, then a SOP of function
yn ∈ Y includes the term Vk · ykn.
In the discussed case, there is V1 = v̄1v2, V2 = v̄1v̄2 and

V3 = v1v̄2. Using these conjunctions and systems (31)–(33),
we can create SOPs of full functions D1 ∈ D and y1 ∈ Y :

D1 = v̄1v2D1
1 ∨ v̄1v̄2D2

1 ∨ v1v̄2D3
1;

y1 = v̄1v̄2y21 ∨ v1v̄2y31. (34)

All other SOPs (25)–(26) are created in the same way.
Step 9: Now we can estimate the value of LUT count for

each block of FSM PEC (F1). To do it, we should use Table 5.
As follows from the column ‘‘1’’ of Table 5, LUTs of

LUTer1 generate 4 partial IMFs and 5 partial outputs. So, this
block includes 9 LUTs. Also, the following relations can be
found from this column: y14 = y4 and y110 = y10 This means
that only 7 outputs of LUTer1 are connected with LUTs of
the second logic level.

FIGURE 6. Logic circuit of FSM PEC (F 1).

As follows from the column ‘‘2’’ of Table 5, LUTs of
LUTer2 generate 5 partial IMFs and 6 partial outputs. So, this
block includes 11 LUTs. Also, the following relations can be
found from this column: y22 = y2, y26 = y6 and y29 = y9.
This means that only 8 outputs of LUTer2 are connected with
LUTs of the second logic level.

As follows from the column ‘‘3’’ of Table 5, LUTs of
LUTer3 generate 5 partial IMFs and 5 partial outputs. So, this
block includes 10 LUTs. Also, the following relations can be
found from this column: y35 = y5 and y37 = y7. This means
that only 8 outputs of LUTer3 are connected with LUTs of
the second logic level.

The conducted analysis shows that there are totally 30 LUTs
at the first circuit logic level. The outputs of 23 LUTs are
connected with the block LUTerTY of FSM PEC (F1).

Obviously, some function should be generated by
LUTerTY if there are at least two symbols ‘‘+’’ in the
corresponding row of Table 5. As follows from Table 5, there
are 9 such rows. For the discussed case, there is RV = 2 and
K = 3. So, the condition (30) holds. This means that each
function is represented by a single-LUT circuit. So, there
are 9 LUTs in the circuit of LUTerTY .

Thus, there are 39 LUTs and 5 flip-flops in the circuit
of FSM PEC (F1). The circuit has two levels of logic. All
circuits are implemented without the dedicated multiplexers.
This circuit is shown in Fig. 6.

Now, we compare LUT counts for PE (F1) and PC (F1)
FSM. As it is in the discussed example, we use 5-LUTs for
implementing FSM circuits.

In the case of PE (F1), using the greedy algorithm
from [24] gives the partition of the set A with K1 =

4 classes. These classes are the following: A1 = {a1, a5, a8},
A2 = {a2, a3, a4}, A3 = {a6, a9, a11} and A4 =

{a7, a10, a12, a13, a14}. Using (5) gives the following lengths
of partial state codes: R1 = R2 = R3 = 2, R4 = 3. Using
(6) gives RE = 9. So, it is necessary 9 flip-flops if extended
state codes are used. So, even for this simple example, the
number of required flip-flops for PE (F1) is almost twice
that for PEC (F1). This leads to an almost doubling of the
number of feedback signals. As follows from [20], the more
interconnections, the greater the power consumption and
signal propagation time is. We have found that it is necessary:
1) 13 LUTs in the circuit of LUTer1; 2) 14 LUTs in the
circuit of LUTer2; 3) 11 LUTs in the circuit of LUTer3;
4) 13 LUTs in the circuit of LUTer4. So, totally, there

VOLUME 12, 2024 42377



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

are 51 LUTs generating PBFs. Also, it is necessary 17 LUTs
in the circuit of LUTerT Y . Because there is K1 < SL = 5,
the circuit of LUTerT Y has a single level. To summarize: the
circuit contains 68 LUTs and has two logic levels.

In the case of PC (F1), using the greedy algorithm
from [24] gives the partition of the set A withK2 = 4 classes.
These classes are the following: A1 = {a7, a10, a12, a13},
A2 = {a1, a4, a5, a8}, A3 = {a2, a6, a9, a11} and A4 =

{a3, a14}. Using (5) gives the following lengths of partial state
codes: R1 = R2 = R3 = 2, R4 = 3. Using (12) gives
RS = 2. Using (13) gives RC = 2. So, it is necessary 4 flip-
flops if composite state codes are used. So, the number of
required flip-flops for PC (F1) is practically the same as it is
for PEC (F1). We have found that it is necessary: 1) 9 LUTs
in the circuit of LUTer1; 2) 10 LUTs in the circuit of LUTer2;
3) 9 LUTs in the circuit of LUTer3; 4) 7 LUTs in the circuit of
LUTer4. So, there are 35 LUTs generating PBFs. Five outputs
yn ∈ Y are generated by LUTs of LUTer1–LUTer4. So,
only 6 LUTs are necessary to implement the rest of outputs.
These LUTs are included into LUTerTY . Each function fi ∈

D ∪ Y can be represented as a disjunction of four partial
functions. Thus, the value of RV + K2 = 6 exceeds the
value SL = 5. As a result, it is necessary 8 LUTs to generate
IMFs (17). Moreover, this part of LUTerTY has two logic
levels. So, is necessary 14 LUTs in the circuit of LUTerTY .
To summarize: the circuit of PC (F1) FSM contains 49 LUTs
and has three levels of them.

For the discussed example, the comparison of three
different approaches of state assignment allows making the
following conclusion. The proposed method allows obtaining
the FSM circuit with a minimum number of LUTs (39
LUTs). Our approach allows saving 43% of LUTs compared
to PE (F1) FSMs and 21% of LUTs compared to PC (F1)
FSMs. The number of flip-flops for PEC (F1) is only one
more than the minimum possible number, which is ensured
by using the composite state codes. Our approach allows
obtaining the fastest solution because: 1) ESC-based FSM
has more interconnections and 2) CSC-based FSM has three
levels of LUTs.

To get the electrical circuit of Mealy FSM PEC (F1), it is
necessary to execute the step of technology mapping [26],
[47], [48]. This is connected with using the sophisticated
CAD tools. In the case of circuits implemented with internal
resources of Virtex-7, the industrial package Vivado [41]
should be used. Unfortunately, Vivado can design circuits of
digital devices using basic LUTs with SL = 6. So, using
5-LUTs, we cannot design and analyse the circuit of Mealy
FSM PEC (F1) automatically. In the next Section, the results
of experiments are shown.

VI. EXPERIMENTAL RESULTS
We conducted a lot of experiments to compare the basic
characteristics of LUT-based PEC Mealy FSMs with char-
acteristics of FSM circuits based on some other models.
The benchmark FSMs from the library [49] are used for the
experiments. De facto, the library includes 48 benchmarks

TABLE 6. Characteristics of benchmark Mealy FSMs [49].

represented by their state transition tables. The tables are
represented by KISS2-based files. The basic characteristics
of benchmarks (the values of parameters M, L, and N) have
a wide range. Due to it, these benchmarks are used by a
lot of researchers as a base for comparison different FSM
design methods. The characteristics of benchmark FSMs are
represented by Table 6.

We execute the experiments using a personal computer
with the following characteristics: CPU: Intel Core i7
6700K 4.2@4.4GHz, Memory: 16GB RAM 2400MHz
CL15. Also, we use the Virtex-7 VC709 Evaluation Platform

42378 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

(xc7vx690tffg1761-2) [50] and CAD tool Vivado v2019.1
(64-bit) [41]. There is SL = 6 for FPGAs of Virtex-7. We use
reports of Vivado to get the results of experiments. To enter
Vivado, we use the CAD tool K2F [20]. This tool allows
creating VHDL codes on the base of files represented in
KISS2 format.

In our experiments, we have checked three basic char-
acteristics of FSM circuits. They are the LUT counts (it
allows to estimate the chip areas occupied by FSM circuits),
performance (the maximum operating frequencies), and area-
time products. To estimate the area, we use the LUT
counts taken from reports of Vivado. The performance is
represented by the maximum operating frequency which is
achievable for each benchmark FSM. The area-time products
are calculated as results of multiplication of the LUT counts
by the maximum latency times obtained directly from Vivado
reports. In our experiments, we use five FSM models. These
models are P FSMs based on: 1) maximum binary state
codes (JEDI); 2) one-hot state codes (One-hot by Vivado);
3) extended state codes (PE -based FSMs); 4) composite state
codes (PC -based FSMs); 5) mixed state codes (PEC -based
FSMs proposed in this article).

As in our previous research [15], [16], the benchmarks are
divided by five types. To do it, we use the relation between
the values of R + L and SL . For basic LUTs of Virtex-7,
there is SL = 6. So, we use SL = 6 to determine the types
of benchmarks. The FSMs are trivial (type 0), if the result
of summation of R and L does not exceed 6. The FSMs
are simple (type 1), if the result of summation does not
exceed 12. The FSMs are average (type 2), if the result of
summation does not exceed 18. The FSMs are big (type 3),
if the result of summation does not exceed 24. Otherwise, the
benchmarks FSMs are very big (type 4). For very big FSMs,
the following relation takes place: R + L > 24. As shown
in the paper [16], there is a direct dependence between the
degree of improving the basic characteristics of FSM circuits
with help of SD-based methods and the type number.

In the discussed case, there is the following distribution
of benchmarks. The FSMs represented by the bench-
marks bbtas, dk17, dk27, dk512, ex3, ex5, lion, lion9,
mc, modulo12, and shiftreg have the type 0. The FSMs
represented by the benchmarks bbara, bbsse, beecount , cse,
dk14, dk15, dk16, donfile, ex2, ex4, ex6, ex7, keyb, mark1,
opus, s27, s386, s840, and sse have the type 1. The FSMs
represented by the benchmarks ex1, kirkman, planet , planet1,
pma, s1, s1488, s1494, s1a, s208, styr , and tma have type 2.
There is a single FSM sand which has the type 3. Four
remaining FSMs (s420, s510, s820, and s832) have the type 4.

The results of experiments are shown in Table 7–Table 11.
Three tables are organized in the same manner (Table 7,
Table 9 and Table 11). For these tables, the columns are
marked by the names of investigated methods (JEDI, One-
hot, PC , PEC ). The names of benchmarks are written in the
table rows. In these tables, we show results of experiments for
type 0 benchmarks first, then for type 1, and so on. Parts of
tables with the same type of benchmarks can be considered as

sub-tables. Within each sub-table, benchmarks are shown in
the alphabetical order. In the rows ‘‘Total’’, we place results
of summation of values for corresponding columns. The
row ‘‘Percentage’’ includes the percentage of summarized
characteristics of FSM circuits produced by other methods
respectively toPEC FSMs.We use themodel of PMealy FSM
as a starting point for methods JEDI and One-hot. Two tables
(Table 8 and Table 9) include only summarized values of LUT
counts and maximum operation frequencies for investigated
methods.

Now, we will analyse the experimental results taken from
the reports produced by Vivado (or calculated by us using
these reports). The following information can be found in
these tables: 1) the LUT counts for all benchmarks (Table 7);
2) the LUT counts for various types of benchmarks (Table 8);
3) the maximum operating frequencies for all benchmarks
(Table 9); 4) the maximum operating frequencies for various
types of benchmarks (Table 10); 5) the area-time products
for all benchmarks (Table 11). The data for two last tables
are calculated using the values of cycle times obtained from
Vivado reports.

As follows from Table 7, the PEC -based FSMs require
fewer LUTs than it is for other investigated methods. Our
approach produces circuits having 27.15% less 6-LUTs than
it is for equivalent JEDI-based FSMs; 79.57% less 6-LUTs
than it is for equivalent One-hot-based FSMs; 6.21% less
6-LUTs than it is for equivalent CSC-based FSMs; 22.21%
less 6-LUTs than it is for equivalent ESC-based FSMs.
While developing our method, we hoped that PEC -based
FSMs will require fewer LUTs in comparison with both
equivalent PE - and PC -based FSMs. As follows from the
last column of Table 7, our assumptions turn out to be
correct.

To compare the LUT counts for different types of
benchmarks, we have calculated these values for type 0,
type 1 and types 2–4. This information is represented by
Table 8.
As follows fromTable 8, for the FSMs of type 0, practically

all methods produce FSM circuits with the same LUT counts.
This is explained by the fact that for these benchmarks the
following condition takes place:

R+ L ≤ SL . (35)

If (35) holds, then all FSM outputs and IMFs are
generated by single-LUT circuits. Obviously, there is no
need in optimization if the condition (35) holds. Due to it,
the JEDI-based optimization cannot produce circuits better
than they are produced by other investigated methods. The
negative outcome of one-hot assignment (loss in 39.39%) can
be explained by the fact that there is R = M for OHC-based
FSMs Due to it, OHC-based FSMs require more LUTs for
generating IMFs than it is for other models.

Starting from simple FSMs, PEC -based FSMs require
fewer LUTs than it is for other investigated methods. Our
approach produces circuits having 12.33% less 6-LUTs than
it is for equivalent JEDI-based FSMs; 75% less 6-LUTs

VOLUME 12, 2024 42379



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

TABLE 7. Experimental results (LUT counts).

than it is for equivalent One-hot-based FSMs; 1% less
6-LUTs than it is for equivalent CSC-based FSMs; 14%
less 6-LUTs than it is for equivalent ESC-based FSMs.
We explain this gain by the fact that slightly fewer partial
functions are formed for the proposed method than for
equivalent CSC-based FSMs. The advantage with respect
to ESC-based FSMs is explained by the fact that the latter
require significantly more variables to generate partial state
codes.

TABLE 8. Results for benchmarks of different types (LUT count).

The same facts also explain the growing advantage of
our method connected with the growth of the complexity
of the FSMs. As a result, our approach produces circuits
having 34.86% less 6-LUTs than it is for equivalent JEDI-
based FSMs; 84.55% less 6-LUTs than it is for equivalent
One-hot-based FSMs; 8.65% less 6-LUTs than it is for
equivalent CSC-based FSMs; 27.07% less 6-LUTs than it is
for equivalent ESC-based FSMs. As follows from Table 8,
the gain from the use of mixed state codes increases as the
complexity of FSM grows (an increase in the number of
states, inputs and outputs).

As follows from Table 9, our approach produces faster
LUT-based FSM circuits relative to other investigated
methods. The average win is from 2.36% (compared with
PC -based FSMs) to 22.39% relative to OHC-based FSMs.
This fact is explained in the same way as it is for the gain
in LUT counts. To compare frequencies for different types of
FSMs, we created Table 10.
The following conclusions can be made on the base

of Table 10. For trivial FSMs (type 0), the one-hot state
assignment produces circuits which are slower than circuits
produced using other state assignment methods. This is
explained by the fact that, due to the violation of condition
(35), these circuits have more interconnections compared to
circuits generated by other methods. It is known [11] that
interconnections significantly affect the performance of LUT-
based circuits. All other models have the same performance
because in fact they degenerate into P FSMs with maximum
binary state codes.

Starting from simple FSMs (type 1), the advantage of
the proposed method begins to appear. For simple FSMs,
our method provides gain relative to JEDI-based FSMs
(22.46%), One-hot-based FSMs (27.69%), and PE -based
FSMs (3.88%). It is interesting that there is the equal
performance for PEC and PC FSMs. Apparently, these two
models have the same state code length. As a consequence,
they have the same number of logic levels (and, therefore, the
same values of maximum operating frequencies). For other
types of FSMs (2, 3 and 4), our method allows producing
the fastest circuits. There is the following gain in FSM
performance: 18.27.6% compared with JEDI-based FSMs;
28.33% compared with OHC-based FSMs; 7.41% compared
with CSC-based FSMs; 12.87% compared with ESC-based
FSMs.

So, the proposed approach allows increasing perfor-
mance in comparison with other methods under study.

42380 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

TABLE 9. Experimental results (the maximum operating frequency for all
benchmarks, MHz).

Moreover, the gain increases as the complexity of the FSMs
increases.

To better visualize the results of experiments, we presented
them in the form of diagrams (bar charts). These charts show
the total number of LUTs (Fig. 7) and the total maximum
operating frequency (Fig. 8).
To construct the diagram (Fig. 7), we used data from

Table 7. The table includes the sums of LUTs required
for each FSM model within each group of benchmarks
(benchmarks of the same type). To construct the diagram

TABLE 10. Results for benchmarks of different types (maximum
operating frequency, MHz).

FIGURE 7. Total numbers of LUTs for each type of benchmarks.

FIGURE 8. Total values of maximum operating frequencies for each type
of benchmarks.

(Fig. 8), we used data from Table 9. The table includes the
sums ofmaximumoperating frequencies for each FSMmodel
within each group of benchmarks (types 0–4). We hope that
these diagrams provide a better understanding of the specifics
of the proposed state assignment method.

The main goal of the proposed method was to reduce the
number of LUTs (the chip area occupied by FSM circuit)
compared to this value for equivalent PC and PE FSMs.

VOLUME 12, 2024 42381



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

TABLE 11. Experimental results (the area-time products for all
benchmarks).

The results of experiments show that this goal has been
achieved. In addition, starting from average FSMs (type 2),
our approach simultaneously allows increasing the maximum
operating frequency. Due to it, our approach produces FSM
circuits with the best values of area-time products. The
corresponding values are shown in Table 11.

As follows from Table 11, our approach provides the
following average gain: 1)59.08% regarding JEDI-based
FSMs; 2)154.16% regarding OHC- based FSMs; 3) 13.27%
regarding CSC-based FSMs and 4) 32.05% regarding
ESC-based FSMs. We did not show it, but the gain obtained

by our approach increases with the increasing the FSM type.
It is known [10], that the smaller the value of the product of
the number of LUTs in circuit 1 and its cycle time compared
to this product for circuit 2, the circuit 1 either requires fewer
LUTs or has a higher performance than circuit 2. Both of
these phenomena are inherent in our proposed method.

So, the results of our experiments show that the proposed
approach can be used instead of other models starting from
simple FSMs (type 1). Our approach allows improving
LUT counts, maximum operating frequency, and area-time
products compared with other investigated design methods.
We think that our approach has rather good potential and can
be used in CAD systems targeting FPGA-basedMealy FSMs.

VII. CONCLUSION
Very often, modern digital systems are implemented using
FPGA chips. Current FPGAs are very complicated devices
having up to 7 billion transistors [17], [43]. Due to it,
a single chip can be used for implementing rather complex
circuits of various digital systems. As the complexity of these
systems increases, the contradiction between a significant
number of system inputs and a very small number of LUT
inputs increases, too. Modern LUTs have around 6 inputs.
Obviously, this value is rather small compared with numbers
of literals in SBFs representing FSM circuits. This leads to the
need for using different methods of functional decomposition
in LUT-based FSM design. It is known [20] that the
functional decomposition leads to multi-level LUT-based
FSM circuits having very complicated systems of spaghetti-
type interconnections.

To improve the characteristics of LUT-based FSM circuits
compared with their counterparts based on functional decom-
position, various methods of structural decomposition can be
applied [20]. As follows from our previous research [15],
[16], the characteristics of LUT-based Mealy FSM circuits
can be improved using either extended or composite state
codes. These approaches have both positive and negative
sides.

In our current paper, we propose a new method of state
assignment, namely, the assignment based on mixed state
codes. This approach allows combining positive features
of the methods based on either extended or composite
state codes. Also, the proposed method is free from the
disadvantages inherent in these two methods. As it is for
CSCs, mixed state code is represented by a concatenation
of a class code and the code of a state as an element of
this class. However, unlike CSCs, the mixed state codes
can have different lengths of partial state codes (this is
a positive feature borrowed from ESCs). The proposed
approach preserves the flexibility inherent in ESCs and the
almost minimum number of variables inherent in CSCs.
This approach leads to two-level FSM circuits which require
fewer LUTs than their counterparts based on other state
assignment methods. Moreover, the MSC-based FSMs have
slightly better performance as their ESC- and CSC-based
counterparts.

42382 VOLUME 12, 2024



A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

REFERENCES
[1] S. C. Suh, U. J. Tanik, and J. N. Carbone, Applied Cyber-Physical Systems.

New York, NY, USA: Springer, 2013.
[2] L. Ashford and S. S. Arunkumar, Introduction to Embedded Systems: A

Cyber-Physical Systems Approach, 2nd ed. Cambridge, MA, USA: MIT
Press, 2016.

[3] P. Marwedel, Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems, and the Internet of Things, 3rd ed. New York,
NY, USA: Springer, 2018.

[4] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design:Modeling, Synthesis and Verification, 1st ed. NewYork, NY, USA:
Springer, 2009.

[5] S. Baranov,Finite StateMachines and Algorithmic StateMachines. Seattle,
WA, USA: Amazon, Jan. 2018.

[6] I. Grout, Digital Systems Design With FPGAs and CPLDs. Amster-
dam, The Netherlands: Elsevier Science, 2011. [Online]. Available:
https://books.google.pl/books?id=vggmNXdzayYC

[7] M. Kubica, A. Opara, and D. Kania, Technology Mapping for LUT-Based
FPGA. Cham, Switzerland: Springer, Jan. 2021.

[8] M. Kubica and D. Kania, ‘‘Technology mapping oriented to adaptive logic
modules,’’ Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 947–956,
2019.

[9] A. Mishchenko, S. Chatterjee, and R. K. Brayton, ‘‘Improvements to
technology mapping for LUT-based FPGAs,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 26, no. 2, pp. 240–253, Feb. 2007.

[10] M. M. Islam, M. S. Hossain, M. Shahjalal, M. K. Hasan, and
Y. M. Jang, ‘‘Area-time efficient hardware implementation of modular
multiplication for elliptic curve cryptography,’’ IEEE Access, vol. 8,
pp. 73898–73906, 2020.

[11] W. Feng, J. Greene, and A. Mishchenko, ‘‘Improving FPGA performance
with a S44 LUT structure,’’ in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays New York, NY, USA: Association for Computing
Machinery, Feb. 2018, pp. 61–66, doi: 10.1145/3174243.3174272.

[12] J. Ruiz-Rosero, G. Ramirez-Gonzalez, and R. Khanna, ‘‘Field pro-
grammable gate array applications—A scientometric review,’’ Computa-
tion, vol. 7, no. 4, p. 63, Nov. 2019.

[13] M. Amagasaki and Y. Shibata, FPGA Structure, Sep. 2018, pp. 47–86.
[14] I. Kuon, R. Tessier, and J. Rose, ‘‘FPGA architecture: Survey and

shallenges—found trends,’’ Electr. Design Autom., no. 2, pp. 135–253,
2008.

[15] A. Barkalov, L. Titarenko, K. Krzywicki, and S. Saburova, ‘‘Improving
characteristics of LUT-based mealy FSMs with twofold state assignment,’’
Electronics, vol. 10, no. 8, p. 901, Apr. 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/8/901

[16] A. Barkalov, L. Titarenko, and K. Krzywicki, ‘‘Improving charac-
teristics of LUT-based sequential blocks for cyber-physical systems,’’
Energies, vol. 15, no. 7, p. 2636, Apr. 2022. [Online]. Available:
https://www.mdpi.com/1996-1073/15/7/2636

[17] Xilinx. Accessed: Jan. 2024. [Online]. Available: http://www.xilinx.com
[18] Xilinx Corporation. (2019).Virtex-7 Family Overview. [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds183
_Virtex_7_Data_Sheet.pdf

[19] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994.

[20] A. Barkalov, L. Titarenko, and K. Krzywicki, ‘‘Structural decompo-
sition in FSM design: Roots, evolution, current state—A review,’’
Electronics, vol. 10, no. 10, p. 1174, May 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/10/1174

[21] M. Kubica, D. Kania, and J. Kulisz, ‘‘A technology mapping of FSMs
based on a graph of excitations and outputs,’’ IEEE Access, vol. 7,
pp. 16123–16131, 2019.

[22] K. Chapman, Multiplexer Design Techniques for Datapath Performance
With Minimized Routing Resources. Xilinx All Programmable, 2014,
Accessed: Jan. 2024.

[23] C. Scholl, Functional DecompositionWith Application to FPGA Synthesis.
Boston, MA, USA: Kluwer Academic, 2001.

[24] A. Barkalov, L. Titarenko, and K. Mielcarek, ‘‘Hardware reduction for
LUT–based mealy FSMs,’’ Int. J. Appl. Math. Comput. Sci., vol. 28, no. 3,
pp. 595–607, Sep. 2018.

[25] A. Barkalov, L. Titarenko, and K. Mielcarek, ‘‘Improving characteristics
of LUT-based mealy FSMs,’’ Int. J. Appl. Math. Comput. Science, vol. 30,
no. 4, pp. 745–759, 2020.

[26] M. Kubica and D. Kania, ‘‘Area–oriented technology mapping for LUT–
based logic blocks,’’ Int. J. Appl. Math. Comput. Sci., vol. 27, no. 1,
pp. 207–222, Mar. 2017.

[27] L. Machado and J. Cortadella, ‘‘Support-reducing decomposition
for FPGA mapping,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 1, pp. 213–224, Jan. 2020. [Online].
Available: https://www.cs.upc.edu/~jordicf/gavina/BIB/files/iwls2018
_FPGA.pdf

[28] R. Senhadji-Navarro and I. Garcia-Vargas, ‘‘High-performance architec-
ture for binary-tree-based finite state machines,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 4, pp. 796–805, Apr. 2018.

[29] S. Chattopadhyay, ‘‘Area conscious state assignment with flip-flop and
output polarity selection for finite state machine synthesis—A genetic
algorithm approach,’’ Comput. J., vol. 48, no. 4, pp. 443–450, May 2005.

[30] C. Chen, J. Zhao, and M. Ahmadi, ‘‘A semi-gray encoding algorithm for
low-power state assignment,’’ in Proc. Int. Symp. Circuits Syst. (ISCAS),
vol. 5, 2003, pp. 389–392.

[31] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Optimal
state assignment for finite state machines,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. CAD-4, no. 3, pp. 269–285, Jul. 1985,
doi: 10.1109/TCAD.1985.1270123.

[32] Y. Tao, Y. Zhang, Q. Wang, and J. Cao, ‘‘MPGA: An evolutionary state
assignment for dynamic and leakage power reduction in FSM synthesis,’’
IET Comput. Digit. Techn., vol. 12, no. 3, pp. 111–120, May 2018.

[33] G. Venkataraman, S. M. Reddy, and I. Pomeranz, ‘‘GALLOP: Genetic
algorithm based low power FSM synthesis by simultaneous partitioning
and state assignment,’’ in Proc. 16th Int. Conf. VLSI Design, Proceed-
ings., 2003, pp. 533–538.

[34] R. Agrawal, M. Borowczak, and R. Vemuri, ‘‘A state encoding methodol-
ogy for side-channel security vs. power trade-off exploration,’’ in Proc.
32nd Int. Conf. VLSI Design 18th Int. Conf. Embedded Syst. (VLSID),
Jan. 2019, pp. 70–75.

[35] A. H. El-Maleh, ‘‘A probabilistic pairwise swap search state
assignment algorithm for sequential circuit optimization,’’
Integration, vol. 56, pp. 32–43, Jan. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926016300384

[36] A. H. El-Maleh, ‘‘Finite state machine-based fault tolerance technique with
enhanced area and power of synthesised sequential circuits,’’ IET Comput.
Digit. Techn., vol. 11, no. 4, pp. 159–164, Jul. 2017.

[37] A. H. El-Maleh, ‘‘A probabilistic Tabu search state assignment algorithm
for area and power optimization of sequential circuits,’’ Arabian J. for Sci.
Eng., vol. 45, no. 8, pp. 6273–6285, Aug. 2020, doi: 10.1007/s13369-020-
04697-y.

[38] S. Park, S. Cho, S. Yang, and M. Ciesielski, ‘‘A new state assignment
technique for testing and low power,’’ in Proc. 41st Annu. Design Autom.
Conf. New York, NY, USA: Association for Computing Machinery,
Jun. 2004, pp. 510–513.

[39] E. Sentowich, K. Singh, L. Lavango, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. S. P, R. Bryton, and A. Sangiovanni-Vincentelli, ‘‘SIS: A
system for sequential circuit synthesis,’’ inProc. Int. Conf. Comput. Design
(ICCD), 1992, pp. 328–333.

[40] R. Brayton and A. Mishchenko, ‘‘ABC: An academic industrial-strength
verification tool,’’ in Computer Aided Verification, T. Touili, B. Cook, and
P. Jackson, Eds. Berlin, Germany: Springer, 2010, pp. 24–40.

[41] Vivado. Accessed: Jan. 2024. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html

[42] QuartusPrime. Accessed: Jan. 2024. [Online]. Available:
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-
prime/overview.html

[43] Altera. Accessed: Jan. 2024. [Online]. Available: http://www.altera.com
[44] G. Sutter, E. Todorovich, S. López-Buedo, and E. Boemo, ‘‘Low-power

FSMs in FPGA: Encoding alternatives,’’ in Integrated Circuit Design.
Power and Timing Modeling, Optimization and Simulation. Seville, Spain:
Springer-Verlag, 2002, pp. 363–370.

[45] I. Skliarova, V. Sklyarov, and A. Sudnitson, Design of FPGA-Based
Circuits Using Hierarchical Finite State Machines. Tallinn, Estonia: TUT
Press, 2012.

[46] A.Opara,M.Kubica, andD.Kania, ‘‘Decomposition approaches for power
reduction,’’ IEEE Access, vol. 11, pp. 29417–29429, 2023.

[47] R. Senhadji-Navarro and I. Garcia-Vargas, ‘‘Mapping outputs and states
encoding bits to outputs using multiplexers in finite state machine
implementations,’’ Electronics, vol. 12, no. 3, p. 502, Jan. 2023. [Online].
Available: https://www.mdpi.com/2079-9292/12/3/502

VOLUME 12, 2024 42383

http://dx.doi.org/10.1145/3174243.3174272
http://dx.doi.org/10.1109/TCAD.1985.1270123
http://dx.doi.org/10.1007/s13369-020-04697-y
http://dx.doi.org/10.1007/s13369-020-04697-y


A. Barkalov et al.: Hardware Reduction for FSMs With Extended State Codes

[48] R. Senhadji-Navarro and I. Garcia-Vargas, ‘‘Mapping arbitrary logic
functions onto carry chains in FPGAs,’’ Electronics, vol. 11, no. 1,
p. 27, Dec. 2021. [Online]. Available: https://www.mdpi.com/2079-
9292/11/1/27

[49] K. McElvain. (1993). Lgsynth93 Benchmark Set. Version 4.0.
Accessed: Feb. 2018. [Online]. Available: https://people.engr.
ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar

[50] Xilinx. (2024). VC709 Evaluation Board for the Virtex-7 FPGA.
Accessed: Jan. 2024. [Online]. Available: https://www.xilinx.com/support/
documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-
fpga.pdf

ALEXANDER BARKALOV received the M.Sc.
degree in computer engineering from Donetsk
Polytechnical Institute (currentlyDonetskNational
Technical University), Ukraine, in 1976, the Ph.D.
degree in computer science from the Leningrad
Institute of Fine Mechanics and Optics, Russia,
in 1983, and the Doctor of Technical Sciences
degree in computer science from the Institute of
Cybernetics (Kiev), in 1995. Since 2003, he has
been a Professor of computer engineering with

the Institute of Informatics and Electronics, University of Zielona Góra,
Poland. His current research interests include the theory of digital automata,
especially the methods of synthesis and optimization of control units
implemented with field-programmable logic devices.

LARYSA TITARENKO received the M.Sc., Ph.D.,
and Doctor of Technical Sciences degrees in
telecommunications from Kharkiv National Uni-
versity of Radioelectronics, Ukraine, in 1993,
1996, and 2005, respectively. Since 2007, she has
been a Professor of telecommunications with the
Institute of Informatics and Electronics, University
of Zielona Góra, Poland. She has taken part
in several research projects sponsored by the
Ministry of Science and Higher Education of

Ukraine, from 1993 to 2005. Her current research interests include the theory
of telecommunication systems, the theory of antennas, and the theory of
digital automata and its applications.

KAMIL MIELCAREK received the M.Sc. degree
in computer engineering from the Technical Uni-
versity of Zielona Góra, Poland, in 1995, and
the Ph.D. degree in computer science from the
University of Zielona Góra, Poland, in 2010. Since
2001, he has been a Lecturer with the University
of Zielona Góra. His current interests include the
methods of logic synthesis and optimization of
control units in FPGA logic devices, VLSI-based
FSMs, hardware description languages, perfect

graphs, petri nets, algorithmic theory, and the safety of UNIX and network
systems.

MAŁGORZATA MAZURKIEWICZ received the
M.Sc. degree in computer science from the Tech-
nical University of Zielona Góra, Poland, in 1999,
and the Ph.D. degree in computer science from the
University of Zielona Góra, Poland, in 2007. Since
2007, she has been an Assistant Professor with
the Faculty of Computer, Electrical and Control
Engineering, University of Zielona Góra. Her
research interests include the methods of digital
circuit synthesis, design, and PLC programming.

42384 VOLUME 12, 2024


