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ABSTRACT Deep learning models and algorithms facilitate relatively easier ways of hand pose estimation
from monocular RGB images compared to traditional approaches. Despite this, a majority of available
algorithms use multiple-stage models to perform hand pose estimation. Moreover, the single-stage methods
are mainly limited to a single hand and it is difficult for them to scale to multiple hands. To this end,
we propose an approach that takes the features of the saliency map extracted for hand region of interest (ROI)
localization. An integrated network uses these features for pose estimation. This arrangement of layers forms
an end-to-end pipeline that allows simultaneous pose estimation for multiple hands. The model is designed to
run on multiple cores of CPU/GPU to independently perform inference for each detected hands’pose making
possible faster inference and hence suitable for real-time applications. In addition, a new approach using grid-
based design to estimate hand-keypoints position with high precision is also proposed. Both the proposed
designs are validated on multiple datasets to prove their feasibility and effectiveness. The probability of the
correct keypoint (PCK) value at threshold value of 0.2 is above 95% on the test sets from Interhand dataset
and Rendered HandPose Dataset (RHD).

INDEX TERMS Computer vision, convolutional neural networks, deep learning, hand pose, monocular,
pose estimation.

I. INTRODUCTION
Hand pose estimation (HPE) is the process of modeling the
human hand as a set of some parts (e.g. wrist point, fingertips,
fingers’joints) and finding their positions in a hand image
(2D estimation) or the simulation of hand parts positions in
a 3D space. It is used to estimate hands with the phalanges
and is the basis of dynamic gesture recognition. With
the availability of low-cost and portable image acquisition
devices, HPE offers a variety of uses. It can be used as a
contact-less controller for human-computer interaction (HCI)
and can have applications in the field of Sign Language
Recognition (SLR) [1], [2], [3], activity recognition [4],
Augmented Reality (AR), Mixed Reality (MR), Virtual
Reality (VR) [5], [6], hand gestures recognition [7] (HGR)
and others.

The associate editor coordinating the review of this manuscript and
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Usually, the hand pose is defined using 21 hand key-
points [8], [9]; and those are 5 fingertips, the centers of
15 finger joints, and the base of the palm (wrist point).
However, attaining high performance in a vision-based
markerless hand pose estimation is an extremely challenging
problem, especially from the perspective of color images.
A human hand has a high Degree of Freedom (DOF) [10],
which facilitates flexible hand and finger movements creating
a challenge to estimate hand pose. Appearance ambiguities,
self-occlusions, and occlusion due to objects in the image are
additional factors that must be dealt with appropriately for an
accurate hand pose estimation.

With the introduction and continuous improvements in
deep learning (DL) algorithms, many computer-vision (CV)
problems which were very challenging to solve with tra-
ditional features engineering techniques, became solvable.
Different DL-based algorithms have been proposed for HPE.
Many of them perform very reliably. In terms of the approach
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FIGURE 1. The complete flow diagram for simultaneous multiple hand keypoints detection process. The features F are used for ROI detections and
keypoints detection. Parallel processes (referred to as Process N) perform keypoints detection for each detected hand region in the given monocular
RGB image. The red and green bounding boxes represent the ROIs of each detected hand.

used to solve the HPE problem, the pose estimation methods
can be broadly categorized into either top-down or bottom-
up approaches. While the former approach depends on a
separate process to detect and segment the hands before
estimating the position of the hands keypoint, in the latter
the joints are detected first before grouping them to form a
unique hand pose [11], [12]. The top-down approach is the
predominately used approach for hand pose estimations [1],
[8], [9], [13], [14]. One major advantage of the top-down
approach is its scale invariance pose estimation. However,
this approach has a few downsides like dependence on a
hand localization process and relatively slow estimation time
due to the involvement of multiple independent stages in the
inference pipeline.

The work presented in this paper is focused on simulta-
neous pose estimation for both hands of a single user. The
methodology proposed in this paper is developed for 2D hand
pose estimation from monocular RGB images. The goal is to
perform hand pose estimation directly on the image captured
from a conventional RGB camera and does not involve
any independent hand localization step. The idea presented
in this paper is inspired by the work of Wang et al. [8]
in which they used a cascaded network for hand mask
segmentation and estimation of hands’ keypoint position.
On analysis of the saliency map of the first stage network
proposed by Wang et al. [8], it was observed the network
first localizes the hand region and extracts relevant features
which were then used by the subsequent network for pose
estimation. Taking a cue from the aforementioned approach a
network is designed that will localize hand region of interest
(ROI), which will be then utilized to extract features from
the saliency map. Using these extracted features, the hand
pose will be estimated. The complete proposed process is
illustrated in Fig. 1. Using the features extracted from a deep
learning architecture, ROIs are detected and the same features
are reused to perform hand-keypoints position estimation.
The details of Fig. 1 and the proposed methodology will
follow in Section III. The advantage of the proposed
approach is the whole process is end-to-end and does not
need any pre-processing step before HPE. Additionally, the
keypoints position of multiple hands can be determined
simultaneously.

The main contributions of this paper are summarized
below.
1) An end-to-end pipeline is proposed for simultaneous

hand pose estimation from multiple hands directly from
a monocular RGB image.

2) The proposed design is modular enabling different pose
estimation algorithms like heatmap regression, latent
heatmap regression, or any other to be easily integrated
in the pipeline.

3) A novel technique for hand pose estimation is also
proposed that estimates keypoints’position using a
nearest-neighbor estimation approach. The proposed
design uses a generic template and is useful for hands
of varying scales.

4) The proposed algorithm is validated onmultiple datasets
that provide annotated hand keypoints for both of the
hands of a user.

5) The algorithm can run in parallel using multiple
CPU/GPU cores of a system enabling it to have a faster
inference time.

The organization of the rest of the paper is as follows.
A brief study of related work is furnished in Section II.
Section III details the proposed method. Experimental details
are given in Section IV. The results analysis and comparison
are presented in Section V. Section VI concludes the paper.

II. RELATED WORK
Due to its dexterous nature, the human hand has been used
as an interactive tool in various HCI applications. Many
efforts have been put in to capture the hand motion and
interpret its meaning for interactive purposes. A survey of
various methods available for estimation of hand pose had
been conducted by Erol et al. [5], and Doosti [6].
The data gloves [15], [16], [17] are effective in capturing

the hand motion. The hand and position of its keypoints
can be monitored in real-time with high accuracy. However,
these devices are expensive, restrict hand motion, and require
complex calibration before pose estimation. Computer-
Vision (CV) provides alternative solutions to the data gloves
method for contactless pose estimation. The vision-based
interactions are natural and intuitive. With the introduction
of portable depth sensors, research in the field of vision-
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based hand pose estimation has picked up the pace [18], [19],
[20], [21]. However, a depth sensor is effective only in an
indoor environment, and the depth-maps are noisy [1], [9],
[22], [23]. Thus, the scope of a depth sensor is limited. RGB
images present an alternative to depth-map for hand pose
estimation. The proposed work is focused on 2D hand pose
estimation from an RGB image. The existing work on hand
pose estimation from RGB images is briefed in the next sub-
section.

A. HAND POSE ESTIMATION
As compared to the depth-map-based methods very less num-
ber of methods use RGB images for hand pose estimation.
Athitsos and Sclaroff [24] proposed a method based on edge
maps and chamfer matching for pose estimation. The use
of egocentric vision methods for hand pose estimation has
been proposed by Rogez et al. [25] and Baydoun et al. [26].
The method in [25] used a hierarchical regression technique
whereas, a graphical approach is followed in [26]. Grze-
jszczak et al. [27] has used distance transform and templates
for hand keypoints detection from an RGB image. With the
advent of convolutional neural network (CNN), considerable
progress has been made in the field of hand pose estimation.
A method using CNN for 3D hand pose estimation from an
RGB image has been proposed by Zimmermann andBrox [1].
They used three different CNN networks to estimate the 3D
position of hand joints. They used PoseNet network for 2D
pose estimation from the cropped hand image. The PoseNet
architecture produces a heatmap for each hand joint. The 2D
coordinates of hand joints are then lifted to 3D coordinates
using a PosePrior network. However, the PoseNet was
trained with synthetic hand images and performs well on
a synthetic dataset. However, similar performance is not
observed in real-world images. Simon et al. [13] proposed a
multiview bootstrappingmethod to generate a large annotated
dataset. They trained a weak detector to generate hand
annotation in a multiview situation. The detector is not
robust, and the dataset is limited to a controlled environment.
Recently, Wang et al. [8] proposed a two-stage cascaded
CNN architecture for hand pose estimation from a single
RGB image. They performed hand mask prediction in the
first stage. The second stage uses the output feature maps as
well as the hand mask generated in the first stage to estimate
the hand joints’position. The second stage performs heatmap
regression and it is based on Convolutional Pose Machine
(CPM) architecture [28]. The authors also published a dataset
called OneHand10K for 2D hand pose estimation from
color images. This dataset comprises images from real-world
scenarios. Another method called SRHandNet, was proposed
by Wang et al. [9] for hand pose estimation from color
images. The authors use an encoder-decoder architecture
to perform heatmap regression to obtain hand keypoints
position and corresponding bounding box coordinates. The
bounding box is used to crop the hand from the color image
and perform cycle inference through the same network to

improve the hand pose estimation. Most of the aforesaid
methods are dependent on hand localization. To eliminate
the dependency on hand localization, Li et al. [23] proposed
a hand keypoints detection method using pose anchors (a
form of hand template) from a full-size image. This limits
the hand keypoints detection to a few hand poses that
match the template. Spatial Information Aware Graph Neural
Network [29] is also used to extract the relation between
joints and their neighbors but multi-scale information is not
captured with this approach. HandyPose [30] architecture
used multi-level features with waterfall atrous spatial pooling
for 2D hand pose estimation.

B. MULTIPLE-HAND POSE ESTIMATION
It is defined as the estimation of the pose for all of the
hands present in the input image in one go. The estimation
of hand pose for multiple hands has received lesser attention
in comparison to single-hand pose estimation. Wang et al. [9]
used a hand ROI detector and performed pose estimation on
all detected hands. Li et al. [23] used pose-anchors obtained
after Object Keypoints Similarity (OKS) based clustering to
determine the keypoints. These anchors can be used to detect
keypoints for multiple hands.While the methods proposed by
Wang et al. [9] can be categorized as a top-down approach, the
method proposed by Li et al. [23] is a single-step approach.

The HPE process can be considered analogous to human
or animal pose estimation. While in hand pose estimation,
the pose is defined by 21 keypoints on a hand, the number
of keypoints in other pose estimation processes varies. Here,
we describe briefly a few human-pose estimation processes
that can be adopted for hand pose estimation after making a
fewmodifications. In general, the pose estimation approaches
can be summarized either as top-down methods or bottom-up
methods. Recently, single-stage methods were also proposed,
a brief of related works using this approach is provided later
in the Section.

1) TOP-DOWN METHODS
In this method, a detector is used to obtain bounding boxes
of all the object instances present in the input image.
Next, the pose estimation is performed for each of the
detected instances of the object. Some work following
this approach includes Hourglass [31], CPM [28], Sim-
pleBaseline [32], HRNet [33],Regional Multi-Person Pose
Estimation (RMPE) [34] and others. The top-down approach
is dependent on the performance of the detector.

2) BOTTOM-UP METHODS
As defined in Section I, bottom-up methods first determine
the position of keypoints and then they are grouped into
individual instances in the input. The major focus of most
of the bottom-up methods is on how to associate a keypoint
to a group or instance. OpenPose [11] used affinity field
while Part Association Field (PAF) is used in PifPaf [35].
Shi et al. [36] uses transformers for pose estimation. The
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grouping process makes the bottom-up methods complex and
their performance is often inferior to the top-down methods.

3) SINGLE-STAGE METHODS
As the name implies, the methods in this category try
to map keypoints position to that of the object instances.
The keypoint positions are obtained with regression. Some
of the methods in this category includes, CenterNet [37],
FCPose [38], InsPose [39], SPM [40] and so on. There is
a trade-off between accuracy and efficiency in the single-
stage methods. Even though some of these methods have
performance equivalent to methods using the top-down
approach, not all of them are end-to-end optimized and
require some form of pre-processing.

In this work, we present an end-to-end optimized single-
stage network that shares the saliency map across sub-
networks for HPE. The saliency map sharing helps in
reducing the number of parameters in the model. Apart from
this the contextual information captured from a full-size
image as input helps apprehend the spatial and semantic
relationship between multiple hands. Overall, this feature
sharing helps to differentiate multiple hands along with
capturing the affinity field of the different joints of the hand
making the design more consistent and precise.

III. METHODOLOGY
A. OVERVIEW
Our goal is to find the 2D position of the hand joints from
a single RGB image that may contain multiple hands. In this
work, our focus is especially on the two hands of a single user
who is interacting with a computer. Our method consists of
twomain steps: detecting the regions of interest (ROIs) where
the hands are located and estimating the keypoints of each
hand within the ROIs (similar to the top-down approach).
The ROI detection is an intermediate and a hidden stage.
This means that the hand detection results are only utilized
to perform subsequent keypoints detection processes and
these results are not available at output. Additionally, the
features used for ROI detection are re-used for keypoints
detection. The input to the algorithm is a monocular RGB
image I ∈ Rw×h×3. The algorithm attempts to estimate the
position of a set of K hand joints (of a single hand) in 2D
space. The location of a keypoint is represented by point
pn = (xn, yn) ∈ R2 where n ∈ [1,K ]. Typically, for a single
hand, the value ofK is 21. The following sub-sections provide
the details of the processes used to estimate the positions of
hand keypoints starting with ROI(s) detection.

B. MULTIPLE HAND POSE ESTIMATION
The simultaneous estimation of hand keypoints’position from
multiple hands methodology takes inspiration from state-of-
the-art object detection algorithms. The CNN model used for
this multiple hand keypoints detection can be broken down
into two steps - 1) Hand ROI detection 2) Hand Keypoints
detection.

FIGURE 2. Flow diagram representing the hand ROIs proposal network.
The classification sub-net distinguishes between foreground and
background. The bounding box (bbox) regression sub-net provides
coordinates of the foreground.

A single end-to-end pipeline, shown in Fig. 1, is designed
to perform both of these two steps. Firstly, from the input
image, ROIs are selected, and using these ROIs keypoints
for each individual detected hand are localized. Roughly, the
CNN architecture, shown in Fig. 1, can be divided into three
parts:

1) Backbone model with feature pyramid pooling
(FPN) [41], 2) ROI detection network, and 3) keypoints
detection network.

The feature maps F from the backbone model are shared
between ROI detection and the keypoints detection network.
The architecture of ROI detection along with the backbone
model is shown in Fig. 2. The backbone model architecture
is composed of two paths - the bottom-up path and the top-
down path. Layers C1 − C4 constitute the bottom-up path.
As we move from bottom to top in the forward direction of
the bottom-up pathway, the spatial resolution of the features
map is divided by a factor of two. The leftmost portion shown
in Fig. 2 represents the same. Layers P1 − P3 form the top-
down pathway. These layers are a combination of upsampling
(bilinear interpolation) and convolutional (kernel of size 3×3)
layers. The layers in top-down pathways are connected to
layers from bottom-up pathways using skip connections.
For the bottom-up pathway multiple state-of-the-arts deep
learning architectures like ResNet [42], DenseNet [43], and
EfficientNet [44] are tried. The backbone model is used as a
feature extraction workhorse of the model. These pathways in
the backbone model are designed considering the following.
At the high level, feature maps tend to have small resolutions
though they are semantically stronger and thus more suitable
to detect large objects. Just the opposite of this, the lower
level feature maps are of high resolution and therefore are
better suited to detect small objects. The combination of
the top-down paths and their lateral connections with the
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bottom-up pathways, which do not require extra computation,
results in feature maps that can be both semantically and
spatially strong. This allows the architecture to become
scale-invariant and perform at a higher speed maintaining
acceptable accuracy.

After the backbone model, the next part of the architecture
is ROI detection. The input to the ROI detection portion of the
network are features obtained after adding features P1, P2,
and P3 as shown in Fig. 3. Before adding these features, they
are upsampled to the same spatial resolution. Features P1 and
P2 are upsampled 4 and 2 times using bilinear interpolation,
respectively. This upsample feature is referred to as F and has
been used for ROI detection as well as keypoints detection as
shown in Fig. 1.
For the ROI detection process, two small sub-networks are

used. One of the sub-networks is used for object classification
called SNOC (sub-network for objection classification) and
the other sub-network is used for hand bounding box
detection. It is called a sub-network for objection detection
(SNOD). The details of the two sub-networks are as follows.

1) SUB-NETWORK FOR OBJECT CLASSIFICATION (SNOC)
A fully convolutional network (FCN) is attached to feature
map F obtained from the upsampling layer for object
classification. The same is shown in Fig. 2 and Fig. 3.
The sub-network is composed of one 3 × 3 convolutional
layers with 256 filters. Another convolutional layer attached
sequentially to it has 3×3 kernel andO×A filters. Therefore,
the output feature map has the size of W × H × (A · O).
Here, W and H are proportional to the width and height of
the input feature map, respectively. The value of O and A
signifies the number of objects (hands) and anchor boxes,
respectively. If there are A number of anchor box proposals
for each position in the feature map obtained from the last
convolutional layer of the sub-network then the output feature
map has the A · O channels. These feature maps are then
reshaped to form a 2-D array of shape (W · H · A) × O. This
array is then passed through a sigmoid activation (applied
to the last axis). The sigmoid layer ensures that each object
classification is mutually exclusive to the other, for all of the
anchors. The sigmoid-activated array is used with the Non-
Maximum Suppression (NMS) [45] algorithm to generate
ROI proposals.

2) SUB-NETWORK FOR OBJECT DETECTION (SNOD)
Similar to SNOC, the feature map is used for ROI bounding
box coordinates regression. Design-wise both the sub-
networks are identical except the last convolutional layer in
the regression sub-network is of size 3×with four filters. The
resulting output feature thus has the size ofW ×H × (4 ·O).
The number 4 signifies the number of parameters produced
for each anchor box. The regression sub-network predicts the
relative offset in terms of the center points of the bounding
box, its width, and height. Hence, the output feature map of
this sub-net has 4 · A channels. These feature maps are then

FIGURE 3. The region proposal network of ROI proposal generation.

reshaped to a 2-D array of shape (W ·H ·A)×4. This array is
then combined with the anchors to get actual ROI coordinates
as explained below.

3) ROI BOUNDING BOX DECODING
The prediction of sub-network for object detection are
offset values with respect to the anchor boxes are pre-
sented as [1x, 1y,w′, h′]. Here, (1x, 1y) are the offsets
value w.r.t. centroids of the anchors (xanchor , yanchor ). And,
(w′, h′) are the logarithmic value of the ratio of the
objects’bounding box width and height to the anchors’width
and height, respectively. The predicted bounding box
[xroi, yroi,wroi, hroi] with the corresponding anchor box
[xanchor , yanchor ,wanchor , hanchor ] can obtained as

xroi = 1xσxwanchor + xanchor (1)

yroi = 1yσyhanchor + yanchor (2)

wroi = exp (w′σw)wanchor (3)

hroi = exp (h′σh)hanchor (4)

Above σx = 0.1, σy = 0.1, σw = 0.2 and σh = 0.2 are
the standard deviation values used for normalization. The
normalization with standard deviation is used to achieve
better DL accuracy.

4) ROI PROPOSALS
The predicted ROI confidence scores and its bounding box
coordinates [xroi, yroi,wroi, hroi] are passed as input to the
NMS algorithm to get the probable hand (ROI) proposals.
The flow is shown in Fig. 5 and it remains the same at the
time of inference as shown in Fig. 6. Once the valid hand
ROI proposal is obtained the feature masking is performed.
The process of feature masking is explained next.

5) FEATURES MASKING
This process keeps the backbone layer’s important features
and discards the unnecessary ones. The aim is to keep
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FIGURE 4. An illustration of the method used for the estimation of 2D
hand keypoints position from an RGB image.

the features that are useful for keypoints detection without
altering their spatial dimension. For this, a binary mask with
the same spatial size as the ROI proposal is made. The ROI
proposal layer gives the hand region’s bounding box in the
input image. This bounding box is used to make the binary
mask. Next, the feature map from the backbone model and
the binary mask are merged with a logical AND operation.
The outcome is a feature map F ′ that only has information
where the binary mask is true. The other pixels in the feature
map are set to zero. The feature map’s spatial size does
not change from the backbone model. This flow is shown
in Fig. 5. Afterward, this resulting feature map from the
feature masking process is used as the input source to the
hand keypoints detection process. The architecture, shown in
Fig. 1, is designed to be modular so that different keypoints
models can be easily plugged into the proposed architecture.
So, in the proposed architecture, methodologies based on
either a heatmap regression process [8], [9] or a latent
heatmap regression process [46] can be used. In addition
to these most commonly used methods for keypoints
position estimation, a new method using a grid-based struc-
ture using a nearest-neighbor probability-based estimation
process is proposed. The details of which are provided
in Section III-C.

C. HAND KEYPOINTS DETECTION
A new method for estimation of hand keypoints proposed
in this work is based on nearest-neighbor pixels around a
keypoint location. The details of the methods are as follows.
The nearest-neighborhood-based method is inspired by how
human experts annotate keypoints. If different experts mark
keypoints on their own, they will not agree exactly. But
they will be close to each other (these are the neighborhood
points). Also, the true keypoint will be near the center of these
points. Based on this hypothesis, we formulate the process of
keypoints position estimation as the process of detection of
N neighborhood points. We calculate the probable position
of the hand keypoint using these neighborhood points.

We divide the input features intoM×M square grids where
the value of M is 32. This grid structure helps in locating
hand keypoints in it. Predictions aremade using a CNN-based
architecture. The proposed CNN architecture takes these

features as input and produces a three-dimensional saliency
map. The spatial dimension of this feature map corresponds
to the aforementioned grid. The information regarding each
keypoint position is encoded in separate channels of output
feature maps obtained from the CNN model. As an example,
the wrist point marked as ‘q’ as shown in Fig. 4a is encoded
to the pattern formed by white grid cells shown in Fig. 4b.
We use the center of each grid cell as a reference point to
identify the grid cell where a ground-truth hand keypoint lies.
To do so, we calculate the Euclidean distance of all ground-
truth keypoints with all reference points. The grid cell with
the smallest Euclidean distance is the cell where a keypoint
is present.

Mathematically, this can be formulated as, if the reference
points (centers of grid cells) are represented as q = {qm}m∈M ,
where qm = (xm, ym) ∈ R2 is the 2D-pixel coordinate
of the m-th point in the image. And, if d(pk , qm) represent
Euclidean distance between k-th keypoint and the m-th
reference point. Then, the value of m given the value of k
for which we get minimum d(pk , qm), is used to identify the
grid cell where the k-th keypoint is present.

As stated above, the position of the k-th keypoints is
estimated with the help of N neighbors. After identifying the
gird cell where the k-th keypoint is present, we use all eight
adjacent cells (if the center grid cell where the keypoint lies
is not present near the edge) to form neighbors. During the
encoding process, all 9 cells (8 neighbors and center cell) are
assigned the value of one, and the remaining cells’values are
made zero. The white cells in Fig. 4b represent the center
and eight neighboring cells for the wrist point of the hand
shown in Fig. 4a. This pattern is formed for all K keypoints.
We create an array of shapesM×M×K during the encoding
process.

1) KEYPOINTS DETECTION NETWORK
A small network consisting of three CNN layers and rectified
linear unit (ReLU) is used for keypoints detection. All of
these layers have a kernel of size 3 × 3. The first layer has
256 filters whereas, the second layer connected sequentially
to it has 128 filters. The last layer is the output layer. The
number of filters in this layer is equal to K . All of these
layers are wrapped around the ‘‘Time-Distributed’’ layer. This
allows the application of the same convolution operation to
each instance of the input.

2) KEYPOINTS POSITION DECODING
At the time of making the inference, we get a feature
map of shape M × M × K (same as the encoded array
defined in the above paragraph). Each cell in the output array
represents a probabilistic value in the range [0, 1]. We use
a threshold value of δq ∈ [0, 1] to find all such grid cells
that possibly represent a group of cells where a keypoints
is possibly present. In addition, we add one extra constraint
of a minimum of two cells that must have a value above
δq and these cells should be adjacent. For all such neighbor
grid cells having a value above the threshold, δq = 0.5,
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FIGURE 5. The flow diagram for training pipeline. The hand ROI detection and pose estimation networks are integrated
with an end-to-end pipeline.

we calculate their center coordinates. If Gi,j represent one
such grid cell then for an image of spatial dimension s × s
its center coordinates (xu, yv) can be calculated as

xu = (j+ 0.5)
s
M

, (5)

yv = (i+ 0.5)
s
M

. (6)

where, for the grid cell Gi,j, i and j denote the integer values
of the row and column of the grid spanning in the range
0 andM−1. The indexing starts from the top-left corner. The
input image is given by s and in our experiments the value of
s = 512 pixels. The final estimated keypoint coordinate is the
centroid of all points obtained during the decoding process.
And, this final keypoint coordinate p̂n = (x̂n, ŷn) is calculated
as

x̂n =
1
N

N∑
u

xu, (7)

ŷn =
1
N

N∑
v

yv. (8)

Here, xu and yv are coordinates estimated in (5) and (6),
respectively.

D. TRAINING PIPELINE
The flow diagram shown in Fig. 5 highlights the processes
involved in the training of this proposed deep neural network
architecture. The process of getting the ROI proposal and
estimating the keypoints’position is an end-to-end pipeline.
It means the CNN model used in this design can be
trained end-to-end. Both ROI(s) detection, as well as the
keypoint detection parts, are trained in a single-step process.
As illustrated in Fig 5, the complete flow has two parts each
with its respective objectives. The first part is performing

the hand ROI(s) detection and the next part is performing
the keypoints detection. For the ROI proposal generation,
the region proposal network uses the feature map F to
predict the location of the hand in the image. It is compared
with encoded bounding-box information generated using
pre-defined anchors and the ground-truth bounding-box
coordinates. Using the predicted and the actual bounding
box coordinate a regression loss value is calculated, shown
as lossA in Fig. 5. To train the same model for keypoints
detection, the feature map F is masked using the ROI
proposal. The resulting feature map F ′ is used as input to
keypoints detection network. The predicted keypoints and
the encoded form of ground-truth keypoints are used to
calculate a separate loss value referred to as lossB. By the
iterative minimization of both the loss function lossA and
lossB, the model’s parameters are optimized to meet the
aforementioned objectives. The details of both the loss
functions are as follows

losstotal = lossA + lossB (9)

where,

lossA = Lsmooth + Lfocal, (10)

and

lossB =

∑
Q̂.(ẑ− z)2 +

∑
(1 − Q̂).(ẑ− z)2. (11)

Here, ẑ and z are the predicted and the ground-truth values,
respectively. Lsmooth given in (10) is the smooth loss given by

Lsmooth =

 |t|, if |t| > β
1

|β|
.t2, if |t| ≤ β,

(12)

where, t = z−ẑ and β is a threshold at which the loss changes
between L1 and L2 loss. Its value was 0.5 in our experiment.
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FIGURE 6. The flow diagram for inference pipeline. The flow is slightly different from the training pipeline, especially for the RPN network.

Next, Lfocal is the focal loss given by

Lfocal =

{
−α(1 − p)γ log(p), if z = 1
−(1 − α)pγ log(1 − p), otherwise.

(13)

where, α ∈ [0, 1] is a weighting factor. γ is a focusing
parameter and p is the model’s prediction probability. z is the
same as per definition in (11). The values of α and γ were
0.25 and 2, respectively.

The value of Q̂ in (11) is calculated as

Q̂ =
ŷ

ŷ+ ϵ
, (14)

where, ϵ is a very small value (= 10−6) to avoid division by
zero.

The SGD optimizer is used to optimize the parameters of
the model. The learning rate scheduling approach defined
in [47] is used. The initial learning value is set to 10−2.
Additionally, to optimize the hyperparameters to the model
the methods in [48] and [49] have been referred. Moreover,
the model is trained for 150 epochs with a batch size of
16 samples per iteration on an Nvidia V100 GPU machine.
The complete architecture is designed using Tensorflow
version 2.4 [50].

E. INFERENCE PIPELINE
The flow diagram present in Fig. 6 shows the process
followed at the time of inference. The model takes a single
RGB image of full size as its input. It first applies a feature
extractor layer to the image. The resulting feature map, F,
is then fed to the RPN layer, which detects all the hands in the
image using anchor boxes. TheRPN layer computes the offset
from an anchor box to a hand-bounding box. These offsets
are applied to the anchor boxes followed by a non-maximum
suppression (NMS) algorithm. Next, the features map, F,
is masked using the features-masking technique described
in Section III-B. Additionally, as shown in Fig. 1, the
keypoint detection process for each detected hand is handled
by a separate sub-process in a multi-core CPU system.
This helps in running the keypoint detection algorithm for

all detected hands in parallel and thus reduces the overall
inference time.

IV. EXPERIMENTAL DETAILS
A. DATASETS
The deep learning models are generally data-driven. To make
a model perform the hand pose estimation, it needs to be
trained with properly annotated datasets. So, we used the
OneHand10K dataset [8] to train and validate the proposed
hand pose estimation method described in Section III-C.
The OneHand10K is a dataset for 2D hand pose estimation.
It comprises 10,000 RGB images for training and 1,703
images for testing obtained from online sources. This dataset
comprises images with various illumination conditions,
different backgrounds, multiple subjects, etc. However, only
a single hand is present in every image. This dataset also
provides 2D pixel coordinates of 21 keypoints. However, only
visible hand keypoints are annotated, and those hidden from
view are not annotated.

To train and validate the multiple-hand pose estimation
methodology, we used two datasets namely Rendered
Handpose Dataset (RHD) [1], and InterHand2.6M [51]. The
RHD dataset has 41,258 training and 2,728 testing samples.
It provides both RGB images and depth maps of 320 ×

320 resolution. It also provides annotations for 21 keypoints.
Both single and double hands RGB images are available
in this dataset. However, all the images in the dataset are
synthetic. The InterHand2.6M dataset is another dataset
provided for 3D hand pose estimation of interacting hands.
It has two versions, which are categorized by the number of
images in the dataset. The smallest among them has a total of
1,275,786 RGB images which are divided into three parts;
738,602 training, 184,287 validation, and 352,897 testing.
This dataset provides annotation for 21 keypoints of a hand
in the world coordinate system. The annotations are both by
humans (H) and machines (M). The images in this dataset
are of single, double, interacting, and non-interacting hands.
From the training and test set of this dataset, we selected
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TABLE 1. The performance of multiple state-of-the-art models as feature extractors in terms of PCK at σ = 0.2 and mean PCK.

only those images for which ‘hand_type_valid’ variable in
the annotation is equal to one.

It should be noted that none of these datasets have
annotated bounding box coordinates of a hand. We required
bounding box coordinates for hand ROI(s) detection. So,
the bounding box coordinates are calculated using the 2D
coordinates of visible hand keypoints. The top left (plt ) and
bottom right (prb) corner of bounding box is calculated for
2D hand keypoints {pn}n∈K as

plt = min
n∈K

pn, (15)

prb = max
n∈K

pn. (16)

Additionally, data augmentation has been used to introduce
diversity and increase the size of training data. Data aug-
mentation techniques like random flipping, scaling, rotation,
cropping, and adding noise are part of the training process.
Moreover, variations in hue, saturation, and brightness are
also applied to augment human skin color without affecting
the texture or hand shape information.

B. EVALUATION PARAMETERS
The quantitative analysis of hand pose estimation is per-
formed using Probability of Correct Keypoint (PCK) [52]
metric. The PCK value represents a probability that a
predicted keypoint lies within a distance threshold σ from
its ground-truth position. The PCK value for the n-th hand
keypoint on the L samples is denoted by

PCK n
σ =

1
L

∑
L

χ

(
∥fn − gn∥2
max(wb, hb)

)
(17)

Here, fn and gn are predicted and ground-truth keypoint
positions, respectively. The Euclidean distance between fn
and gn has been normalized by the edge of the bounding
box with the maximum length. The bounding box width and
height have been denoted by wb and hb, respectively. χ (t) is
the indicator function which is defined as

χ (t) =

{
1, if t ≤ σ

0, otherwise.
(18)

Here, σ is a threshold value. We report the results in terms
of PCK values at σ = 0.2 denoted as PCK0.2 and averaged
mean PCK values.

C. KEYPOINT THRESHOLD
As described in Section III-C2, a threshold δq ∈ [0, 1]
is used to extract the keypoints location from the output
features map. To estimate the optimum value of δq histogram
of all individual keypoints on the validation samples is
calculated. And the average is taken across all the samples.
The average threshold curve for five keypoints namely the
index, the middle, the ring, the thumb, and the little fingertips
is shown in Fig. 8. The higher average density is observed
approximately after the δq = 0.5. Hence, this value is
selected to decode the keypoints location from the feature
maps.

V. RESULTS AND DISCUSSION
A. THE BOTTOM-UP PATHWAY ARCHITECTURE
A few popularly used DL architectures are used as the
main feature extractor (the bottom-up pathway shown in
Fig. 2). The performance of different architectures viz.
ResNet, DenseNet, and EfficientNet on validation sets taken
from three different datasets are presented in Table 1. The
EfficientB2 architecture helps in achieving the best perfor-
mance accuracy on the validation set. However, in terms
of the number of total model parameters, the EfficientB2
has approximately 29.5 M parameters which is the highest
among all the other models used in the proposed architecture.
In terms of accuracy, both DenseNet169 and EfficientNetB2
as backbone model has almost the same performance.
However, the DenseNet169 performance is slightly better
on RHD and InterHand2.6M datasets which have multiple
hands images in the validation set. The average inference
speed achievedwith EfficientNetB2 is 24.93mswhereas, with
DenseNet169 the value was 28.35 ms. Therefore, a tradeoff
between inference speed and accuracy has been observed
between these two models. Hence, DenseNet169 will be
preferred over EfficientNetB2 when the requirement of a
particular application is accuracy over inference speed and
vice-versa.

B. VALIDATION OF NEAREST-NEIGHBOR BASED POSE
ESTIMATION METHOD
A method of 2D hand pose estimation described in
Section III-C is compared with commonly used heatmap
regression [8], [9], [13], [53] and latent heatmap regres-
sion [21], [46] methods used for pose estimation. Both of
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FIGURE 7. Visible comparison of proposed hand pose estimation (nearest-neighbor) on samples from the OneHand10k dataset [8] with
heatmap-regression and latent heatmap-regression methods.

FIGURE 8. The distribution of normalized feature map intensity at
different threshold values.

these alongwith the proposedmethodwere integrated into the
proposed deep learning model and the results are compared.
The qualitative comparison results are shown in Fig. 7. The
skeleton of each finger formed by joining the respective joints
is shown in different colors. The red, blue, black, green,
and orange colors are used for the thumb, index, middle,
ring, and little fingers, respectively. The heatmap regression
or latent heatmap regression uses the Gaussian function to
encode the keypoints and at the time of inference, the point
with maximum probability is taken as the predicted keypoint.
A heatmap has a lower resolution than the input image
due to downsampling in a DNN. This causes an inevitable
quantization error which decreases the position estimation
accuracy of a hand joint [54], [55]. The results reported in
Table 2 affirm the aforementioned statement. Additionally,
the heatmap regression method sometimes leads to incorrect

TABLE 2. Performance comparison of the proposed nearest-neighbor
method for single-hand pose estimation.

TABLE 3. Comparison of different regression techniques for multi-hand
pose estimation.

estimation of keypoints positions or false positives due
to a different spatial location having a higher predicted
probability as compared to the actual position as evident
in Fig. 7a. As latent heatmap regression methodology uses
heatmap regression internally similar downside is present in
it too. Futhermore, most of the methods based on heatmaps
regression use multiple stages of predictor [1], [8], [13] to
obtain a refined estimate of joint position. Consequently,
it affects the overall speed and slows down the hand joint
position estimation process.
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FIGURE 9. Sample results of multiple-hand pose estimation on multiple datasets with the proposed nearest-neighbor HPE method.

TABLE 4. Comparative analysis of multi-hand 2D pose estimation
method.

C. VALIDATION OF MULTIPLE-HAND POSE ESTIMATION
METHOD
The design of the proposed methodology facilitates the
integration of different pose estimation techniques like
heatmap regression or latent heatmap regression in the
architecture. A comparative study was conducted to identify
the best-performing technique suitable for multi-hand pose
estimation. Comparative results on the test set from two
different datasets are reported in Table 3. It can be inferred
from the reported values that the proposed nearest-neighbor-
based technique has an edge over the other methods in terms
of performance. The same can also be validated by doing
a visible analysis. A few sample results from two different
datasets using the proposed method are shown in Fig. 9. The
sample images shown present both hands’keypoints detection
results. Red and cyan-colored skeletons with white dots are
used to present the keypoints detection results of the right
and left hand, respectively. The results demonstrate that the
keypoints’positions are estimated with great precision using
the proposed method.

A quantitative comparison is also conducted with different
recently proposed methods for 2D hand pose estima-
tion. The results are reported in Table 4. The methods
used in comparison are based on linear regression [58],
heatmap regression [8], [9], [13], [56], [57], latent heatmap

FIGURE 10. A few test results of MMPose and proposed method for 2D
pose estimation on OneHand10k dataset samples.

regression [46], [60], and graph-based method [59]. A graph-
based technique to proposed by Guo et al. [59] and its
performance is competitive. However, the major limitation
of the graph-based approach is that it works only for a fixed
number of points, and in its current form, it is unsuitable
for real-time applications. The MMPose [56] methods are
based on a top-down pose estimation approach which first
uses a detector for hand localization followed by a heatmap
regression-based pose estimation approach. The MMPose
model has comparatively subpar performance when tested
on OneHand10K and RHD datasets. A few comparative
sample results are presented in Fig. 10. There are a few
miss-classified keypoints. Moreover, the MMPose method
was able to detect keypoints from a single hand only. The
results of multiple hand image samples were weak. Vision
transformer based proposed in [57] just uses a single channel
heatmap image instead of multiple channels used commonly
(for heatmap regression) to get the 2D location of hand
keypoints. It uses a Gaussian function with a fixed standard
deviation to encode the keypoints location. It would be quite
difficult to separate one keypoints from another if two or
more keypoints are very close to each other in a hand pose
or if the area occupied by the hand is small in the image.
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FIGURE 11. Inference on the small hands.

This affects its performance on the full-size image and needs
to rely on a top-down approach to segment the hand region
first before pose estimation. Unlike, the aforementioned
approaches, we have proposed a single-step approach to esti-
mate the 2D hand pose estimation for multiple hands. Thus,
overcoming some of the mentioned weaknesses of these
methods and performing at par or better than the existing
approaches.

To have a fair comparison, all these methods are trained on
the same datasets using the parameters defined for optimum
performance in their respective papers.Moreover, the existing
model and its weight if provided by the authors were used
for comparative analysis. In comparison to all the methods
aforementioned, the method proposed in this paper is the best
performing.

D. SCOPE OF IMPROVEMENT
We have observed that the performance of the proposed
keypoints estimation algorithm drops when the hand occupies
a small area in the whole image referred to as a small hand
case. The small is defined when the ratio of the hand region
bounding box width or height to the image width or height
is less than 0.3. An example is presented in Fig. 11. In the
right image of Fig. 11, there are some false positive keypoints
whereas, in the right image, some predicted keypoints are not
at the correct location. This drop in performance is due to the
fact that at a lower resolution of hand ROI, the effect of self-
occlusion is more in comparison to high-resolution hand ROI.
Additionally, the similarity of fingers affects the performance
at lower resolution. The improvement in the proposed hand
pose estimation on lower-resolution images and small hands
will be pursued in our future work.

VI. CONCLUSION
In this paper, we propose a methodology for 2D hand pose
estimation from a monocular RGB image. The primary focus
is to propose a methodology that will facilitate multiple-
hand pose estimation. Through a latent hand(s) ROI detection
technique and feature sharing, an end-to-end pipeline is
proposed using which the primary objective is met. The same
has been validated by performing experiments on publically
available datasets that provide annotated hand keypoints
positions for both hands of a subject. However, obtaining
datasets with more than one subject and properly annotated

hand keypoints is difficult. Along with the multiple-hand
pose estimation algorithm, a new technique using nearest-
neighbor grid cells is introduced in this paper. The proposed
method has improved the accuracy of hand keypoint detec-
tion and it is effective in locating keypoint positions for
several hand postures. A combination of multiple hands
pose estimation technique and nearest-neighbor grid cells
methodology work for multiple hand poses and scales of
the hand. In terms of performance metric, the PCK0.2 values
obtained are above 95% on Interhand2.6M and RHD datasets
used for validation indicating the reliable performance of
the proposed algorithms. However, there are chances that
performance will degrade if the scale of the hand in the
input image is very small. Nevertheless, using parallel
processing a reliable inference time is achievable allowing
the algorithm to be used for consumer applications such
as virtual typing, airwriting, etc. In this work, only 2D
hand pose estimation is presented, however, a new way to
estimate 3D hand pose estimation from RGB images will also
be explored.
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