
Received 13 February 2024, accepted 2 March 2024, date of publication 11 March 2024, date of current version 22 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376570

Performance Analysis of Container Technologies
for Computer Vision Applications on
Edge Devices
OSAMAH I. ALQAISI 1,3, ALI ŞAMAN TOSUN2, AND TURGAY KORKMAZ 1
1Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
2Department of Mathematics and Computer Science, The University of North Carolina at Pembroke, Pembroke, NC 28372, USA
3College of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia

Corresponding author: Osamah I. Alqaisi (osamah.alqaisi@my.utsa.edu)

Research was sponsored by the Army Research Office and was accomplished under Grant Number W911NF-23-1-0187. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, not withstanding any copyright notation herein.

ABSTRACT In the dynamic realm of technology, various container technologies offer efficient deployment
and resource utilization in edge devices. However, limited research has explored how various container
technologies perform in specific domains. In response, this paper addresses this gap by evaluating
container technologies like RunC, LXC, Containerd, Docker, Podman, and Singularity in OpenCV-based
computer vision applications on ARM-based edge devices. Results show comparable performance between
containerized and non-containerized applications. Containerd excels in memory reading, with both
Containerd and LXC efficient in wired image reception, while Singularity and Containerd lead in wireless
image reception. Despite Docker’s slower memory reading, its consistently faster processing time positions
it as a competitive option. Overall, Docker demonstrates superior efficiency for computer vision applications
on ARM-based edge devices. These insights contribute to bridge the existing gap in integrating containers
into IoT and ARM-based edge computing scenarios.

INDEX TERMS Container technology, Docker, LXC, Podman, Singularity, Containerd, RunC, edge
computing, Raspberry Pi, computer vision.

I. INTRODUCTION
Utilizing the edge computing paradigm for computer vision
applications is crucial to meet real-time processing needs,
reduce latency, and improve the efficiency of video data
analysis. However, this presents challenges, primarily due
to the limited computational resources of edge devices.
The diverse landscape of edge computing systems poses
a critical challenge, leading to compatibility issues for
developers working on various devices. Ensuring adaptability
and uniformity in programming interfaces becomes essential
for seamless execution of computer vision applications across
different hardware architectures. The intricate architectures
of edge devices add complexity to device management.
Furthermore, the distributed nature of edge devices and

The associate editor coordinating the review of this manuscript and

approving it for publication was Hadi Tabatabaee Malazi .

the multitude of possible network configurations increase
the overall costs associated with maintaining a robust and
efficient computer vision infrastructure at the edge [1], [2].
In these regards, container technology stands out and offers

powerful solutions to overcome these limitations, paving the
way for the efficient and scalable deployment of computer
vision applications across diverse domains and unlocking the
full potential of edge computing.

Container technology has emerged as a transformative
form of virtualization, revolutionizing software development,
particularly in the context of the Internet of Things (IoT)
and edge computing. Its widespread adoption in the field
of software development, specifically for edge computing
applications and IoT, has propelled it into the limelight.
Containers facilitate the compartmentalization of applica-
tions into self-contained units to avoid the need for an
entire operating system. This characteristic makes containers

41852

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6144-6183
https://orcid.org/0000-0002-5529-673X
https://orcid.org/0000-0002-2960-6896


O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

lightweight, portable, and conducive to easy application
deployment across a wide array of devices. In particular, a key
strength of container technology emerges in the deployment
of applications within edge computing settings. By extri-
cating applications from the underlying operating system,
containers mitigate integration complications and lessen the
risk of inconsistencies. This proves especially advantageous
for IoT applications, where containerized computer vision
applications can find a home even in resource-constrained
devices. The streamlined design of containers allows edge
devices to efficiently juggle multiple applications on identical
hardware. Notably, containers improve security by isolating
applications, thwarting attacker attempts to infiltrate the
entire system. This isolation streamlines updates and patches,
reducing the vulnerability window. In summary, container
technology proves invaluable for developers navigating the
landscapes of edge computing and IoT. The ability of
containers to isolate applications from the core operating
system and eliminate extraneous elements makes them an
asset in the treatment of various challenges within these
domains [3], [4], [5].

The current container landscape is populated by a
multitude of container runtimes/engines, each distinguished
by its unique architecture. However, ongoing efforts are
being made to address fragmentation within this domain
by promoting the adoption of standards. These stan-
dards are gaining traction, particularly among prominent
projects such as Docker, which is helping to alleviate
the divergence issue. Despite these efforts, the distinc-
tion between container technologies of applications and
operating systems (OS) remains a defining factor within
the container landscape [6]. Furthermore, the container
base image and size contribute to overall performance,
introducing additional considerations in the containerization
ecosystem [7].

This article focuses on evaluating and comparing major
container runtimes/engines in edge computing environments.
Its goal is to assist users in selecting the most suit-
able container technology for CPU-based computer vision
applications based on the OpenCV library, with the aim
of optimizing the performance of containerized computer
vision applications while supporting multiple IoT sensors.
By employing CPU-based computer vision algorithms like
Haar Cascades, HOG, and Tiny-CNN, the research evaluates
different container technologies to provide comprehensive
insights into their strengths and weaknesses in Computer
Vision Applications. Its primary objective is to quantify the
performance impact of container virtualization technology
compared to native execution, providing assessment results
to facilitate informed decision-making in selecting container
technologies for computer vision applications in edge
computing environments. Contributions of the paper are as
follows:

• Review of prominent container technologies, Docker,
LXC, Containerd, RunC, Podman, and Singularity,
specifically tailored for ARM-based edge devices.

• Analysis of the process of building an OpenCV
Docker container on different container runtime/engine
platforms, offering insights into compatibility and
performance implications.

• Performance analysis covering key performance indica-
tors such as receiving time, processing time, memory
usage, and CPU usage for a comprehensive assessment
of each container’s capabilities.

• Identify the strengths and limitations of each container
technology, offering a guide for developers to choose the
best for computer vision on ARM-based edge devices.

The paper is structured as follows. Section II presents
a review of related work, while Section III introduces the
proposed scheme. The results are presented in Section IV.
Section V discusses the important aspects of the results. The
paper concludes in section VI and discusses future works.

II. RELATED WORK
In this section, we discuss related work on container
technology, performance of container runtimes/engines, and
computer vision applications with container technology.

A. CONTAINER TECHNOLOGY
Container technology offers isolation within a single host,
different from virtual machines. Containers provide benefits
such as lightweight deployment, resource efficiency, and
version control, which makes them suitable for microser-
vices. They are utilized in IoT services [8], [9], smart
cars, fog computing [10], and service meshes [11], [12].
The major organizations, including Amazon, Spotify and
Netflix, have established containers as the standard for
cloud deployment [13], [14]. Various runtimes/engines like
Docker, LXC, RunC, Singularity, Podman, and Containerd
exist, with Docker being the most popular. The Open
Container Initiative (OCI) standardizes format and runtime
requirements, ensuring portability across runtimes. However,
the choice of runtime/engine significantly impacts container
technology’s features and performance [15].

• RunC: following the Open Containers Initiative (OCI)
specification, is a lightweight and highly portable
container runtime widely employed in container orches-
tration platforms. As a command-line tool, it manages
containers by providing key functionalities such as
creation, launch, stop, and deletion. RunC supports
Linux namespaces and incorporates various Linux
security features to prioritize robust isolation between
containers and the host operating system. Emphasizing
security, it ensures independent file systems, network
stacks, and process tables for each container. With
features such as live migration and compatibility with
OCI specifications, RunC is a versatile choice for
deploying containers in diverse environments [16], [17].

• Linux Containers: LXC is a lightweight OS-level
virtualization technique that enables the execution of
multiple isolated Linux systems on a single host that
share a common Linux kernel. Known for its resource

VOLUME 12, 2024 41853



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

efficiency, LXC allows multiple applications to run
on a single server with lower resource consumption
than individual virtual machines. Prioritizing security,
LXC isolates each container from others and the
host OS. Its flexibility extends to various use cases,
from hosting multiple applications to creating iso-
lated development environments, implementing CI/CD
pipelines, and deploying applications. Favored by major
companies such as Google, Amazon, and Microsoft,
LXC is renowned for its efficiency, security, flexibility,
and robust community support [18], [19].

• Containerd: is an industry-standard container run-
time/engine, focusing on simplicity, robustness, and
portability while managing the full container lifecycle,
including image transfer, storage, container execution,
and supervision. Containerd is designed to be embedded
in broader systems rather than for direct development or
end-user use. Key advantages encompass its lightweight
and efficient nature, strong container isolation for
enhanced security, cross-platform support on Linux and
Windows [20], [21].

• Docker: is a runtime that manages container lifecycles,
from creation to shut-down, ensuring robust isolation.
Built on the OCI standard, it is versatile, running
containers from diverse sources like Docker Hub.
Compatible with Linux, Windows, and macOS, Docker
is widely used in Kubernetes. With minimal resource
usage, it facilitates easy project transfer between
devices, providing isolation and segregation [22].
DockerHub [23] enables the sharing of containerized
applications, making it suitable for ARM platforms,
as well as scanning and security tools [24]. In general,
Docker stands out for its ease of use, security, and
community support on ARM platforms.

• Singularity: is a powerful container runtime/engine
designed for high-performance computing (HPC) clus-
ters. It offers a unique feature, allowing image mounting
without requiring root access, making it stand out in
the container landscape. Singularity builds on Linux
containers and combines software stacks into a single
configuration file for versatile container creation and
deployment on various platforms. Its runtime/engine
balances integration and separation, enabling smooth
data exchange with the host system and utilizing
high-speed interconnects and GPUs. Additionally, Sin-
gularity streamlines the migration of Docker containers
into its environment, emphasizing user convenience and
compatibility. With support for ARM64 architecture,
Singularity caters to edge computing needs, making it a
secure and adaptable containerization solution for HPC,
security, and edge environments [25].

• Podman: introduces a revolutionary daemon-less
approach to manage and run OCI containers on
Linux systems. It offers flexibility, allowing containers
to operate under root or rootless privileges, and
enhancing security through isolation and user privilege

management. Podman coexists seamlessly with Docker,
offering compatibility by aliasing the Docker CLI
commands with Podman, easing the transition between
the two environments. It provides supplementary CLI
tools and enables the effortless migration of Docker
containers, enhancing its versatility and ensuring a
smooth switch between containerization platforms.
With strong compatibility, security features, and
ongoing development, Podman is a compelling choice
for ARM platforms, offering efficient, secure, and
forward-looking containerization solutions [26].

B. PERFORMANCE OF CONTAINER TECHNOLOGY
Research on the evaluation of container runtimes is limited,
and the majority of existing studies focus on compar-
ing traditional virtual machines to container technology.
However, these studies typically examine the differences
among container technologies in a general context, lacking
a specific focus on particular domains or applications for
comparative analysis. In this crucial field of researching
container technology performance, studies often involve
comparing container efficiency using synthetic tools. This
comparison includes analysis of CPU, RAM, and network
efficiencies, commonly achieved through computations of
prime numbers or accessing MySQL databases.

In a study by Cailliau et al. [6], container runtimes/engines
such as Docker, Rkt, and LXC were evaluated on ARM
architecture. Notably, Docker and LXC exhibited comparable
performance across RAM, CPU, and network metrics, while
Rkt’s performance was more constrained. Kovacs [27]
assessed Docker, LXC, and Singularity containers on Huawei
CH121, focusing on CPU and network performance. Another
study by Espe et al. [28] evaluated Containerd, runC, and
CRI-O onCPU,memory, and I/O performance. Velp et al. [7],
Li [29], and Wang [30] conducted comparisons between
virtual machines and containers (Docker, Podman, and LXC)
in Intel architecture, examining CPU, memory, read and write
I/O, network, and database read and write. The consistent
findings of these investigations highlight Docker’s superior
performance among containers, surpassing that of virtual
machines.

In the realm of ARM edge devices, Marques et al. [31]
conducted a performance assessment of the LXC runtime
for virtualization on devices such as the Raspberry Pi 2.
Fernandez Blanco et al. [32] evaluated Docker and LXC in
automotive systems using Raspberry Pi 2, 3, and 4 boards,
consistently favoring Docker for superior performance with
minimal overhead, followed by LXC. Jing et al. [33] assessed
Docker and Containerd runtimes/engines on Raspberry Pi 3
and 4 as edge devices. Morabito [4], [34] performed a
comprehensive performance evaluation on five ARM-based
single-board processors: Raspberry Pi 2 Model B, Raspberry
Pi 3Model B, Odroid C1+, Odroid C2 andOdroidXU4, using
Docker containers exclusively. Acharya et al. [35] conducted
a study using Docker on ARMv8 and x86 architectures.
Raho et al. [36] evaluated Docker on the Arndale ARMv7

41854 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 1. Overview of container-based edge system.

Board. All of these studies consistently highlight the com-
mendable performance of container technology over virtual
machines, particularly Docker and LXC.

C. CONTAINERIZED COMPUTER VISION APPLICATIONS
Various container management platforms, such as Apache
OpenWhisk [37], OpenFaaS [38], Kubeless [39], and Docker
Swarm [40], are available. Alabbas et al. [41] evaluate the
performance of Apache OpenWhisk with Docker containers
in an edge-cloud context, specifically exploring a video
analysis application. Their study, conducted on Raspberry
Pi 4 edge nodes, reveals insights into OpenWhisk’s cold
activation latency and its sensitivity tomemory and input size.

Seisa et al. [42] compare two edge architectures for
orchestrating a UAV’s path using ROS: one utilizing Docker
containers and the other employing Kubernetes. Simulations
assess factors like time delays, travel durations, execution
times, and CPU utilization, revealing both approaches as
efficient. Docker may be more suitable for smaller, less
complex projects, leading to an application-dependent choice
between the architectures.

Alqaisi et al. [43] implement lightweight containers for
computer vision in edge IoT devices, creating containers for
C++ and Python with OpenCV. Tested in Haar Cascade,
HOG, and Yolov3 scenarios on a Raspberry Pi 4, the study
emphasizes Docker’s benefits like resource optimization and
mobility. Best practices, such as minimizing container size
and managing concurrent containers, significantly enhance
performance.

The analysis of the related work section indicates that
the previous studies discussed therein did not evaluate the
effectiveness of containerized computer vision applications
for Edge computing, considering the particular objective of
these applications to achieve swift responses. As a result,
we propose to perform an evaluation specifically focused on
containerized computer vision deployed on edge devices.

III. SYSTEM ARCHITECTURE AND CONFIGURATION
In this article, a container-based edge system has been
established on an ARM device at the edge. The images

TABLE 1. Raspberry Pi 4 specifications.

are received by a container runtime/engine, followed by the
analysis of these images and the execution of necessary
actions. Subsequently, the analyzed images are transmitted
to the cloud system for storage and further processing.
The proposed system is conceptually depicted in Figure 1.
However, for the purpose of this experimental set-up,
conventional transmission to the cloud system has been
excluded. Instead, the output images are stored within the
container’s memory. More details about this experimental
setup, including three scenarios and five applications, will be
elaborated on. Additionally, specific time intervals between
the reading/receiving of images will be expounded.

A. EDGE NODE CONFIGURATION
The edge system and the IoT sensor used in this study are
based on a Raspberry Pi 4 (RPi 4). As shown in Table 1, the
specifications of the device include a 1.5 GHz 64-bit quad-
core ARM Cortex-A53 CPU, 802.11ac Wi-Fi and gigabit
Ethernet connectivity, 8 GB of RAM, and a Broadcom
VideoCore VI 500 MHz GPU. The operating system used on
RPi 4 operates on Raspbian 32-bit, an open-source operating
system rooted in Debian version 11 (bullseye) [44].

The RPi 4 is equipped with a range of container
technologies, each with its specific version. It is worth noting
that each of these container runtimes/engines is individually
installed on the system, without the concurrent installation
of others. These containers encompass the OpenCV library
version 4.3.0, serve as the foundation for running various

VOLUME 12, 2024 41855



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

computer vision applications, and NumPy library version
1.22.3. The implementation of these applications is carried
out using the Python version 3.10.4 programming language.

The NetGear AC1000 Wi-Fi Router (R6080) is used for
network connectivity, which supports 802.11ac wireless tech-
nology and incorporates four 10/100 Mbps LAN ports [45].

B. CONTAINER CONFIGURATION
In this experiment, the edge system is used to accommodate
containers through RunC, LXC, Containerd, Docker, Pod-
man, and Singularity container systems. The versions used for
each container are LXC 5.18, RunC 1.1.0+dev, Containerd
1.4.13-ds1, Docker 20.10.5+dfsg1, Singularity 3.8.0, and
Podman 3.0.1.

All container runtimes/engines utilize the same container
image, which is created using a Dockerfile. This Docker
image is constructed on the Ubuntu 20.04.3 LTS operating
system, incorporating essential packages and libraries such
as Python, Pip, NumPy, and OpenCV, all installed from their
binary releases. The Dockerfile concludes by eliminating
any superfluous packages to ensure optimal efficiency. This
container image can be found on Docker Hub under the name
oalqaisi/cv_python:latest.

The Podman container image is pulled directly from
Docker Hub using the command podman pull docker.io/cv_
python:latest. Similarly, the Containerd container image is
fetched from the Docker Hub using the command ctr image
pull docker.io/oalqaisi/cv_python:latest.

In the case of the Singularity container image, it is
constructed from the Docker image found on Docker Hub
using the command sudo singularity build ≪name≫.simg
docker://oalqaisi/cv_python:latest.

In the case of LXC and RunC runtimes/engines, the
LXC container image is created from the Docker image
on the Docker Hub using the command sudo lxc-create
≪name≫ -t oci – –url docker://oalqaisi/cv_python:latest.
In the RunC runtime/engine, the process involves extracting
the root file system from the Docker container image
oalqaisi/cv_python:latest and then generating a configuration
file using runc spec. Following container image acquisition,
the network configuration for both LXC and RunC container
images is integrated into the config file, and a bridge between
the containers and the host device is manually established.
Lastly, a port forwarding rule is added to iptables to enable
data forwarding to the containers.

C. EXPERIMENT SCENARIOS
This study covers three implementation scenarios, as shown
in Figure 2. The first scenario involves an application that
reads images from memory, with both the application and the
images co-existing within the same container. In this context,
applications read an image every second.

The second and third scenarios share a common structure,
differing only in the type of connection used for the IoT
sensor: a wired connection for the second scenario and a
wireless connection for the third. However, the edge device

FIGURE 2. Three scenarios in the implementation.

maintains a wired connection to the router in both scenarios.
Authentic network scenarios depict real-life scenarios and
simulate pragmatic edge computing environments, and previ-
ous research has been done on these scenarios. The IoT sensor
begins image transmission, concluding each transmission
with a uniquemarker, ##END##, which signifies the end of an
image and prevents any overlap between successive images.
This sequence is iterated for each of the 4,000 test images.
The IoT sensor terminates the connection with the edge node
after transmitting all 4,000 test images. These two scenarios
are designed based on observations from prior research [43],
which utilized Docker containers, indicating that a wireless
connection scenario consumes more resources compared to a
wired connection scenario. In this study, these two scenarios
are implemented to investigate the variations across different
container runtimes/managers.

Within the context of Face Detection, Vehicle Detection,
Body Detection, and Object Detection by MobileNet-SSD
applications, the IoT sensor transmits an image every
second. On the contrary, the Object Detection by YoloTiny
application operates at a slightly more relaxed pace, with the
sensor dispatching an image every one and a half seconds.
Upon receiving an image, an application participates in the
detection process and, if it identifies any objects, the output
image is stored within the container.

41856 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 3. Average reading/receiving for haar cascade & CNN apps.

D. APPLICATIONS USED
In this experiment, five different applications are used for a
variety of CPU-based computer vision tasks: face detection
and vehicle detection applications that implement the Haar
Cascades algorithm [46], [47], a body detection application
that uses the histogram of Oriented Gradients (HOG)
algorithm [48], and two object detection applications that
employ the convolutional neural networks (CNN) algorithms
of the YoloTiny [49] and MobileNet-SSD [50] algorithms,
as shown in Table 2.

These algorithms are often used in edge computing for
object detection and deliver exceptional real-time object
detection performance even when executed on the CPUs of
devices with limited resources, allowing fast and efficient
processing of live camera feeds or video streams. Given the
real-time data transmission from IoT sensors to edge devices,
these algorithms are highly suitable for research scenarios.

The image dataset used in this experiment is drawn
from two different videos [51], [52]. Each application is
evaluated on a set of 4000 images, all sharing dimensions
of 1280 × 720 pixels. These images consist of 1000 unique
images, repeated four times. The face and body detection

TABLE 2. Application used.

applications share the same set of 4000 images, while the
vehicle detection applications utilize a separate image set.
The object detection applications draw from a combination
of images sourced from both vehicle and face detection
applications, with the first 2000 images originating from the
vehicle detection application and the last 2000 from the face
detection application.

E. EVALUATION MATRIX
For the comprehensive evaluation of each application, a series
of pertinent metrics has been meticulously gathered, covering
a spectrum of performance aspects. These metrics include
waiting time, receiving time, processing time, and RAM

VOLUME 12, 2024 41857



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

utilization. To precisely monitor the resource consumption in
terms of CPU and RAM, the capabilities of the psutil library
have been harnessed, specifically employing version 5.9.5 for
these measurements. Utilization of system resources is
reported as CPU usage in the form of percentages, and RAM
usage quantified in megabytes (MB). It is noteworthy that all
the applications under scrutiny benefit from the utilization
of pretrained models in the realm of computer vision.
These models are seamlessly incorporated using the OpenCV
library. Calculating waiting, receiving, and processing times
is facilitated by an equation that entails the usage of
built-in functions within the OpenCV library, namely the
getTickCount and getTickFrequency. The temporal metrics
of waiting, receiving, and processing times are expressed
in milliseconds, providing a fine-grained insight into the
temporal efficiency of these applications.

IV. EXPERIMENTAL RESULTS
This section presents experimental results for comparison
metrics, encompassing read/receive time, image processing
time, and resource usage such as CPU and RAM. The mea-
surements cover both average and total times, considering a
dataset of 4000 images.

FIGURE 4. Average reading/receiving for HOG app.

A. READING/RECEIVING TIME
The examination delves into the reading or receiving times
for all applications, performing experiments with various
container runtimes/engines, and native execution on the RPi 4
within the three scenarios.

Examining Figure 3, Figure 4, Figure 5 and Figure 6,
which illustrate the average and total reading of images
from memory, as well as the reception of images through
wired and wireless connections, reveal notable findings.
Containerd emerges as the fastest in reading images from
memory across most applications, although LXC and RunC
exhibit comparable performance in certain applications,
sometimes even surpassing Containerd. In contrast, Docker
consistently demonstrates the slowest reading performance in
most applications.

Regarding the reception of images through wired or
wireless networks, performance variability is evident across
applications, making it challenging to definitively identify
the superior container technology. However, Containerd,
Docker, Singularity, and LXC demonstrate notable speed in
different applications. In particular, RunC emerges as the
slowest container in receiving images, potentially attributed
to manual network configuration for containers. Other
container runtimes/enginesmay be built upon RunC, integrat-
ing enhanced networking, storage, and image management
features. Additionally, these runtimes/engines may employ
optimized network drivers or configurations, resulting in
faster data transfer compared to a basic RunC setup.

FIGURE 5. Total reading/receiving for HOG app.

Native execution consistently showcases efficiency across
all scenarios. Although there are differences, particularly in
some applications, these disparities are relatively minor, with
average variances ranging from 0.10 to 0.80 milliseconds and
total differences spanning from 0.10 to 0.54 seconds.

B. PROCESSING TIME
The experimentation encompasses six container run-
times/engines, together with native execution directly on
RPi 4. In this section, a comprehensive summary of the results
obtainedwill be presented, which sheds light on the efficiency
and performance of each runtime/engine and the native
execution option.

1) OBJECT DETECTION BY YOLOTINY
Figure 7 and Figure8 present comprehensive results for
YoloTiny object detection across three scenarios. Docker con-
sistently leads in all scenarios, with average processing times
90.68, 97.01 and 98.16 milliseconds and total processing
durations 36.27, 39.11 and 38.94 minutes.

In the first scenario, alternative runtimes, including
Singularity, Podman, LXC, Containerd, and RunC, exhibit
competitive performance, with total processing times ranging
from 36.83 to 38.86 minutes. Native execution on RPi 4
is marginally faster than Docker. Moving to the second
scenario, other run-times show average processing times
from 97.90 to 103.50 milliseconds and total durations from

41858 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 6. Total reading/receiving for haar cascade & CNN apps.

39.16 to 41.40 minutes. RPi 4’s native execution surpasses
all runtimes, with an average time of 98.16 milliseconds
and a total duration of 37.26 minutes. In the wireless
scenario, runtimes display average processing times between
98.36 and 100.60 milliseconds, with total durations of
39.34 to 40.24 minutes. RunC is the slowest, with an
average time of 104.96 milliseconds and a total duration of
41.99 minutes. RPi 4’s native execution remains the fastest,
with an average time of 96.41 milliseconds and a total
duration of 37.36 minutes.

2) OBJECT DETECTION BY MOBILENET-SSD
Figure 9 and Figure 10 present a detailed analysis of
the object detection application using the MobileNet-SSD
Algorithm in various container runtimes/engines and native
execution on RPi 4. Docker consistently outperforms in all
three scenarios, with total processing times of 18.42, 19.59,
and 19.85 minutes, respectively.

In the first scenario, alternative runtimes exhibit compet-
itive performance, with total processing times ranging from
18.68 to 19.97 minutes. Containerd is the slowest, recording
a total processing duration of 20.38 minutes. Notably, native
execution on RPi 4 proves marginally faster, with an average

processing time of 45.33 milliseconds and a total processing
time of 16.13 minutes.

For the second scenario, other container technologies show
average processing times from 49.82 to 53.74 milliseconds
and total durations from 19.84 to 21.50 minutes, with
Containerd identified as the slowest. Meanwhile, native
execution on RPi 4 maintains an average processing time
of 49.18 milliseconds and a total processing time of
17.67 minutes.

In the third scenario, container technologies show average
processing times between 49.74 and 52.83 milliseconds,
with total durations ranging from 19.90 to 21.13 minutes.
RunC is the slowest, recording an average processing time
of 53.53 milliseconds and a total duration of 21.41 minutes.
Once again, native execution on RPi 4 maintains an average
processing time of 48.06 milliseconds and a total processing
time of 18.02 minutes.

3) BODY DETECTION WITH HOG
Figure 11 and Figure 12 present a concise overview of body
detection assessment using the HOG algorithm.

In the first scenario, Singularity excels with an average
processing time of 34.42 milliseconds and a total processing

VOLUME 12, 2024 41859



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 7. YoloTiny - average processing time.

FIGURE 8. YoloTiny - total processing time.

time of 13.77 minutes. Docker closely follows with an
average time of 34.49 milliseconds and a total time of
13.80 minutes. RunC, the slowest, records a total processing
time of 14.31 minutes. The native execution on RPi 4 demon-
strates efficiency with an average time of 24.51 milliseconds
and a total time of 9.80 minutes.

For the second scenario, Containerd achieves an average
time of 38.06 milliseconds and a total time of 15.22 min-
utes. Other container technologies range from 15.48 to
15.72 minutes, with RunC being the slowest at 16.10 min-
utes. The native execution maintains an average time of
27.65 milliseconds and a total time of 11.06 minutes.

In the third scenario, Podman has the fastest total
processing time of 15.46minutes, while RunC has the slowest
at 16.25 minutes. RPi 4 native execution maintains a total
processing time of 12.36 minutes.

4) FACE DETECTION WITH HAAR CASCADE
Figure 13 and Figure 14 provide insights into face detection
using the Haar Cascade Algorithm, highlighting average and
total processing times across all three scenarios.

In the first scenario, Docker emerges as the fastest
container runtime/engine, with an average processing time
of 15.91 milliseconds and a total processing time of

FIGURE 9. MobileNet-SSD - average processing time.

FIGURE 10. MobileNet-SSD - total processing time.

6.36minutes. Containerd exhibits the slowest total processing
time at 6.95 minutes, while native execution on RPi 4 shows
a total processing time of 6.56 minutes.

For the second scenario, LXC leads with a total processing
time of 7.77 minutes. Containerd, Docker, Singularity, RunC,
and Podman follow closely, with total processing times
ranging from 7.80 to 8.34 minutes. Native execution on RPi
4 maintains a total processing time of 8.03 minutes.

In the third scenario, Singularity displays an average
processing time of 19.67 milliseconds, resulting in a total
processing time of 7.87 minutes, making it the fastest
among container runtimes/engines. Docker follows, with the
other containers trailing behind. The native execution on
the RPi 4 directly maintains an average processing time of
19.07 milliseconds, resulting in a total processing time of
7.43 minutes.

5) VEHICLE DETECTION BY HAAR CASCADE
Figure 15 and Figure 16 provide information on face
detection using the Haar Cascade Algorithm, highlighting
average and total processing times in all three scenarios.

In the first scenario, Docker emerges as the fastest
container runtime/engine, with an average processing time
of 15.91 milliseconds and a total processing time of

41860 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 11. Body detection - average processing time.

FIGURE 12. Body detection - total processing time.

6.36minutes. Containerd exhibits the slowest total processing
time at 6.95 minutes, while native execution on RPi 4 shows
a total processing time of 6.56 minutes.

In the second scenario, LXC leads with a total processing
time of 7.77 minutes. Containerd, Docker, Singularity, RunC,
and Podman follow closely, with total processing times
ranging from 7.80 to 8.34 minutes. Native execution on RPi
4 maintains a total processing time of 8.03 minutes.

In the third scenario, Singularity displays an average
processing time of 19.67 milliseconds, resulting in a total
processing time of 7.87 minutes, making it the fastest among
the container runtimes/engines. Docker follows, with the
other containers trailing behind. The native execution on
the RPi 4 directly maintains an average processing time of
19.07 milliseconds, resulting in a total processing time of
7.43 minutes.

C. RESOURCE USAGE
This section provides a comprehensive summary of resource
usage, highlighting resource utilization that can provide
valuable information when operating multiple containers at
the same time. The CPU and RAM usage is assessed in the
various container runtimes/engines and native execution on
the RPi 4 in the three scenarios. CPU usage is measured

FIGURE 13. Face detection - average processing time.

FIGURE 14. Face detection - total processing time.

by the percentage of CPU usage of the four cores of the
RPi 4 processor, and the maximum is 400%. In terms of
RAM usage, it is in megabytes, noting that the device’s RAM
is 8 GB.

1) CNN APPLICATIONS
Figure 17 and Figure 18 present the evaluation of CPU and
RAM usage for CNN applications across various container
runtimes/engines and native execution on the RPi 4 in three
distinct scenarios.

In terms of memory usage, the YoloTiny applica-
tion exhibits a higher memory consumption compared to
MobileNet-SSD, with a difference of approximately 30 MB.
This variance can be attributed to the neural network
configuration within the YoloTiny application and is not
related to the choice of container runtimes/engines. Notably,
native execution consumes less memory than container
runtimes/engines, with a margin of approximately one to six
MB in both applications. Moreover, the memory scenario
generally utilizes less memory, approximately one MB,
compared to other scenarios. However, sporadic increases in
average memory usage are observed in certain instances, the
cause of which remains undetermined.

VOLUME 12, 2024 41861



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 15. Vehicle detection - average processing time.

FIGURE 16. Vehicle detection - total processing time.

Regarding CPU utilization, native execution demon-
strates marginally lower CPU usage than container run-
times/engines. Similarly, the memory scenario exhibits
slightly lower CPU usage compared to other scenarios.
Across all container runtimes/engines, there is uniformity
in CPU usage levels. However, notable spikes in CPU
utilization are observed in specific cases, such as YoloTiny
by Docker in the wireless scenario and MobileNet-SSD by
LXC in the memory scenario. Ultimately, both applications
in all scenarios, whether in native execution or containerized
environments, utilize two out of four cores of the RPi
4 processor.

2) HOG APPLICATION
In the body detection assessment using the HOG algorithm,
CPU and RAM usage is evaluated across various container
runtimes/engines and native execution on the RPi 4 in three
scenarios.

Analyzing the data illustrated in Figure 19 and Figure 20,
in the memory scenario, native execution on RPi 4 reveals
an average RAM usage of 69.55 MB and an average CPU
usage of 79.09%. Among container runtimes/engines, RunC,
Containerd, and Docker exhibit average RAM usage ranging
from 78.17 MB to 78.52 MB, while others reach the highest
average RAM usage at 80.48 MB. Regarding CPU usage,

FIGURE 17. Average CPU usage - CNN apps.

all container runtimes/engines operate in a similar range,
spanning from 97.17% to 98.70%.

Moving to the second scenario, native execution maintains
an average RAM usage of 77.76 MB and an average CPU
usage of 69.65%. Container runtimes/engines, on the other
hand, show average RAM usage ranging from 83.44 MB to
85.21MB. Regarding CPU usage, the average varies between
123.69% for Containerd and 128.40% for Docker.

In the third scenario, native execution on the RPi 4 directly
sustains an average RAM usage of 76.98 MB and an average
CPU usage of 96.25%. The average RAM usage spans
from 81.86 MB for Podman to 83.97 MB for Singularity.
Regarding CPU usage, RunC and LXC recorded the lowest
CPU usage at 85. 47% and 91. 96%, while others range from
122.37% to 126.32%.

3) HAAR CASCADE APPLICATIONS
Figure 21 and Figure 22 shed light on the assessment of CPU
and RAM utilization for Haar Cascade applications across
various container runtimes/engines and native execution on
the RPi 4, examined within three distinct scenarios.

Regarding memory usage, both face detection and vehicle
detection applications demonstrate comparable memory
consumption patterns. This similarity arises from the shared

41862 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 18. Average RAM usage - CNN apps.

FIGURE 19. Body Detection - Average RAM Usage.

Haar features inherent in both applications, a charac-
teristic that remains consistent across different container
runtimes/engines. It is noteworthy that native execution
consumes slightly less memory compared to container run-
times/engines, with a variance of approximately 10 to 25 MB
across both applications. Additionally, the memory scenario
generally exhibits lower memory usage, hovering around one
MB, compared to other scenarios. This consistency in mem-
ory usage is observed across all container runtimes/engines.

FIGURE 20. Body detection - average CPU usage.

As for CPU utilization, native execution tends to manifest
higher CPU usage compared to container runtimes/engines in
most scenarios, except for vehicle detection in the memory
scenario. Moreover, the memory scenario typically shows
marginally lower CPU usage compared to other scenarios in
most applications. There is uniformity in CPU usage levels
across all container runtimes/engines. However, notable
spikes in CPU utilization are noted in specific instances,
such as vehicle detection byDocker, Podman, and Singularity
in both wire and wireless scenarios. Ultimately, in all
scenarios, both applications, whether executed natively or
within containerized environments, utilize one of four cores
of the RPi 4 processor.

D. TOTAL TIME
This section shows the total time across various computer
vision applications is comprehensively analyzed using dif-
ferent container runtimes/engines. The primary objective is
to identify the fastest container runtimes/engines for these
applications. This analysis is intended to assist in the deter-
mination of optimal choices for container runtimes/engines
and the evaluation of whether they can be surpassed by native
execution in specific scenarios.

Total time covers the entire duration from receiving the
first image to processing the last image, including image
acquisition, algorithm execution, image saving, and object
delineation. This assessment involves the five applications
using the six container runtimes/engines, along with direct
execution on the RPi 4 in the three scenarios.

1) OBJECT DETECTION BY YOLOTINY
Figure 23 shows that in the first scenario, Docker is the most
efficient container runtimes/engines for YOLOTiny object
detection, completing the task in 38.27 minutes, closely
followed by Singularity with a total processing time of
38.75 minutes and Podman at 38.97 minutes. Subsequently,
LXC demonstrates a processing time of 39.91 minutes.
Containerd and RunC exhibit slightly longer durations,
requiring 40.27 and 40.74 minutes, respectively, to complete

VOLUME 12, 2024 41863



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 21. Average RAM usage - haar cascade apps.

the task. In particular, native execution on the RPi 4 surpasses
the containers, achieving the task in just 35.85 minutes.

In the second scenario, Containerd proves to be the quick-
est, completing the YOLOTiny application’s processing in
41.25 minutes, with Docker closely behind at 41.29 minutes
and RunC at 41.66 minutes. Subsequently, LXC shows a
processing time of 43.61 minutes, while Singularity and
Podman exhibit slightly longer durations at 43.32 and
44.80 minutes, respectively. The native execution on the RPi
4 once again excels, finishing the task in just 39.30 minutes.

In the third scenario, Docker emerges as the most
efficient, requiring 42.09 minutes to complete the YOLOTiny
application’s processing. This is followed by Singularity at
42.57 minutes and LXC with 42.94 minutes. Subsequently,
Podman takes 43.49 minutes to complete the entire process.
Containerd and RunC display slightly longer durations, with
times of 45.16 minutes and 45.48 minutes, respectively.
Native execution on the RPi 4 outperforms containers,
achieving the task in just 40.39 minutes.

2) OBJECT DETECTION BY MOBILENET-SSD
Figure 24 reveals that in the first scenario, Docker completes
the task in 20.71 minutes, closely followed by Singularity at
20.96minutes. Subsequently, Podman requires 21.56minutes

FIGURE 22. Average CPU usage - haar cascade apps.

for the entire process, while RunC takes 21.82 minutes
to reach completion. LXC and Containerd exhibit slightly
longer durations, with processing times of 22.17 and
22.28 minutes, respectively. Notably, in this scenario, native
execution on the RPi 4 surpasses container runtimes/engines,
taking only 17.66 minutes to complete the task.respectively.

In the second scenario, Docker remains the fastest,
at 21.86 minutes. Singularity follows with 22.11 minutes,
and LXC is next with 22.12 minutes to complete the
total process. Podman requires 22.25 minutes. However,
Containerd and RunC exhibit slightly longer durations,
with processing times of 23.69 minutes for both. Native
execution on the RPi 4 maintains its superior perfor-
mance in this scenario, completing the task in just
19.70 minutes.

Moving on to the third scenario, LXC leads at 23.21 min-
utes, followed by Docker at 23.23 minutes and Sin-
gularity at 23.26 minutes. Subsequently, Podman took
23.62 minutes to reach the finish line. Containerd and
RunC display slightly longer durations, with processing
times of 24.42 and 25.28 minutes, respectively. Once again,
native execution on the RPi 4 outperforms container run-
times/engines, requiring only 21.06 minutes to complete the
task.

41864 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 23. YoloTiny - total time.

FIGURE 24. MobileNet-SSD - total time.

3) BODY DETECTION WITH HOG
Figure 25 shows that in the first scenario, Singularity
completes the task in 15.94 minutes, with Docker following
closely at 16.11 minutes. Subsequently, Podman requires
16.21 minutes for the entire process, while LXC takes
16.26 minutes to complete. Slightly longer durations are
observed for Containerd and RunC, with processing times of
16.41 and 16.44 minutes, respectively. In particular, in this
scenario, native execution on the RPi 4 outperforms container
runtimes/engines, requiring only 11.41minutes to finalize the
task.

Moving on to the second scenario, Containerd completes
the task in 17.77 minutes. Following closely, LXC requires
18.07minutes, while Docker takes 18.15minutes to complete
the total process. Podman follows with a processing time
of 18.19 minutes. However, Singularity and RunC exhibit
slightly longer durations, with processing times of 18.29 and
19.06 minutes, respectively. In this scenario, once again,
native execution on the RPi 4 maintains its superior
performance, requiring only 13.11 minutes to complete the
task.

In the third scenario, Singularity once more emerges as
the swiftest performer, completing the task in 18.91 minutes,
followed by Podman at 18.95 minutes and Docker with

FIGURE 25. Body detection - total time.

FIGURE 26. Face detection - total time.

19.14 minutes. Then, LXC requires 19.25 minutes to
complete the entire process, while Containerd and RunC
exhibit slightly longer durations, with processing times of
19.51 and 20.07 minutes, respectively. In this scenario, native
execution on the RPi 4 once again outperforms container
runtimes/engines, requiring only 15.41 minutes to complete
the task.

4) FACE DETECTION WITH HAAR CASCADE
Figure 26 illustrates that in the first scenario, Docker
concludes the task in a rapid 8.43 minutes, followed closely
by LXC at 8.47 minutes, Singularity at 8.48 minutes and
Podman with a similar time frame of 8.49 minutes. Then
RunC requires a slightly longer 8.62 minutes to complete
the process. Meanwhile, Containerd exhibits a marginally
longer processing time of 8.90minutes. Moving to the second
scenario, Containerd achieves the fastest time, completing
the task in 10.33 minutes. Following suit is LXC at
10.39 minutes, with Docker requiring 10.49 minutes for
task completion. After that, Singularity exhibits a slightly
longer duration, with a processing time of 10.68 minutes,
while Podman takes a tad longer at 10.98 minutes. RunC,
on the other hand, requires 11.03 minutes to conclude the
process. Once again, native execution on the RPi 4 asserts its
superiority, finishing the task in an impressive 10.05 minutes.

VOLUME 12, 2024 41865



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

FIGURE 27. Vehicle detection - total time.

In the third scenario, Singularity emerges as the swiftest
performer, completing the task in 11.26 minutes, with
Docker following closely at 11.34 minutes. Containerd takes
11.47 minutes, and Podman follows suit with a processing
time of 11.50 minutes. LXC and RunC exhibit slightly longer
durations, requiring 11.72 and 12.04 minutes, respectively,
to finalize the process. Remarkably, even in this scenario,
native execution on the RPi 4 outperforms the containers,
demanding only 10.45 minutes to complete the task.

5) VEHICLE DETECTION WITH HAAR CASCADE
In the first scenario, Figure 27 depicts closely aligned dura-
tions among all container runtimes/engines. LXC emerges as
the fastest, completing the task in 5.02 minutes. Immediately
after, Singularity takes the stage with a brief performance
of 5.12 min, closely trailed by Podman at 5.13 min, RunC
at 5.18 minutes, and Docker with an almost identical time
of 5.19 min. In contrast, Containerd exhibits a slightly
longer processing duration of 5.23 minutes. Note that native
execution directly on the RPi 4 excels in this scenario,
executing the task efficiently in just 4.31 minutes.

Regarding the second scenario, LXC stands out for
efficiency, completing the task in 6.04 minutes. Following
closely is RunC, which takes 6.18 minutes, and Containerd,
requiring 6.19 minutes for task completion. Subsequently,
Docker takes 6.38 minutes to complete the process. Singu-
larity endures a slightly longer duration, with a processing
time of 7.30 minutes. On the other hand, Podman takes
7.60 minutes to complete the process. Once again, native
execution on the RPi 4 asserts its superiority, concluding the
task impressively in 5.92 minutes.

In the third scenario, LXC maintains its lead with a
task completion time of 6.95 minutes, closely followed
by Containerd at 7.03 minutes. RunC takes 7.22 minutes,
and Docker takes 7.30 minutes. Singularity and Podman
exhibit somewhat longer durations, necessitating 8.17 and
8.56 minutes, respectively, to finalize the process. Notably,
even in this scenario, native execution on the RPi 4 outper-
forms the containers, concluding the task proficiently in just
6.89 minutes.

V. DISCUSSION
This discussion delves into a meticulous analysis of the
data derived from our experiments, providing a compre-
hensive exploration of container technologies optimized for
distinct aspects of computer vision applications and overall
performance. Upon scrutinizing the data derived from these
experiments, a comprehensive summary is presented in
Table 3, highlighting the most competent container technolo-
gies for aspects of computer vision applications and overall
performance. Table 4 shows the top two performers based on
the applied evaluation metrics, offering nuanced insights into
their comparative effectiveness. Consider that the results and
comparisons presented are based on the OpenCV platform for
armv7l. Additionally, the Docker container has been adapted
to alternative container technologies, potentially influencing
their performance. It should be noted that for LXC and RunC
container technology, the bridge between containers and the
host machine was established manually, possibly impacting
image transfer performance.

Containerd excels as an optimal container
runtimes/engines to efficiently read images from memory,
making it highly suitable for applications that require rapid
data retrieval from memory. Regarding network image
reception, Containerd, LXC, and Singularity emerge as the
top performers. In terms of image processing for each
algorithm, Docker stands out as the most effective across
all algorithms. Singularity exhibits remarkable similarity in
the CNN and HOG algorithms, while LXC demonstrates
comparable performance in the Haar Cascade algorithm.

Comparison of resource usage proves challenging due to
its inconsistent patterns, with closeness evident in most cases.
In specific cases, such as theMobileNet-SSD object detection
application and both applications employing the Haar Cas-
cade algorithm, container technology demonstrated reduced
resource utilization compared to normal operations. Further
experimentation, especially involving multiple containers
running together, is recommended to refine our understanding
and identify optimal container runtimes/engines for resource
usage in various scenarios.

For overall performance in computer vision applications,
Docker stands out as the top performer. While it may
have a limitation of slower image reads/reception, its faster
processing time positions it as the best choice. Specifically,
Docker excels in CNN and HOG algorithm applications,
sharing the spotlight with Singularity. In applications of Haar
Cascade algorithm, Docker proves to be the best, closely
followed by LXC.

In terms of resource utilization, the disparity in memory
usage across all containers compared to native execution
in all three scenarios lacks a clear explanation. Regarding
CPU utilization, it was observed that the elevated temperature
of the RPi 4 affected CPU usage and contributed to
a decrease in performance. This phenomenon may also
explain occasional irregular spikes in RAM usage. Further
investigation into these aspects is warranted to gain deeper
insights.

41866 VOLUME 12, 2024



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

TA
B

LE
3.

Su
m

m
ar

y
of

to
ta

lt
im

e,
pr

oc
es

si
ng

ti
m

e
&

re
ad

/r
ec

ei
ve

ti
m

e.

VOLUME 12, 2024 41867



O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

TABLE 4. Performance summary.

VI. CONCLUSION AND FUTURE WORK
This paper presents an evaluation of different con-
tainer technologies, including RunC, LXC, Containerd,
Docker, Podman, and Singularity, in the context of
computer vision applications on ARM-based edge devices,
specifically the RPi 4. The study explores the imple-
mentation of computer vision tasks using the OpenCV
library, comparing containerized and non-containerized
approaches.

Experimental results indicate a discernible performance
difference between containerized and non-containerized
computer vision applications on edge devices. However, the
impact of containerization on performance appears to be
moderate. Additionally, the study delves into the perfor-
mance variations among container runtimes and engines.
Containerd exhibits fast memory reading, while Containerd
and LXC showcase efficiency in wired image reception,
and Singularity and Containerd lead in wireless image
reception. Regarding processing time, Docker consistently
outperforms other container runtimes/engines across various
image processing applications. Despite Docker’s potential
drawback of slower memory reading, its faster processing
time makes it a competitive option.

In conclusion, this study confirms that container tech-
nology is a reliable and efficient deployment method
for computer vision applications in edge computing. The
findings contribute valuable information on the advantages
of container platforms in the field of computer vision.

In our current efforts, we have optimized the Docker base
image specifically tailored for computer vision applications.
Our futureworkwill focus on exploringCPU-based computer
vision algorithms across diverse ARM-based edge devices.
The aim is to develop and optimize the performance of
a heterogeneous edge node cluster dedicated to computer
vision applications. This includes managing IoT cameras
in real-time scenarios to improve the overall efficiency and
effectiveness of edge computing solutions.

REFERENCES
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and

challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
[2] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,

‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[3] E. Casalicchio and S. Iannucci, ‘‘The state-of-the-art in container tech-
nologies: Application, orchestration and security,’’ Concurrency Comput.,
Pract. Exper., vol. 32, no. 17, Sep. 2020, Art. no. e5668.

[4] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[5] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, ‘‘Cloud container
technologies: A state-of-the-art review,’’ IEEE Trans. Cloud Comput.,
vol. 7, no. 3, pp. 677–692, Jul. 2019.

[6] E. Cailliau, N. Aerts, L. Noterman, and L. Groote, ‘‘A comparative study on
containers and related technologies,’’ ResearchGate, Nov. 2016. Accessed:
Aug. 16, 2023. [Online]. Available: https://www.researchgate.net/
publication/320961475_A_comparative_study_on_containers_and_
related_technologies/citations

[7] G. E. de Velp, E. Rivière, and R. Sadre, ‘‘Understanding the performance of
container execution environments,’’ in Proc. 6th Int. Workshop Container
Technol. Container Clouds. New York, NY, USA: Association for Com-
puting Machinery, Dec. 2020, pp. 37–42, doi: 10.1145/3429885.3429967.

[8] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, ‘‘Container-as-a-service at
the edge: Trade-off between energy efficiency and service availability at
fog nano data centers,’’ IEEEWireless Commun., vol. 24, no. 3, pp. 48–56,
Jun. 2017.

[9] H. Khazaei, H. Bannazadeh, and A. Leon-Garcia, ‘‘SAVI-IoT: A self-
managing containerized IoT platform,’’ in Proc. IEEE 5th Int. Conf. Future
Internet Things Cloud (FiCloud), Aug. 2017, pp. 227–234.

[10] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, ‘‘Exploring
container virtualization in IoT clouds,’’ in Proc. IEEE Int. Conf. Smart
Comput. (SMARTCOMP), May 2016, pp. 1–6.

[11] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
‘‘Microservices: The journey so far and challenges ahead,’’ IEEE Softw.,
vol. 35, no. 3, pp. 24–35, May 2018.

[12] R. Morabito, I. Farris, A. Iera, and T. Taleb, ‘‘Evaluating performance
of containerized IoT services for clustered devices at the network edge,’’
IEEE Internet Things J., vol. 4, no. 4, pp. 1019–1030, Aug. 2017.

[13] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, ‘‘The pains and
gains of microservices: A systematic grey literature review,’’ J. Syst. Softw.,
vol. 146, pp. 215–232, Dec. 2018, doi: 10.1016/j.jss.2018.09.082.

[14] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer,
‘‘SGX-aware container orchestration for heterogeneous clusters,’’ in
Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 730–741.

[15] P. Stanojevic, S. Usorac, and N. Stanojev, ‘‘Container manager for multiple
container runtimes,’’ in Proc. 44th Int. Conv. Inf., Commun. Electron.
Technol. (MIPRO), Sep. 2021, pp. 991–994.

[16] O. C. Initiative. Runc. GitHub. Accessed: May 16, 2023. [Online].
Available: https://github.com/opencontainers/runc

[17] M. Kirov. (May 2022). Digging Into Runtimes—Runc. Accessed:
May 16, 2023. [Online]. Available: https://blog.quarkslab.com/
digging-into-runtimes-runc.html

[18] L. Containers. Lxc. Accessed: Jun. 8, 2021. [Online]. Available:
https://linuxcontainers.org

[19] LXC. LXC. GitHub. Accessed: Jun. 8, 2021. [Online]. Available:
https://github.com/lxc/lxc

[20] Containerd. Containerd. Accessed: Jun. 19, 2023. [Online]. Available:
https://containerd.io/

[21] Containerd. Containerd. GitHub. Accessed: Jun. 19, 2023. [Online].
Available: https://github.com/containerd/containerd

[22] C. Anderson, ‘‘Docker [software engineering],’’ IEEE Softw., vol. 32, no. 3,
p. 102, May 2015.

[23] Docker. Docker Hub. Accessed: Feb. 23, 2021. [Online]. Available:
https://hub.docker.com

[24] O. I. Alqaisi, M. S. Haq, and A. S. Tosun, ‘‘Security of containerized
computer vision applications,’’ in Proc. 2nd Int. Conf. Comput. Inf.
Technol. (ICCIT), Jan. 2022, pp. 115–120.

[25] Sylabs. Singularity Container Technology & Services. Accessed: Jul. 26,
2023. [Online]. Available: https://sylabs.io/

[26] Podman. Podman. Accessed: Aug. 11, 2022. [Online]. Available:
https://podman.io/

[27] Á. Kovács, ‘‘Comparison of different Linux containers,’’ in Proc. 40th Int.
Conf. Telecommun. Signal Process. (TSP), Jul. 2017, pp. 47–51.

[28] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, ‘‘Performance evaluation
of container runtimes,’’ in Proc. 10th Int. Conf. Cloud Comput. Services
Sci., 2020, pp. 273–281.

41868 VOLUME 12, 2024

http://dx.doi.org/10.1145/3429885.3429967
http://dx.doi.org/10.1016/j.jss.2018.09.082


O. I. Alqaisi et al.: Performance Analysis of Container Technologies for Computer Vision Applications

[29] Z. Li, ‘‘Comparison between common virtualization solutions: VMware
workstation, hyper-V and Docker,’’ in Proc. IEEE 3rd Int. Conf. Frontiers
Technol. Inf. Comput. (ICFTIC), Nov. 2021, pp. 701–707.

[30] Z. Wang, ‘‘Can ‘micro VM’ become the next generation computing
platform: Performance comparison between light weight virtual machine,
container, and traditional virtual machine,’’ in Proc. IEEE Int. Conf.
Comput. Sci., Artif. Intell. Electron. Eng. (CSAIEE), Aug. 2021, pp. 29–34.

[31] W. D. S. Marques, P. S. S. D. Souza, F. D. Rossi, G. D. C. Rodrigues,
R. N. Calheiros, M. D. S. Conterato, and T. C. Ferreto, ‘‘Evaluating
container-based virtualization overhead on the general-purpose IoT
platform,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2018,
pp. 8–13.

[32] D. Fernández Blanco, F. LeMouel, T. Lin, and A. Rekik. (Aug. 2023).Can
Software Containerisation Fit the Car On-Board Systems. Work. Paper or
Preprint. [Online]. Available: https://hal.science/hal-04127629

[33] Y. Jing, Z. Qiao, and R. O. Sinnott, ‘‘Benchmarking container technologies
for IoT environments,’’ in Proc. 7th Int. Conf. Fog Mobile Edge Comput.
(FMEC), Dec. 2022, pp. 1–8.

[34] R. Morabito, ‘‘A performance evaluation of container technologies on
Internet of Things devices,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 999–1000.

[35] A. Acharya, J. Fanguède, M. Paolino, and D. Raho, ‘‘A performance
benchmarking analysis of hypervisors containers and unikernels on
ARMv8 and x86 CPUs,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC),
Jun. 2018, pp. 282–289.

[36] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, ‘‘KVM, xen and docker:
A performance analysis for ARM based NFV and cloud computing,’’
in Proc. IEEE 3rd Workshop Adv. Inf., Electron. Electr. Eng. (AIEEE),
Nov. 2015, pp. 1–8.

[37] A. Openwhisk.Open Source Serverless Cloud Platform. Accessed: Oct. 6,
2023. [Online]. Available: https://openwhisk.apache.org

[38] Openfaas.Openfaas-Serverless Functions Made Simple. Accessed: Oct. 6,
2023. [Online]. Available: https://docs.openfaas.com

[39] vmware Archive. Kubeless. Accessed: Oct. 13, 2023. [Online]. Available:
https://github.com/vmwarearchive/kubeless

[40] D. Docs. Swarm Mode Overview. Accessed: Nov. 21, 2022. [Online].
Available: https://docs.docker.com/engine/swarm/

[41] A. Alabbas, A. Kaushal, O. Almurshed, O. Rana, N. Auluck, and C. Perera,
‘‘Performance analysis of apache OpenWhisk across the edge-cloud
continuum,’’ in Proc. IEEE 16th Int. Conf. Cloud Comput. (CLOUD),
Jul. 2023, pp. 401–407.

[42] A. S. Seisa, S. G. Satpute, and G. Nikolakopoulos, ‘‘Comparison between
Docker and kubernetes based edge architectures for enabling remotemodel
predictive control for aerial robots,’’ in Proc. IECON 48th Annu. Conf.
IEEE Ind. Electron. Soc., Oct. 2022, pp. 1–6.

[43] O. I. Alqaisi, A. S. Tosun, and T. Korkmaz, ‘‘Containerized computer
vision applications on edge devices,’’ in Proc. IEEE Int. Conf. Edge
Comput. Commun. (EDGE), Jul. 2023, pp. 1–11.

[44] R. Pi. Raspberry Pi 4 Comput. Model B. Raspberry Pi Trading
Ltd. Accessed: Nov. 16, 2022. [Online]. Available: https://datasheets.
raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf

[45] eNetGear. Nighthawk AC1000 WiFi Router (R6080) User
Manual. NetGear. Accessed: Mar. 28, 2023. [Online]. Available:
https://www.downloads.netgear.com/files/GDC/R6080/R6080_
UM_EN.pdf?_ga=2.143515121.511659930.1691206616-
619111045.1691206616

[46] OpenCV. (Jul. 2012). OpenCV. GitHub. [Online]. Available: https://
github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_
frontalface_default.xml

[47] A. C. Sobral. (Feb. 2016). Andrewsso-
bral/Vehicle_Detection_Haarcascades. GitHub. [Online]. Available:
https://github.com/andrewssobral/vehicle_detection_haarcascades/
blob/master/cars.xml

[48] S. Mallick. (Dec. 2016). Histogram of Oriented Gradients Explained
Using OpenCV. [Online]. Available: https://learnopencv.com/histogram-
of-oriented-gradients/

[49] Z. Yi, S. Yongliang, and Z. Jun, ‘‘An improved tiny-YOLOv3
pedestrian detection algorithm,’’ Optik, vol. 183, pp. 17–23,
Apr. 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S003040261930155X

[50] Chuanqi305. Mobilenet-SSD. GitHub. Accessed: Sep. 2, 2023. [Online].
Available: https://github.com/chuanqi305/MobileNet-SSD

[51] F. Infomatic. Vehicle Detection and Counting Using Opencv |
Vehicle Counting Using Opencv | Python. Google Drive. Accessed:
Dec. 11, 2021. [Online]. Available: https://drive.google.com/file/d/
1QUClOAWRVqNJII1crbCbdStJYzq9Uhfx/view

[52] W. Walker. Some Cool Motion Sensor Stuff. Youtube. Accessed:
Dec. 16, 2021. [Online]. Available: https://www.youtube.com/
watch?v=NyLF8nHIquM&ab_channel=WatchedWalker

OSAMAH I. ALQAISI received the B.S. degree
in computer science from Taibah University,
Madinah, Saudi Arabia, the M.Sc. degree in com-
puter science from Western Michigan University,
Kalamazoo MI, USA. He is currently pursuing
the Ph.D. degree in computer science with The
University of Texas at San Antonio, San Antonio,
TX, USA.

He has gained experience in various roles,
including a teaching assistant and a lecturer. He is

also a Lecturer with the College of Computing and Information Technology,
University of Tabuk, Tabuk, Saudi Arabia. His research interests include
containerized computer vision applications, edge computing, the IoT, and
computer vision.

ALI ŞAMAN TOSUN received the B.S. degree
in computer engineering from Bilkent University,
Ankara, Turkey, in 1995, and the M.S. and
Ph.D. degrees from The Ohio State University, in
1998 and 2003, respectively.

He was with the Department of Computer
Science, The University of Texas at San Antonio,
from 2003 to 2021. He is currently the Allen C.
Meadors Endowed Chair of computer science with
The University of North Carolina at Pembroke,

Pembroke, NC, USA. His current research interests include network security,
edge computing, software-defined networking, and the Internet of Things.

TURGAY KORKMAZ received the B.Sc. degree
(Hons.) in computer science and engineering from
Hacettepe University, Ankara, Turkey, in 1994,
the first M.Sc. degree in computer engineering
from Bilkent University, Ankara, the second
M.Sc. degree in computer and information science
from Syracuse University, Syracuse, NY, USA, in
1996 and 1997, respectively, and the Ph.D. degree
in electrical and computer engineering from The
University of Arizona, in December 2001, under

the supervision of Dr. M. Krunz.
In January 2002, he joined The University of Texas at San Antonio,

as an Assistant Professor with the Computer Science Department, where he
is currently a Full Professor. He is also involved in the area of computer
networks, networks security, networks measurement and modeling, and
internet related technologies. His research interests include quality-of-
services (QoS) based networking issues in both wireline and wireless
networks.

VOLUME 12, 2024 41869


