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ABSTRACT Integration of wind and solar energy sources in power systems causes frequency and
voltage-related power quality issues, especially at high penetration levels. Battery energy storage systems
help reduce fluctuations by absorbing excess power and delivering power deficits. However, batteries suffer
from capacity fading and degradation due to frequent cycling. Storing energy in the form of a chemical fuel
helps in overcoming these drawbacks. Since ammonia fuel cells address issues associated with hydrogen fuel
cells, such as high flammability, poor volumetric density, and high storage costs, in this study the application
of ammonia fuel cells for solar and wind power leveling is investigated. Excess wind/solar power is used
in an electrochemical ammonia synthesizer (EAS) to produce ammonia, and a direct ammonia fuel cell
(DAFC) converts the ammonia to electric power and supplies the power deficit. Smoothing filter concepts,
such as moving average, moving median, Savitzky-Golay, moving regression (MR), and Gaussian filters,
are employed to assess EAS and DAFC capacity requirements. Simulation results show that MR filter’s
overall performance is superior to those of other smoothing filter approaches, resulting in reduced required
capacities for ammonia production and fuel cell output, lowering system costs. The developed energy storage
system is an effective compensation method for solar and wind power fluctuations.

INDEX TERMS Fuel cells, power smoothing, smoothing filters, wind power, solar power, green hydrogen,
green ammonia synthesis.

NOMENCLATURE
Vac−EAS Activation polarization voltage

overpotential.
Vcnc−EAS−an Voltage overpotential due to concentration

polarization at the anode.
Vcnc−EAS−ct Concentration polarization overpotential.
β Array of linear parameters.
βT Transpose of the matrix X .
1G0 Standard Gibbs energy change.
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δan Electrode thickness at the anode.
δct Electrode thickness at the cathode.
ṖEAS−in Electrochemical ammonia synthesizer

power input requirement.
σ Gaussian filter standard deviation.
a Height of the Gaussian curve’s maximum.
ADAFC Total electrode area of direct ammonia fuel

cell.
b Gaussian peak’s position in the middle.
c Breadth of the Gaussian root mean square.
DeN2

Effective coefficient of diffusion for
nitrogen gas.
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F Faraday’s constant.
f Frequency.
fc Corner frequency of the moving average

filter.
h(n) Savitsky Golay filter’s impulse response.
I0−EAS Exchange current density.
Itot−EAS Electrochemical ammonia synthesizer total

current input.
k Neighboring data points of the target value.
M Savitsky Golay filter smoothing parameter.
N Number of data points in the solar andwind

power profile.
n Electron count.
P Gaseous pressure.
Pfluc Fluctuating solar and wind power.
P0N2

Nitrogen gas partial pressure.
Pref Power output of the smoothing filters.
R Gas constant.
Tf Low pass filter time constant.
TS Control period.
TMA Period of the moving average filter.
Vac−DAFC Activation polarization induced voltage

loss.
Vcnc−DAFC Voltage loss due to concentration

polarization.
VOC−DAFC Open circuit voltage of direct ammonia

fuel cell.
VOC−EAS Open circuit voltage of the electrochemical

ammonia synthesizer.
VOhm−DAFC Ohmic loss in voltage.
VOPN−DAFC Operational voltage of direct ammonia fuel

cell.
VOPN−EAS Overall cell voltage.
W Matrix containing all the determined

weights.
w(x) Distance weights.
x Target data point.
x ′ Distance from the target data point.
x(n) Input vector of fluctuating data points.
Y (n) Median value of the input vector.
ṄDAFC−NH3 Molar consumption rate of ammonia.
ID−DAFC Operational current density of direct

ammonia fuel cell.
ID−EAS Actual current density.
TEAS Operational temperature of the

electrochemical ammonia synthesizer.

I. INTRODUCTION
Excessive use of fossil fuels in the past decades has increased
the level of greenhouse gases in the atmosphere, with serious
adverse environmental consequences [1]. Globally, various
initiatives are being taken to lessen reliance on fossil fuels
and increase the use of environmentally-friendly renewable
sources of energy, such as solar, wind, and hydro [2].
Unfortunately, the intermittent and fluctuating nature of these

energy sources can result in rapid variations in the voltage and
frequency at high penetration levels, introducing challenges
to stable operation of the grid [3]. Thus, renewable energy
sources are integrated within a grid through microgrids, and
energy storage technologies are employed to regulate and
stabilize wind and solar power outputs (as shown in Fig. 1)
[2], [4]. The excess power that is available during periods
of intense solar irradiation or wind speeds can be stored,
and the stored energy can be used, as required, during times
of low wind speed or solar irradiation [3]. The need for
energy storage has strengthened the search for appropriate
energy storage techniques. Batteries and thermal energy
storage are currently the most prevalent storage methods.
Yet, these systems are accompanied by their own unique
geographical, technological, environmental, and economic
constraints [5], necessitating the development of novel energy
storage techniques and technologies.

In order to deal with the unpredictable nature of wind
power, several energy storage systems (ESSs) are being used
in the electricity generation industry, including batteries,
supercapacitors, flywheels, and fuel cells (FCs) [6]. Even
though batteries are the most common medium for energy
storage, FCs have several advantages that can alleviate the
difficulties currently faced by batteries [5]. In particular,
FCs operate based on a chemical fuel, circumventing the
issue of energy storage capacity fading in batteries. Since,
in FCs, energy is retained in chemical form, storage durations
can be extended significantly without any loss of energy
quantity or quality, unlike with batteries. Moreover, increased
storage capacity flexibility is achieved by the introduction of
chemical fuels for energy storage [7], [8].
The most popular energy storage technology used in wind

power systems is battery storage [9]. The traditional storage
technology for solar thermal power plants, like solar towers,
is thermal energy storage [10]. The drawbacks of such energy
storage techniques include issues with sizing and lifespan,
high cost, and negative impact on the environment. When
excess power is available, it can be used to produce a green
fuel like hydrogen or ammonia. Then, these fuels can be used
to produce electricity when there is a shortage of energy. The
fuel that is believed to displace fossil fuels in the coming
years is hydrogen. But extensive use of hydrogen has been
hindered due to its high flammability and low volumetric
density [10], [11]. Recently, ammonia has been recognized
as a viable hydrogen-containing alternative, capable of pro-
viding clean and environmentally friendly energy. There are
various benefits to storing hydrogen chemically in the form
of ammonia, including reduced storage and transportation
complications, larger volumetric density, more hydrogen
atoms per ammonia molecule than hydrogen molecule, and
decreased flammability [12]. Ammonia synthesis using wind
power was investigated in [13] for remote islands. Hydro-
gen was produced using alkaline water electrolysis, and
desalination was carried out using vapor compression. The
Haber-Bosch process method served as the foundation for the
ammonia production process. Authors in [14] investigated a
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thermochemical ammonia storage approach that made use of
and stored solar thermal energy. Solar energywas used to split
ammonia into its components, i.e., hydrogen and nitrogen,
whereas the energy produced during the ammonia synthesis
process was used as the system output. The study discovered
that due to their greater heat transmission capacities, reactors
with smaller diameters are preferred for such systems.
Reference [15] examined an ESS based on ammonia and
strontium chloride. To store the energy, the plant made use of
ammonium-strontium chloride thermochemical interactions.
The proposed system’s energetic and exergetic efficiencies
during heat generation at temperature of 87◦C was found to
be 65.4% and 50.8%, respectively. Also, it was determined
that the peak heat and cold energies produced were 2010 and
902 kJ/kg, respectively. Ammonia was studied in [16] due
to its potential as a fuel for ships and as a means of storing
energy. The effectiveness of the system under consideration
was compared to that of various energy storage methods,
including batteries and hydrogen fuel. It was concluded that
the infrastructure for ammonia-based energy storage is a
viable choice. A combined solar and wind-based system
was proposed in [17] to manufacture ammonia and electrical
power. The necessary hydrogen gas was generated using
a water electrolysis process based on a proton exchange
membrane (PEM). Furthermore, ammonia was created using
a multistage synthesis technique. The system’s maximum
energy efficiency was determined to be 75.8%, while its
stated exergetic efficiency was 73.6%. Ammonia was taken
into consideration as a form of energy storage for solar farms
in [18]. Units for the manufacture of hydrogen, nitrogen,
and ammonia utilized the additional power available. It was
concluded that the synthesis phase accounted for more than
90% of the overall cost in the designed system. The work
in [19] considered 1 to 10 MW islanded ammonia energy
systems. The research studied the synthesis of hydrogen
and nitrogen through PEM water electrolysis and pressure
swing adsorption, respectively. It was discovered that the
overall round-trip efficiency of the islanded system was
61%. Using the enhanced process integration method, [20]
looked at an ammonia-based power generation system. The
technique combines process integration and exergy recovery.
These techniques were intended to reduce the energy loss
of the entire process. Moreover, for storage, ammonia was
created from the hydrogen produced. The designed system’s
total efficiency was determined to be 66.9%. Researchers
in [21] investigated the power-to-ammonia pathway, and an
ammonia-based system with 100% renewable penetration
was presented. An ESS using ammonia in a multigenerational
system was thermodynamically evaluated in [22] and [23].
According to the stated efficiencies, the system’s exergetic
efficacy was 18% and its energetic performance was 28%.
The ammonia created was used as fuel for vehicles and as
fertilizers in agriculture.

The employment of hydrogen fuel cells for energy storage
has been examined in prior studies. A dynamical system
model was constructed to analyze the performance of the

FIGURE 1. A microgrid with renewable sources and energy storage [2].

system. In [24], a wind power leveling system via hydrogen
FCs was simulated. The steady load tracking was examined
via optimal control design and successive iterations. The
tuning was aimed at saving system components and lowering
operating costs. With intermittent renewable energy systems,
hybrid battery and FC devices have also been presented [25].
The electrochemical hybrid ESSwas found to have the ability
to take the place of diesel generators for regulating the output
of wind and solar energy systems. A hybrid wind-solar-based
stand-alone energy system using an Electrolyzer-FC technol-
ogy was assessed [26]. This system generated hydrogen when
there was an excess of solar and wind energy outputs and used
the hydrogen that had been stored when there was a shortage
of solar and wind energy. Additionally, research was done to
plan the use of hydrogen-based ESS for wind turbines [27],
[28]. ESS powered by fuel cells has been created to address
the power quality issues brought on by unpredictable wind
power outputs [29]. Considering the numerous technological
constraints associated with wind turbines, these technologies
were developed for hybrid renewable energy systems. Direct
ammonia fuel cells (DAFC) have not yet been thoroughly
studied for power smoothing applications, the usage of
hydrogen fuel cells (FC) to smooth the output of wind
turbines was studied in earlier studies. However, there are a
number of problemswith hydrogen, including low volumetric
density, high flammability, and expensive storage costs, all of
which could be reduced by using DAFC. Ammonia can help
to eliminate the current problems with hydrogen by requiring
a far lower storage cost as well as an increase in volumetric
capacity [30], [31].

As established above, DAFC has a variety of advantages
over hydrogen FC. Yet, its potential for regulating and
smoothing the fluctuating solar and wind power remains to
be examined. Also, it is crucial to research the application
of various smoothing filters and their effect on the DAFC
and EAS systems. Furthermore, it’s important to assess
the necessary EAS and DAFC capacities linked to the
application of various power smoothing filters, as lower
capacities directly reduce the overall system costs. Currently,
smoothing filters are employed in combination with BESS
to minimize the battery charging and discharging power,
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which further lowers the system cost [32]. To smooth the
output power, several smoothing filters have previously been
developed and integrated with BESSs. The most widely used
filtering methods are Low Pass (LP), Moving Average (MA),
Moving Median (MM), Gaussian (G), Savitsky Golay (SG),
and Moving Regression (MR) filters. Reference [33] has
reported that the use of low pass filters prior to injecting
fluctuating power into the grid causes a severe lag in the
resulting output power. Thus, the battery’s capacity for both
charging and discharging is greatly increased. It was reported
in [34] that the MA filter had much better flattening and
power-following characteristics than the LPF. Longer LPF
time constants and larger MA filter window sizes increase
smoothness, however, they do so at the expense of a time
delay, necessitating the use of larger batteries [33]. A longer
LPF time constant has a negative effect on battery charging
and discharging power, according to the authors of [35].
The battery’s SoC is frequently changed by insufficient
power tracking, which increases the number of cycles the
battery experiences and reduces its lifespan [36]. An MM
filter was created and compared to LPF and MA filters
in [33]. The findings indicated that while the MM filter
offers greater power tracking at the expense of less effective
solar power smoothing, it does so with window widths
similar to those of an MA filter. A G filter is recommended
in [34] and [37] to smooth a wind turbine’s output power.
A GF tends to over-smooth the power, which results in
the loss of power signal characteristics, as was discovered
in [38]. This causes a deep discharge of the battery, which
reduces battery life [39]. In order to reduce solar PV
variability, power lagging, and battery charging/discharging
power, an MR filter has been proposed in conjunction with
SoC feedback management [34]. The findings show that an
MR filter enhances solar power flatness while maintaining
BESS capacity. Finally, the SG filter combined with a control
mechanism overcomes the difficulty of power tracking and
generates a level of smoothness compared to the MA filter
while reducing storage capacity [35].

This paper proposes and demonstrates the use of DAFC
for power smoothing applications based on controlled
electrochemical ammonia synthesis. The excess solar and
wind power available is supplied to the EAS for ammonia
production through which the energy can be stored for
extended periods of time. Several power-smoothing filters,
such as MA, MM, MR, SG, and GF have been employed
to provide the required power reference for the EAS. Based
on the filter output, if the solar/wind power exceeds the
required smoothed power output, it is utilized to synthesize
ammonia using the EAS; otherwise, if the solar/wind power
falls short of the required smoothed output, the DAFC can
be utilized to supply the deficit power. A comparative study
of the filters is conducted with different window sizes to
investigate the degree of smoothness and power tracking
capabilities. The EAS and DAFC capacity requirements are
determined and tied to the system’s economic performance.
Larger capacity requirements necessitate higher capital and

operational expenditures. Simulation results have concluded
that MR filter has a superior overall performance as it has
excellent power tracking and smoothing capabilities, while
resulting in lower ammonia production capacity and lower
fuel cell output capacity, thereby reducing the overall system
cost. The proposed approach contributes to knowledge and
technology by introducing a new application for DAFC as a
means for solar/wind power smoothing through filter-based
controlled ammonia production and storage.

The remainder of the paper is organized as follows.
Section II provides the problem statement. Section III
describes the proposed methodology and modeling of the
MA, MM, MR, SG, and Gaussian filters, as well as
the EAS and DAFC. Section IV introduces the datasets
used in this study. Section V examines the simulation
results and draws crucial conclusions concerning the system
performance. Finally, section VI concludes the paper and
provides recommendations for future research.

II. THE PROBLEM FORMULATION
The present research addresses the output power fluctuations
of renewable energy sources. Power smoothing filters are
implemented to extract the signal representing the power that
can be used to produce smooth power via EAS and DAFC.
Even though electrolyzers and hydrogen FCs can serve the
same purpose, the higher cost of storage of hydrogen [18]
and substantially larger volumetric density, and lower safety
risk of ammonia put ammonia in a superior position with
respect to hydrogen. This is a motivation for research on
the use of ammonia in the context of an energy storage
system for smoothing variable power outputs of intermittent
sources of energy. Several filter-based control systems have
been previously proposed to smooth out solar and wind
power fluctuations. Some common filtering techniques can
provide the required reference for the smooth output power;
however, this comes at the expense of a large time delay,
which increases the capacity requirements of storage systems
and cost of the overall system, as a result. This calls for a
comparative study to identify a filter that provides reasonably
smooth output with reduced time delays.

The objectives of the research reported here are: (i) to
introduce, design, and implement a power control strategy
based on the utilization of ammonia as a form of ESS,
employing the EAS and DAFC, for integration of solar and
wind energy; (ii) to analyze the capacity requirements of the
EAS and DAFC through the application of several power
smoothing filters such as the MA, MM, MR, SG, and GF;
and (iii) to conduct a comparison among various filters based
onwindow sizes, to study the power lagging phenomenon and
its effect on the EAS and DAFC capacity requirements.

III. THE PROPOSED METHODOLOGY AND MODELING
The proposed scheme for smoothing the fluctuating power
output of solar and wind energy systems via electrochemical
ammonia synthesis and direct ammonia fuel cells is demon-
strated in Fig. 2. The fluctuating power output of renewable
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FIGURE 2. The Proposed solar and wind power control strategy via electrochemical ammonia synthesis and
direct ammonia fuel cells utilization.

energy source, Pfluc, is first passed through the filter-based
control system to get the excess power available for the
EAS. The MA, MM, MR, SG, and GF smoothing filters
considered in this research are popular methodologies and
have previously been proposed in combination with BESS
for control system design and power firming [34]. The output
of the smoothing filters Pref is subtracted from Pfluc to
determine the excess solar and wind power available that can
be supplied to the EAS. When Pfluc > Pref , the excess power
available, PEAS , is provided as input to the EAS subsystem;
power is supplied to EAS to generate ammonia. On the
contrary, when Pfluc < Pref , DAFC uses stored ammonia
to produce electric power PDAFC . PGrid denotes the overall
smoothed power supplied to the grid. The mathematical
modelling of different system components is described in the
following subsections.

A. MOVING AVERAGE (MA) FILTER
Moving average filtering is a power-firming technique that
computes on-the-fly averages to smooth out oscillations in
the time series of intermittent power data using a sliding
window. The real solar/wind power data and the MA filter’s
window size are the required inputs to the algorithm. The
power available for the electrochemical ammonia synthesizer
depends on the difference between the power output of the
MA smoothing algorithm (Pref ) and the actual variable power
data (Pfluc) [40]. Although using larger windowwidths results
in a smoother output, they cause power lagging, resulting in
increased charging and discharging power of the integrated
battery, thereby increasing the battery capacity requirement
and the associated costs [36], [41]. The smoothed output

power using the MA filter is obtained using [40]:

P(t) =
1
N

N−1∑
i=0

PWsys (t − i · TS) (1)

The number of data points, N in (1), is computed as
N = TMA/TS , where TMA denotes the moving average
filter’s period and TS denotes the control period. The
characteristic gain of MA filter is given by (2), where f is
the frequency [36].

GMA(f ) =
TS
TMA

·
sin(π · f · TMA)
sin(π · f · TS )

(2)

The characteristic phase of the MA filter is expressed as
follows [42]:

φMA(f ) = tan−1
{
XMA
YMA

}
(3)

where,

XMA = sin(2π f · TMA)(1 − cos(2π f · TS ))

− sin(π f · TS )(1 − cos(2π f · TMA)) (4)

and

YMA = sin(2π f · TMA)(sin(2π f · TS )

+ (1 − cos(2π f · TMA))(1 − cos(2π f · TS )) (5)

Finally, the corner frequency of the MA filter is computed
as [43]:

fc =

√
2

π · TMA
(6)

46516 VOLUME 12, 2024



M. A. Syed et al.: Analysis and Modeling of Direct Ammonia Fuel Cells

B. MOVING MEDIAN (MM) FILTER
Like the MA filter, MM filter uses a window with a defined
length for smoothing. However, the MM filter determines
the median of a vector whose length is determined by the
window size rather than averaging across the window. When
there are more outliers in the enclosed data, the moving
median filter is very effective. In other words, an MM filter
will handle the data more effectively than the MA filter if
the input fluctuating power data inside the chosen window
includes an abundance of outlying data points.When there are
insufficient data points for the entire window, thewindowwill
automatically shrink in size. MM filter is used in the study
in [44] to smooth solar output power, and its performance
is compared to that of MA filter. The sliding window across
the median value y(n) of neighbouring values is obtained as
follows [42]:

Y (n) = f (x(n)), x(n− 1), . . . x(n− m), (n− 1),

y(n− 2), . . . y(n− m) (7)

where

x(n) = [x(n), x(n− 1), . . . x(n− m)]T (8)

The output Y (n) indicates the median value for the
specified x(n) input vector of fluctuating data points.

y(n) = med{x(i)}, i = n, n− 1, n− m (9)

Whenever an odd window size is specified, the window
surrounds the element in its present location. In contrast, if the
window size is even, the prior and current data points are
surrounded by the window.

C. MOVING REGRESSION (MR) FILTER
The MR filter is a non-parametric smoothing filter that
eliminates the variations at each time step by using the linear
regression ML principle [34]. The MR filter uses the window
size as the input operational variable, just as the MA andMM
filters. The training data for the linear regression technique
are the k nearby data points of the target value. As a result, the
window size of the MR filter affects how many nearby data
points are employed to train the linear regression model. The
more data used for training, the larger the window size, and
the more accurate the estimated smoothed value will be [36].
Priority weights are given to the nearby data points depending
on how far they are from the target value. As the distance from
the target value grows, the weight assigned to that individual
data point is reduced. The Tricubic function is employed to
calculate the distance weights w(x) for every k neighbors of
x based on the distance x ′:

w(x) =

{
(1 − |x|3)3, |x| < 1
0, |x| ≥ 1

(10)

Normalizing (10) so that larger distances are associated
with lower weights:

w(x)=

 (1−|
d(x, x ′)

maxid(xi, x ′)
|
3)3, |x|<1, xi∈D

0, |x| ≥ 1
(11)

where the distance between the closest neighbours k and x ′

is d(x, x ′). Locality is accomplished by giving the data point
nearest to x ′ the utmost priority and the data point farthest
from x ′ the least priority. As a result, points that are farthest
away from x ′ will have zero value for the weight, while
the data point that is closest to x ′ will have a weight of 1,
i.e., the maximum weight. The regression model of the MR
employs the collected values of x and y as entries to the linear
regression algorithm to compute the output estimate y′ using
the normalised first-degree linear regression technique [36].

β = (XTWX )−1XTWY (12)

whereW is the matrix containing all the determined weights,
X and Y are the arrays storing all x and y values, accordingly,
and β is the array of linear parameters. The updated values
of y for firmed solar or wind power output generation are
determined using (13), where βT denotes the transpose of the
matrix X .

y′ = βTX (13)

D. GAUSSIAN (G) FILTER
Gaussian filter has an impulse response that approximates the
Gaussian function presented in (14). A G filter has the lowest
possible group delay and no overshooting characteristics
while reducing rise and fall times. The variable power
produced by renewable energy sources is flattened by the G
filter smoothing [45]. Comparable to the MA filter, a G filter
utilizes a moving window; however, the extent of smoothness
is governed by the standard deviation of the Gaussian rather
than the averaging method, making the outcome of the
Gaussian filter a bell-shaped distribution [34].

f (x) = a. exp(
−(x − b)2

2c2
) (14)

In (14), a is the height of the curve’s maximum, b is the
peak’s position in the middle, and c represents the standard
deviation or the breadth of the Gaussian root mean square.
TheGF can be implemented as follows in one dimension [45]:

G(x, σ ) =
1

√
2π

exp(
−x2

2σ 2 ) (15)

The Gaussian filter standard deviation is represented by σ .

E. SAVITSKY-GOLAY (SG) FILTER
A Savitsky-Golay filter employs the method of least square
of polynomial approximation across a sliding window. As a
result, SG filter is often referred to as a least squares
polynomial filter. By using an unweighted linear least
square fit with a polynomial of a specific degree, the filter
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coefficients are determined. A significant benefit of the SG
filter over the MA filter is its ability to retain important
data characteristics like amplitude, breadth, and peaks of the
input signal, which are typically lost when using the MA
filter. As the polynomial order of the filter is increased, the
SG filter’s performance tends to improve [40]. An SG filter,
however, is only limited to odd numbers for the window sizes,
and it is less efficient at eliminating noise than the MA filter.
Using an SG filter on a given batch of fluctuating data of the
form:

y(n) = x(n) + w(n) (16)

where x(n) denotes the time series data, and the noise in y(n)
is given byw(n). The SG filter output power x̂(n) is computed
as follows:

x̂(n) =

M∑
k=−M

h(n)y(n− k) (17)

Here, M stands for the SG filter smoothing parameter and
h(n) represents the filter’s impulse response across (|n| ≤ M ).
At (n = 0), x̂(n) is defined as the coefficient of the polynomial
of order k that best fits y(n) across (|n| ≤ M ). The symmetric
feature of the impulse response at (n = 0) should allow for the
fulfillment of the condition (0 < k ≤ 2M ) for the polynomial
order of k [33]. The squared error formula defined in (18) is
used to determine the difference between the smoothed and
unsmoothed signals, with p(n) represented by the polynomial
in (19).

E =

M∑
n=−M

(y(n) − p(n))2 (18)

p(n) =

∑
k=0

Cknk (19)

The following relationship exists between the impulse
response h(n) and the SG filter’s transfer function [42]:

H (z) =

∑
n

h(n)z−n (20)

F. ELECTROCHEMICAL AMMONIA SYNTHESIZER (EAS)
In the present study, an electrochemical ammonia synthesis
(EAS) system is employed for utilizing the surplus power
signals available during the process of smoothing solar or
wind power outputs. The overall reaction that represents the
synthesis of ammonia in the EAS is as follows [18]:

N2 + 3H2O ↔ 2NH3 +
3
2
O2 (21)

First, the voltage of the EAS is determined under open
circuit conditions (VOC−EAS ) according to [10]:

VOC−EAS =
−1G0

nF
+
TEASR
nF

ln(
PNH3

P0.5N2
P1.5 H2

) (22)

where the standard Gibbs energy change is written as 1G0,
the operational temperature is denoted by TEAS , the gaseous

pressure is represented by P, the gas constant is written
as R, the Faraday’s constant is represented by F , and the
participating electron count is n.

Further, the actual operational voltage of the EAS depends
on the extent of ohmic, activation, and concentration
polarization voltage overpotentials. The overall cell voltage
during operation can thus be written as [10]:

VOPN−EAS = VOC−EAS + Vac−EAS + Vcnc−EAS + VOhm−EAS

(23)

where the activation polarization voltage overpotential
Vac−EAS is calculated from the exchange current density
(I0−EAS ), actual current density during operation (ID−EAS ),
and operational temperature (TEAS ) as [10]:

Vac−EAS = ln(
ID−EAS

2I0−EAS
)
TEASR
Fn

(24)

Also, the concentration polarization overpotential of
voltage can be evaluated as:

Vcnc−EAS−ct = ln

(
1 +

ID−EASTEASRδct

nFP0N2
DeN2

) 1
2 RTEAS

nF
(25)

where δct denotes the electrode thickness at the cathode, DeN2
represents the effective coefficient of diffusion for nitrogen
gas, and P0N2

is the nitrogen gas partial pressure. Moreover,
the voltage overpotential due to concentration polarization at
the anode is determined as follows [10]:

Vcnc−EAS−an = ln(
1 +

δanID−EASTEASR
nFDeNH3

P0H2

1 −
δanID−EASTEASR
nFDeNH3

P0NH3

)
RTEAS
nF

(26)

where the electrode thickness at the anode is represented as
δan. The power input requirement of the EAS subsystem at
a given operational point is evaluated from the operational
voltage and total current input (Itot−EAS ) as [18]:

ṖEAS−in = VOPN Itot−EAS (27)

G. DIRECT AMMONIA FUEL CELL (DAFC)
DAFC is utilized in the present study to mitigate the
power deficits during power smoothing. Ammonia reacts
electrochemically in the DAFC according to the following
overall reaction [10]:

2NH3 +
3
2
O2 → N2 + 3H2O (28)

where the operational current of the DAFC is related to the
ammonia consumption rate according to [18]:

ṄDAFC−NH3 =
ID−DAFCADAFC

nF
(29)

where ṄDAFC−NH3 represents the molar consumption rate
of ammonia in the DAFC, ID−DAFC denotes the operational
current density of the DAFC, and ADAFC is the total electrode
area of the DAFC.
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The operational DAFC voltage is evaluated as a function
of the DAFC open circuit voltage (VOC−DAFC ), activation
polarization induced voltage loss (Vac−DAFC ), voltage loss
due to concentration polarization (Vcnc−DAFC ), and Ohmic
loss in voltage (VOhm−DAFC ) as follows [18]:

VOPN−DAFC = VOC−DAFC + Vac−DAFC
+ Vcnc−DAFC + VOhm−DAFC (30)

where the voltage loss due to Ohmic polarization is evaluated
from the operational DAFC current density (ID−DAFC ) and
DAFC Ohmic resistance (�DAFC ) as [18]:

VOhm−DAFC = ID−DAFC�DAFC (31)

The voltage loss induced in the DAFC due to concentration
polarization can be evaluated as a function of the operational
temperature (TDAFC ), operational current density (ID−DAFC ),
and limiting current density (IL−DAFC ) as [30]:

Vcnc−DAFC =
RTDAFC

αFn
ln
(

ID−DAFC

IL−DAFC − ID−DAFC

)
(32)

The DAFC power output is related to the total current
output (Itot−DAFC ) and operational voltage (VOPN−DAFC )
as [30]:

ṖDAFC−out = VOPN−DAFC Itot−DAFC (33)

IV. RESULTS AND DISCUSSION
Simulations of the proposed methodology are conducted
using real solar and wind power profiles that have been
imported to MATLAB for obtaining the smoothed filter
outputs. Engineering Equation Solver (EES) software [46] is
used to implement the models for EAS and DAFC systems.
The solar PV profile displayed in Fig. 3 was obtained
from the University of Queensland-Saint Lucia campus
solar live feed database. The fluctuating wind power plot
shown in Fig. 12 was acquired from, roaring 40s wind
park, Tasmania, Australia. Power smoothing, through the
utilization of appropriate filters, is an effective method for
reducing the amount of required storage capacity, discharge
power requirements, and time delays associated with such
energy storage systems.

FIGURE 3. Solar power smoothing using the MA, MM, MR, SG, and GF
filtration techniques.

The results depicted in Fig. 3 suggest that different types
of smoothing filters provide various smoothing levels of

FIGURE 4. EAS water input requirements using the MA, MM, MR, SG, and
GF filtration techniques (solar power).

FIGURE 5. EAS nitrogen input requirements using the MA, MM, MR, SG,
and GF filtration techniques (solar power).

FIGURE 6. EAS ammonia production rates using the MA, MM, MR, SG, and
GF filtration techniques (solar power).

solar power output. However, the appropriate filter type
can be assessed based on the associated energy storage
requirements. Thewater and nitrogen input requirements, and
ammonia production rates of the EAS for electrochemical
ammonia synthesis during excess power periods are depicted
in Figures 4-6. The results show that the choice of smoothing
filter impacts the water and nitrogen input rates as well as the
ammonia production rate and the corresponding EAS capac-
ity requirements. Higher ammonia production requirements
correspond to higher EAS capacity requirements, which lead
to higher overall system costs. Additionally, there is a loss of
efficiency with an increase in ammonia production [30].
The DAFC ammonia input rate, depicted in Fig. 7, shows

that the MR smoothing filter results in the lowest peak
ammonia input requirement for the DAFC of 150mol/s, while
the GF filter has a considerably higher peak ammonia input
requirement of nearly 230 mol/s. These are associated with
the corresponding ammonia storage costs. Higher ammonia
input requirements necessitate higher ammonia storage
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FIGURE 7. DAFC ammonia input rates using the MA, MM, MR, SG, and GF
filtration techniques (solar power).

FIGURE 8. DAFC oxygen input rates using the MA, MM, MR, SG, and GF
filtration techniques (solar power).

FIGURE 9. DAFC nitrogen output rates using the MA, MM, MR, SG, and GF
filtration techniques (solar power).

capacities and thus system costs. Hence, it is recommended
to utilize smoothing filters that entail the least ammonia
input requirements. Furthermore, the performance of the
DAFC plays a key role in determining the ammonia input
requirements.

The oxygen input requirements, nitrogen output, and water
output from the DAFC are depicted in Figures 8-10. The peak
oxygen input requirement reaches nearly 110 mol/s for the
MR smoothing filter, while the peak value reaches nearly
170 mol/s for the G filter. Higher oxygen input requirements
result in higher oxygen storage costs in the case of the
utilization of pure oxygen feed. To reduce this cost, air can
be used as the oxidant feed input. The peak water output from
the DAFC is observed to reach 225 mol/s for the MR filter,
while the peak output of water associated with the G filter
entails a value of 340 mol/s.

The power output results obtained for the DAFC utilized
during periods of time when the solar energy available is
lower than what is required to provide the smoothed power

FIGURE 10. DAFC water output rates using the MA, MM, MR, SG, and GF
filtration techniques (solar power).

FIGURE 11. DAFC power outputs using the MA, MM, MR, SG, and GF
filtration techniques (solar power).

FIGURE 12. Wind power smoothing using the MA, MM, MR, SG, and GF
filtration techniques.

FIGURE 13. EAS water input requirements using the MA, MM, MR, SG,
and GF filtration techniques (wind power).

output are depicted in Fig. 11. The results show that the MR
smoothing filter provides optimal power smoothing along
with minimal peak DAFC power outputs (Fig. 11) as well
as minimal peak ammonia production requirements in the
EAS (Fig. 6). The MR smoothing filter is found to provide
comparatively favorable results under these criteria, and its
implementation can lead to reduced system costs, enhanced
system efficiencies, and improved grid stability.

46520 VOLUME 12, 2024



M. A. Syed et al.: Analysis and Modeling of Direct Ammonia Fuel Cells

FIGURE 14. EAS nitrogen input requirements using the MA, MM, MR, SG,
and GF filtration techniques (wind power).

FIGURE 15. EAS ammonia production rates using the MA, MM, MR, SG,
and GF filtration techniques (wind power).

FIGURE 16. DAFC ammonia input rates using the MA, MM, MR, SG, and
GF filtration techniques (wind power).

In addition, the use of renewable energy sources such as
wind also requires effective power smoothing techniques to
ensure a consistent and reliable energy supply. Hence, in this
study, different smoothing filters, and their performances in
power smoothing for wind-based power generation were also
investigated. The results depicted in Fig. 12 indicate that the
MR filter is associated with the least time delay as compared
with other investigated filters, making it a favorable choice for
wind-based power generation. On the other hand, the G filter
was found to have the highest power differentials with respect
to the original power signal, which may result in instability in
the energy supply as well as higher energy storage costs.

Excess power available can also be utilized for electro-
chemical ammonia synthesis (EAS). The results depicted in
Figures 13-15 indicate that theMRfilter is associatedwith the
lowest EAS ammonia output capacities as well as associated
water and nitrogen input requirements. The SG filter also
performed well in this regard. However, the G filter was
associated with higher requirements of ammonia production
and storage to attain smoothed power outputs. These results
highlight the importance of selecting appropriate smoothing

FIGURE 17. DAFC oxygen input rates using the MA, MM, MR, SG, and GF
filtration techniques (wind power).

FIGURE 18. DAFC nitrogen output rates using the MA, MM, MR, SG, and
GF filtration techniques (wind power).

FIGURE 19. DAFC water output rate using the MA, MM, MR, SG, and GF
filtration techniques (wind power).

FIGURE 20. DAFC power outputs using the MA, MM, MR, SG, and GF
filtration techniques (wind power).

filters to optimize EAS capacities and enhance the overall
efficiency of the system.

Meeting power deficits with low energy storage require-
ments is another important consideration in wind-based
energy systems. The results depicted in Figures 16-20
indicate that the MR filter is associated with considerably
lower requirements of ammonia inputs as well as DAFC
power output capacities as compared to the G filter. The
MR filter was observed to entail nearly three times lower
requirements in terms of EAS capacity, ammonia storage, and
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DAFC power output as compared to the G filter. These results
suggest that theMRfilter may be a more cost-effective option
for meeting power deficits in renewable energy systems.

V. CONCLUSION
Ammonia is a sustainable fuel that works well for storing
energy from solar and wind power plants. This inspired
the current study’s investigation into the smoothing and
regulation of solar and wind power using ammonia fuel cells.
Power output fluctuations can be mitigated with smoothing
filters such as the Moving Average, Moving Median, Moving
Regression, Savitzky-Golay, and Gaussian. The excess power
is used by an electrochemical ammonia synthesizer to
generate ammonia. A direct ammonia fuel cell uses the
stored ammonia to produce the power deficit, ensuring a
smooth and consistent power at the point of connection to the
grid. The Moving Regression smoothing filter was identified
to provide more effective smoothing to power with lower
requirements on ammonia production and storage, and fuel
cell power capacities, lowering the overall cost of the system.
The proposed technique, which makes use of electrochemical
ammonia production and oxidation, has been shown to be
an effective method for regulating and smoothing the power
produced from solar and wind energy resources.

ACKNOWLEDGMENT
The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) for their
financial support.

CONFLICT OF INTEREST
The authors declare that there is no known conflict of interest
regarding the work reported in this paper.

REFERENCES
[1] H. A. Aalami and S. Nojavan, ‘‘Energy storage system and demand

response program effects on stochastic energy procurement of large
consumers considering renewable generation,’’ IET Gener., Transmiss.
Distribution, vol. 10, no. 1, pp. 107–114, Jan. 2016.

[2] E. Morgan, J. Manwell, and J. McGowan, ‘‘Wind-powered ammonia fuel
production for remote islands: A case study,’’ Renew. Energy, vol. 72,
pp. 51–61, Dec. 2014.

[3] U. T. Salman, F. S. Al-Ismail, and M. Khalid, ‘‘Optimal sizing of
battery energy storage for grid-connected and isolated wind-penetrated
microgrid,’’ IEEE Access, vol. 8, pp. 91129–91138, 2020.

[4] M. Khalid and M. A. Syed, ‘‘Systems and methods for wind power control
and battery size-reduction,’’ U.S. Patent 11 894 683, Feb. 6, 2024.

[5] R. Prasad and N. P. Padhy, ‘‘Synergistic frequency regulation control
mechanism for DFIG wind turbines with optimal pitch dynamics,’’ IEEE
Trans. Power Syst., vol. 35, no. 4, pp. 3181–3191, Jul. 2020.

[6] S. N. Mtolo and A. K. Saha, ‘‘A review of the optimization and control
strategies for fuel cell power plants in a microgrid environment,’’ IEEE
Access, vol. 9, pp. 146900–146920, 2021.

[7] Y. Wang, Z. Sun, X. Li, X. Yang, and Z. Chen, ‘‘A comparative study
of power allocation strategies used in fuel cell and ultracapacitor hybrid
systems,’’ Energy, vol. 189, Dec. 2019, Art. no. 116142.

[8] S. Alshahrani, M. Khalid, and M. Almuhaini, ‘‘Electric vehicles beyond
energy storage andmodern power networks: Challenges and applications,’’
IEEE Access, vol. 7, pp. 99031–99064, 2019.

[9] N. A. El-Taweel, H. Khani, and H. E. Z. Farag, ‘‘Hydrogen storage optimal
scheduling for fuel supply and capacity-based demand response program
under dynamic hydrogen pricing,’’ IEEE Trans. Smart Grid, vol. 10, no. 4,
pp. 4531–4542, Jul. 2019.

[10] O. Siddiqui and I. Dincer, ‘‘Design and analysis of a novel solar-wind based
integrated energy system utilizing ammonia for energy storage,’’ Energy
Convers. Manage., vol. 195, pp. 866–884, Sep. 2019.

[11] M. A. Syed and M. Kazerani, ‘‘Neural network modeling of an
electrochemical ammonia synthesizer for smart grid applications,’’ inProc.
8th IEEE Workshop Electron. Grid (eGRID), Oct. 2023, pp. 1–6.

[12] S. Thaker, A. Olufemi Oni, and A. Kumar, ‘‘Techno-economic evaluation
of solar-based thermal energy storage systems,’’Energy Convers. Manage.,
vol. 153, pp. 423–434, Dec. 2017.

[13] Y. Wang, S. Zheng, J. Chen, Z. Wang, and S. He, ‘‘Ammonia (NH3)
storage formassive PV electricity,’’Energy Procedia, vol. 150, pp. 99–105,
Sep. 2018.

[14] C. Chen, K. M. Lovegrove, A. Sepulveda, and A. S. Lavine, ‘‘Design and
optimization of an ammonia synthesis system for ammonia-based solar
thermochemical energy storage,’’ Sol. Energy, vol. 159, pp. 992–1002,
Jan. 2018.

[15] M. Al-Zareer, I. Dincer, and M. A. Rosen, ‘‘Heat transfer and ther-
modynamic analyses of a novel solid–gas thermochemical strontium
chloride–ammonia thermal energy storage system,’’ J. Heat Transf.,
vol. 140, no. 2, Feb. 2018.

[16] F. Baldi, A. Azzi, and F. Maréchal, ‘‘From renewable energy to ship fuel:
Ammonia as an energy vector and mean for energy storage,’’ Comput.
Aided Chem. Eng., vol. 46, pp. 1747–1752, 2019.

[17] A. Hasan and I. Dincer, ‘‘Development of an integrated wind and PV
system for ammonia and power production for a sustainable community,’’
J. Cleaner Prod., vol. 231, pp. 1515–1525, Sep. 2019.

[18] O. Siddiqui and I. Dincer, ‘‘A novel hybrid ammonia fuel cell and thermal
energy storage system,’’ Int. J. Energy Res., vol. 43, no. 7, pp. 3006–3010,
Jun. 2019.

[19] K. H. Rouwenhorst, A. G. Van der Ham, G. Mul, and S. R. Kersten,
‘‘Islanded ammonia power systems: Technology review & conceptual
process design,’’ Renew. Sustain. Energy Rev., vol. 114, Oct. 2019,
Art. no. 109339.

[20] H. Zhang, L. Wang, J. Van Herle, F. Maréchal, and U. Desideri, ‘‘Techno-
economic comparison of green ammonia production processes,’’ Appl.
Energy, vol. 259, Feb. 2020, Art. no. 114135.

[21] J. Ikäheimo, J. Kiviluoma, R. Weiss, and H. Holttinen, ‘‘Power-to-
ammonia in future north European 100 % renewable power and heat
system,’’ Int. J. Hydrogen Energy, vol. 43, no. 36, pp. 17295–17308,
Sep. 2018.

[22] Z. Wan, Y. Tao, J. Shao, Y. Zhang, and H. You, ‘‘Ammonia as an effective
hydrogen carrier and a clean fuel for solid oxide fuel cells,’’ Energy
Convers. Manage., vol. 228, Jan. 2021, Art. no. 113729.

[23] M. A. Syed, O. Siddiqui, M. Kazerani, and M. Khalid, ‘‘Analysis of
electrochemical ammonia production rate via smoothing filters for solar
energy storage,’’ in Proc. IEEE Can. Conf. Electr. Comput. Eng. (CCECE),
Sep. 2023, pp. 593–598.

[24] M. B. Abdelghany, M. Faisal Shehzad, D. Liuzza, V. Mariani, and L.
Glielmo, ‘‘Modeling and optimal control of a hydrogen storage system
for wind farm output power smoothing,’’ in Proc. 59th IEEE Conf. Decis.
Control (CDC), Dec. 2020, pp. 49–54.

[25] M. A. Syed and M. Khalid, ‘‘Machine learning based controlled filtering
for solar PV variability reduction with BESS,’’ in Proc. Int. Conf. Sustain.
Energy Future Electric Transp. (SEFET), Jan. 2021, pp. 1–5.

[26] V. M. Maestre, A. Ortiz, and I. Ortiz, ‘‘Challenges and prospects of
renewable hydrogen-based strategies for full decarbonization of stationary
power applications,’’ Renew. Sustain. Energy Rev., vol. 152, Dec. 2021,
Art. no. 111628.

[27] T. Cai, M. Dong, H. Liu, and S. Nojavan, ‘‘Integration of hydrogen storage
system and wind generation in power systems under demand response
program: A novel p-robust stochastic programming,’’ Int. J. Hydrogen
Energy, vol. 47, no. 1, pp. 443–458, Jan. 2022.

[28] M. A. Syed and M. Khalid, ‘‘An intelligent model predictive control
strategy for stable solar-wind renewable power dispatch coupled with
hydrogen electrolyzer and battery energy storage,’’ Int. J. Energy Res.,
vol. 2023, pp. 1–17, Mar. 2023.

[29] A. Iqbal, A. Waqar, R. Madurai Elavarasan, M. Premkumar, T. Ahmed,
U. Subramaniam, and S. Mekhilef, ‘‘Stability assessment and performance
analysis of new controller for power quality conditioning in microgrids,’’
Int. Trans. Electr. Energy Syst., vol. 31, no. 6, Jun. 2021.

[30] I. Dincer and O. Siddiqui, Ammonia Fuel Cells. Amsterdam, The
Netherlands: Elsevier, 2020.

[31] K. S. Gabriel, R. S. El-Emam, and C. Zamfirescu, ‘‘Technoeconomics
of large-scale clean hydrogen production—A review,’’ Int. J. Hydrogen
Energy, vol. 47, no. 72, pp. 30788–30798, Aug. 2022.

46522 VOLUME 12, 2024



M. A. Syed et al.: Analysis and Modeling of Direct Ammonia Fuel Cells

[32] M. A. Syed and M. Khalid, ‘‘A feedforward neural network hydrogen
electrolyzer output regulator for wind power control with battery storage,’’
in Proc. IEEE PES Innov. Smart Grid Technol. Asia (ISGT Asia),
Dec. 2021, pp. 1–5.

[33] K. D. Malamaki, F. Casado-Machado, M. Barragán-Villarejo, A. M.
Gross, G. C. Kryonidis, J. L. Martinez-Ramos, and C. S. Demoulias,
‘‘Ramp-rate limitation control of distributed renewable energy sources via
supercapacitors,’’ IEEE Trans. Ind. Appl., vol. 58, no. 6, pp. 7581–7594,
Nov. 2022.

[34] M. A. Syed and M. Khalid, ‘‘Moving regression filtering with battery state
of charge feedback control for solar PVfirming and ramp rate curtailment,’’
IEEE Access, vol. 9, pp. 13198–13211, 2021.

[35] A.M. Colak and K. Kayisli, ‘‘Reducing voltage and frequency fluctuations
in power systems using smart power electronics technologies: A review,’’
in Proc. 9th Int. Conf. Smart Grid (icSmartGrid), Jun. 2021, pp. 197–200.

[36] M. A. Syed and M. Khalid, ‘‘Locally weighted filtering for photovoltaic
power fluctuation control and time delay reduction with battery energy
storage,’’ in Proc. IEEE Madrid PowerTech, Jun. 2021, pp. 1–5.

[37] R. Kini, D. Raker, T. Stuart, R. Ellingson, M. Heben, and R. Khanna,
‘‘Mitigation of PV variability using adaptive moving average control,’’
IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2252–2262, Oct. 2020.

[38] L. M. S. de Siqueira andW. Peng, ‘‘Control strategy to smooth wind power
output using battery energy storage system: A review,’’ J. Energy Storage,
vol. 35, Mar. 2021, Art. no. 102252.

[39] M. A. Syed and M. Khalid, ‘‘Hodrick prescott decomposition for battery
energy storage size reduction and wind power control for microgrid
applications,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. - Latin
Amer. (ISGT Latin America), Sep. 2021, pp. 1–5.

[40] A. Atif and M. Khalid, ‘‘Saviztky–Golay filtering for solar power
smoothing and ramp rate reduction based on controlled battery energy
storage,’’ IEEE Access, vol. 8, pp. 33806–33817, 2020.

[41] M.A. Syed andM.Khalid, ‘‘Machine learning based hydrogen electrolyzer
control strategy for solar power output and battery state of charge
regulation,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Eur. (ISGT
Europe), Oct. 2021, pp. 1–5.

[42] A. A. Abdalla andM. Khalid, ‘‘Smoothing methodologies for photovoltaic
power fluctuations,’’ in Proc. 8th Int. Conf. Renew. Energy Res. Appl.
(ICRERA), Nov. 2019, pp. 342–346.

[43] M. A. Syed, A. A. Abdalla, A. Al-Hamdi, and M. Khalid, ‘‘Double
moving average methodology for smoothing of solar power fluctuations
with battery energy storage,’’ in Proc. Int. Conf. Smart Grids Energy Syst.
(SGES), Nov. 2020, pp. 291–296.

[44] M. A. Syed and M. Khalid, ‘‘Neural network predictive control for
smoothing of solar power fluctuations with battery energy storage,’’ J.
Energy Storage, vol. 42, Oct. 2021, Art. no. 103014.

[45] A. Addisu, L. George, P. Courbin, and V. Sciandra, ‘‘Smoothing of
renewable energy generation using Gaussian-based method with power
constraints,’’ Energy Proc., vol. 134, pp. 171–180, Oct. 2017.

[46] K. Klein and F. Alvarado,EES-Engineering Equation Solver, Version 6.648
ND. Middleton, WI, USA: FChart Software, 2004.

MISWAR A. SYED (Member, IEEE) was born
in Khobar, Saudi Arabia, in 1998. He received
the bachelor’s degree in electrical engineering
from the King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran, Saudi Arabia,
in 2021. He is currently pursuing the master’s
degree with the Department of Electrical and
Computer Engineering, University of Waterloo,
Canada. He has authored/coauthored several jour-
nal and conference papers in the field of control

and optimization for renewable energy systems. His current research
interests include renewable energy resources, distributed power generation,
AI-based control and optimization techniques for renewable energy dispatch
in grid-connected plants, energy storage, green hydrogen and ammonia,
EVs, and machine learning applications in smart grids. He has multiple
granted patents. He received multiple awards, including the highly presti-
gious 2023 IEEE Power & Energy Society Outstanding Student Scholarship.

OSAMAH SIDDIQUI (Member, IEEE) was a
Postdoctoral Researcher and a Teaching Fellow
with The University of British Columbia. He has
authored a book on ammonia fuel cells and
more than 30 peer-reviewed journal articles. His
research interest includes the development of
high-efficiency direct ammonia fuel cells and their
integration into renewable energy systems.

MEHRDAD KAZERANI (Life Senior Member,
IEEE) received the B.Sc. degree in electrical
engineering from Shiraz University, Iran, in 1980,
the master’s degree in electrical engineering from
Concordia University, Canada, in 1990, and the
Ph.D. degree in electrical engineering fromMcGill
University, Canada, in 1995. From 1982 to 1987,
he was with the Energy Ministry of Iran. He is
currently a Professor with the Department of
Electrical and Computer Engineering, University

of Waterloo, Waterloo, ON, Canada. His research interests include energy
storage, battery charging systems, transportation electrification, renewable
energy integration, microgrids, current-sourced converter applications, and
matrix converters. He is a Registered Professional Engineer in the Province
of Ontario.

MUHAMMAD KHALID (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing from the School of Electrical Engineering
Telecommunications (EET), The University of
New South Wales (UNSW), Sydney, Australia,
in 2011. He was initially a Postdoctoral Research
Fellow, for three years, and then he continued as a
Senior Research Associate with Australian Energy
Research Institute, School of EET, UNSW, for
two years. He is currently an Associate Professor

with the Electrical Engineering Department, King Fahd University of
Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. He is also a
Research Affiliate with the Interdisciplinary Research Center for Sustainable
Energy Systems, KFUPM. He has authored/coauthored several journals and
conference papers in the field of control and optimization for renewable
power systems. His research interests include the optimization and control
of battery energy storage systems for large-scale grid-connected renewable
power plants (particularly wind and solar), distributed power generation
and dispatch, hybrid energy storage, hydrogen systems, EVs, AI, machine
learning, and smart grids. He was a recipient of the Highly Competitive
Postdoctoral Writing Fellowship from UNSW, in 2010. He was a recipient
of many academic awards and research fellowships. In addition, he has been
a reviewer of numerous international journals and conferences.

VOLUME 12, 2024 46523


