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ABSTRACT The gearbox fault diagnosis method based on deep learning lacks good interpretability, and
the complexity of the model leads to prolonged diagnostic times. Based on this, this paper proposes a
Compute Unified Device Architecture (CUDA) parallelized Bayesian Network (BN) approach for gearbox
fault diagnosis. To address the problem of the Max-Min Hill-Climbing (MMHC) algorithm easily getting
trapped in local optima during BN learning, this paper introduces the Snake Optimization (SO) algorithm.
This algorithm utilizes multiple individuals to represent potential solutions and updates their positions at
each iteration, employing a diversity search strategy to avoid falling into local optima. In response to the
high complexity and poor real-time inference of BN fault diagnosis methods, this paper utilizes the CUDA
platform as a development framework and employs a CPU+GPU heterogeneous parallel BN to improve the
operational efficiency of the model, thereby enhancing the real-time capability of fault diagnosis. Finally,
validation is conducted on the gearbox dataset from Southeast University, demonstrating that the proposed
method achieves a diagnosis accuracy of 99.7% on 800 fault samples with a training time of 10.4 seconds.
Compared to traditional methods, this approach exhibits significant advantages in diagnostic accuracy and
training speed, effectively enhancing the accuracy and stability of fault diagnosis.

INDEX TERMS Bayesian network, CUDA parallelism fault diagnosis, maximum-minimum hill climbing
algorithm, snake optimization algorithm.

I. INTRODUCTION
Fault diagnosis plays a pivotal role in industrial production.
However, with the increasing automation and complexity of
modern industrial systems, traditional fault diagnosis meth-
ods based on mathematical models and expert knowledge
have become inefficient and overly intricate. In the context
of big data in industry, data-driven fault diagnosis methods
leverage large-scale monitoring data and employ advanced
machine learning techniques to achieve real-time monitoring
and fault diagnosis of industrial equipment, thereby cir-
cumventing the need for complex mechanistic models and
minimizing reliance on expert knowledge. To address poten-
tial faults in industrial equipment, a series of data-driven
fault diagnosis methods have been proposed in relevant
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research. Among them, Zhang et al. [1] addressed the
detection and diagnosis of various faults in battery packs,
proposing a method based on curve Manhattan distance
and voltage difference analysis. Zhang et al. [2] tackled
the challenge of detecting early faults in analog circuits,
presenting a method based on kernel entropy component
analysis and one-against-one least squares support vector
machines. Zhang et al. [3] tackled the difficulty of how to
effectively localize faults in analog circuit diagnosis, propos-
ing an improved wavelet transform feature extraction and
multi-kernel extreme learning machine approach. Simultane-
ously, He et al. [4] dealt with extracting effective features
from fault signals in analog circuits, proposing a method
based on cross-wavelet transform and variational Bayesian
matrix factorization. Those aforementioned methods have
employed advanced signal processing and intelligent diag-
nostic techniques, enhancing the accuracy and reliability
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of fault diagnosis. However, challenges persist regarding
the limited applicability of these methods, as well as the
complexity and high computational costs of algorithms.
Therefore, data-driven fault diagnosis methods have emerged
as the mainstream in recent years, particularly for critical
components such as gearboxes. Gearboxes, serving as cru-
cial mechanical components in aerospace, automotive, and
heavy industrial applications, endure substantial dynamic
loads within mechanical transmission systems [5]. Their
unexpected failures often result in significant maintenance
costs and even catastrophic events [6]. Thus, accurately iden-
tifying potential fault distributions and further determining
their health status are essential to ensure the proper operation
of the entire mechanical transmission system.

In recent years, both domestic and international scholars
have conducted extensive research on gearbox fault diagno-
sis [7], [8], which includes deep learning-based diagnostic
methods such as Transfer Learning (TL), Generative Adver-
sarial Networks (GAN), Graph Neural Networks (GNNs),
Transformers, and others have been widely applied. These
methods, particularly, exhibit significant advantages in sce-
narios with limited samples and the diagnosis of subtle
potential faults. Addressing the issue of low diagnostic accu-
racy due to insufficient fault samples, Jamil et al. [9] proposed
a deep-boosting transfer learning approach with the preven-
tion of negative transfer. Zhao et al. [10] introduced a method
combining joint distribution adaptation transfer learning and
deep belief networks for the diagnosis of rotating machin-
ery faults. Su et al. [11] presented an improved GAN-based
approach for small-sample gearbox fault diagnosis. Yang
et al. [12] proposed a GAN-based oversampling method to
achieve gearbox fault diagnosis with a small dataset. While
these methods have to some extent addressed the issue of
limited samples in fault diagnosis, the interpretability of
the diagnostic models remains a challenge. In addressing
the challenge of detecting latent faults in fault diagnosis,
Yu et al. [13] proposed a novel method employing a rapid
deep graph convolutional network for diagnosing faults in
wind turbine generators. Jiang et al. [14] introduced a bear-
ing fault diagnosis approach based on a multi-head graph
attention network. Tang et al. [15] presented an integrated
visual Transformer model based on wavelet transform and
soft voting method, enhancing the diagnostic accuracy and
generalization capability for bearing faults. Ding et al. [16]
proposed a novel time-frequency Transformer model for
gearbox fault diagnosis. While these methods have to some
extent improved the detection capability of diagnostic models
for latent faults, they have also increased the complexity
of the diagnostic models, consequently reducing diagnostic
speed. However, due to the inherent opacity of deep learning
models, characterized by their decision-making processes
and internal details, they are often regarded as black-box
models. Additionally, the design and training processes of
these diagnostic models are relatively intricate, involving
complex parameter tuning that demands more computational

resources, thereby resulting in poor real-time diagnostic
performance. Consequently, enhancing the interpretability
and real-time capability of the models becomes a crucial
challenge.

BN can effectively deal with uncertainty problems based
on probabilistic information by learning to discover the prob-
abilistic relationships between fault modes and fault features
from fault data. Constructing the topological structure for
fault diagnosis through causal relationships not only provides
a clearer understanding of the diagnostic process and deci-
sion basis but also enhances the interpretability of diagnostic
results, which is crucial for realizing effective fault diagnosis
and decision support. Therefore, researchers have widely
used BNs in the field of fault diagnosis [17]. However, learn-
ing the optimal structure of BNs is challenging, and choosing
an inappropriate structure may lead to inaccurate diagnostic
results. Additionally, the inference and probability calcula-
tions of BN demand substantial computational resources,
resulting in higher computational complexity and slower
inference speeds. To address the problem that BN struc-
ture learning does not capture the probabilistic dependencies
between observations well, Zhang et al. [18] proposed to use
a binary encoding to represent the structure of a BN and apply
a water-cycle algorithm to search for the structure. Chen and
Hao [19] introduced a new method for learning the structure
of BNs using a discrete firefly optimization algorithm. Veni
and Kumar [20] presented an approach combining Bayesian
optimization and integrated learning techniques by automati-
cally tuning the hyperparameters of the classifier to maximize
the accuracy and performance of bearing fault diagnosis in
induction motors. Aiming at the time-consuming problem
of conditional independence testing in the learning process
of Bayesian structures, Quan et al. [21] introduced to use
the MMHC algorithm to construct a BN to analyze the net-
work relationship between COPD and its influencing factors.
Jiang et al. [22] proposed a method based on minimum
Bayesian risk reclassification and adaptive weighting, which
obtains more accurate and reliable fault diagnosis results.
Tao et al. [23] proposed a new parallelization method for
conditional independence testing, where parallel algorithms
can process multiple data points or sub-tasks at the same
time, thus improving computational efficiency. The above
method optimizes the BN structure to some extent, which
improves diagnostic efficiency. These methods optimize the
BN structure to some extent, enhancing diagnostic efficiency.
Among them, the MMHC algorithm belongs to a hybrid BN
learning approach, exhibiting stronger generalization com-
pared to other methods. However, there are faces several
challenges, including the tendency for the established models
to fall into local optima and the typically high computational
complexity associated with constructing Bayesian fault diag-
nosis networks, thereby impacting both the training speed and
real-time diagnostic performance of the models.

Based on the above analysis, addressing the issue of BN
structure learning prone to local optima, this paper proposes
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utilizing the SO algorithm for a global search strategy to opti-
mize the MMHC algorithm in constructing BN. Meanwhile,
to tackle the problem of the high complexity in constructing
BN leading to slow diagnostic speed, an approach involv-
ing heterogeneous parallelism is introduced to enhance the
real-time capability of fault diagnosis. By distributing the
process of searching for the optimal BN across different
computing units for parallel execution, the search results
are transmitted via the bus to the CPU, allowing for itera-
tive refinement to obtain the optimal fault diagnosis model.
While ensuring diagnostic accuracy, this approach effectively
enhances the timeliness of training fault models, achieving a
highly compatible relationship between diagnostic accuracy
and modelling speed.

II. BN
Gearbox fault diagnosis usually involves uncertainties in
the causes of faults, and BNs can effectively model these
uncertainties, making the diagnosis more accurate and reli-
able, while BNs [24] graphically represent the dependencies
between variables, and therefore have a high degree of inter-
pretability.

A BN is composed of a directed acyclic graph G and a
conditional probability distribution P. The graph G = (V ,E)
encodes a set of independent relationships among variables
V = {X1,X2, · · ·,Xn} through the d-separation criterion and
E represents the set of directed relationships among these
variables. The joint probability distribution over the vari-
able domain is factorized using the conditional probability
distribution {p (Xi|paG(Xi))} i ∈ {1, 2, · · ·, n} according to:

P(V ) = P(X1,X2, · · ·Xn) =

n∏
i=1

p(Xi|paG(Xi)).

The structural learning of BN is a crucial step in the
entire modelling process, and the common BN structure
learning methods are mainly divided into two categories:
constraint-based methods and score-based search methods.
Constraint-based methods offer more precise variable rela-
tionships, but their premise is that appropriate knowledge of
the domain is required. Score-based search methods learn by
searching for the optimal scoring structure among possible
structures; however, their efficiency tends to be relatively low
when dealing with a large structure space. Therefore, to over-
come the limitations of the above methods, this paper adopts
a hybrid algorithm, the MMHC algorithm [25] to construct
the BN, which uses both domain knowledge to initialize the
candidate structures and statistical scoring methods to select
the final network structure, which overcomes the limitations
of a single method and improves the accuracy of structure
learning.

III. MMHC
The MMHC algorithm integrates dependency analysis and
score-based search methods, consisting of two phases. In the
first phase, the Max-Min Parent-Child (MMPC) algorithm is
employed to determine the candidate parent-child node sets
for each node, constructing an undirected framework for the

BN structure. In the second stage, this paper employs a greedy
hill-climbing algorithm to search and evaluate the obtained
network structures, identifying the network structure with the
highest score.
The MMPC algorithm employs a maximal-minimal

heuristic strategy to identify the set of Candidate Parents and
Children (CPC) [26] for the target variable T from a given
dataset, which is divided into two stages. In the first stage,
a correlation function is defined to ascertain the conditional
dependency relationships between other variables and the
target variable T under the given conditions of the CPC. The
max-min heuristic selects the variable with the largest and
smallest correlation with the target variable T into the CPC
under the given CPC conditions. The first stage stops when
all variables in the CPC except the variable are conditionally
independent of the target variable T under the given CPC
conditions. In the second stage, the variables in the CPC of the
set of candidate parent-child nodes are tested and the wrong
variables are excluded. For variable X in the CPC, if a subset
S of the CPC exists, such as Assoc(X ,T |S), then the variable
X is removed from the CPC.
The correlation function between variable X and variable

T for a given set of variables T is defined as equation (1).

Assoc(X ,T |Z ) = 2
∑
a,b,c

N abc
ijk ln

N abc
ijk N

c
k

N ac
ik N

bc
jk

(1)

where N abc
ijk is the number of samples in the dataset D that

satisfy X = aT = h, and Z = c. The corresponding
minimum correlation function is defined as equation (2).

MinAssoc(X ,T , |Z ) =
min
S⊆Z Assoc(X ,T |S) (2)

where S is a subset of the variable set Z.
MMHC is a local search algorithm, however, in the case

of a large structure space, the algorithm may fall into local
optima due to the selection of different initial structures and
the adoption of various search strategies. Therefore, when
using MMHC for structural search, this method cannot guar-
antee the discovery of the globally optimal network structure.

IV. SO ALGORITHM
In this paper, the SO algorithm [27] is used to solve the
problem that MMHC constructs a Bayesian fault diagnos-
tic network which tends to fall into the local optimum.
SO algorithm is a global search heuristic algorithm that
explores the search space by simulating the behaviours of
snakes to improve the diversity, searching ability and conver-
gence. Snake search is divided into two phases: exploration
and exploitation. In the exploration stage, when the envi-
ronmental temperature is low and food is scarce, the snake
conducts a global search for food. During the exploitation
stage, when food is available and the temperature is high, the
snake focuses on the local search to consume food. If food
is available and the temperature is low, mating takes place.
This contributes to the optimization of the MMHC algorithm,
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preventing it from getting stuck in local optima and increasing
the likelihood of achieving a global optimum.

A. MATHEMATICAL MODEL OF SO ALGORITHM
In the exploration phase, assuming an insufficient availability
of food, the snake randomly moves towards the direction
of food search, and the amount of food Q is counted by
0.5exp

( t−T
T

)
. T is the maximum number of iterations. Male

and female exploratory behaviours are modelled as shown in
equation (3) and equation (4):

X t+1
i,m =X trand,m±C2×Am × ((Xmax − Xmin) × rand + Xmin)

(3)

X t+1
i,f =X trand,f ±C2×Af × ((Xmax − Xmin) × rand + Xmin)

(4)

where X t+1
i,m , X t+1

i,f and denote the i th male and female,
respectively. X trand,m and X trand,f are randomly selected posi-
tions of males and females from the overall population.
t is the current iteration, rand is a random value, and C2
is a constant set to 0.05. Am and Af measure the abil-
ity of males and females to access food, calculated by
exp

(
−frand,m
fi,m

)
exp

(
−frand,f
fi,f

)
and, respectively; frand,m and

frand,f are the fitness values of X trand,m and X trand,f , respec-
tively, while fi,mfi,f and are the fitness values of males and
females, respectively.

During the development phase, it is assumed that food
is available, and the next position is defined based on the
environmental temperature (TEMP). The ambient tempera-
ture is defined by exp

(
−t
T

)
, and if the temperature is higher

than a threshold, a new position for the male and female
is localized using equation (5), which X tfood represents the
optimal individual position equal to 2.

X t+1
i,f ,m = X tfood ± C3 × TEMP× rand × (Xfood − X ti,f ,m)

(5)

Otherwise, the snake is in either combat or mating mode and
switches randomly between these two modes, calculating the
new position using equation (6) and equation (7) for combat
mode and equation (8) and equation (9) for mating mode.

X t+1
i,m = X ti,m ± C3 × FM × rand × (Xbest,f − X ti,m) (6)

X t+1
i,f = X t+1

i,f ± C3 × FF × rand × (Xbest,m − X t+1
i,f ) (7)

X t+1
i,m = X ti,m ± C3 ×Mm × rand × (Q× X ti,f − X ti,m) (8)

X t+1
i,f = X ti,f ± C3 ×Mf × rand × (Q× X ti,m − X ti,f ) (9)

where FM and FF represent the combat abilities of males
and females, calculated respectively by exp

(
−fbest,f

fi

)
and

exp
(

−fbest,m
fi

)
.Mm andMf denote themating abilities inmale-

female conflicts, also computed based on exp
(

−fi,f
fi,m

)
and

exp
(

−fi,m
fi,f

)
.

B. SO-MMHC
The SO algorithm guides the MMHC to construct a Bayesian
fault diagnosis network by simulating the movement of the
snake in the search space, which aims to prevent the Bayesian
fault diagnosis network from falling into a local optimum
when searching the solution space. The global optimization
performance of constructing a Bayesian fault diagnosis net-
work is enhanced by the global search property of the SO
algorithm, and the specific algorithm steps are shown below.
Step 1:Randomly generate the locations of the initial snake

population, with each snake representing a potential solution.

X (0)
i ∼ U (S) obeys a uniform distribution, whereX (0)

i denotes
the initial position of the ith snake and U denotes a uniform
distribution;
Step 2: Initialize the BN structure using the MMHC

algorithm, which includes 22 fault features of 5 fault types
from the gearbox dataset of Southeast University G =

MMHC_Initialize(Nodes,Edges);
Step 3: Define the search space including all legitimate

BNs S = {G|G is effective BN };
Step 4: Attain the global optimum by simulating the

snake’s exploration and exploitation stages in the search
space. X (t+1)

i = X (t)
i + α · Mov(X (t)

i ,X (t)
best ), α is a step con-

trol parameter, Mov(X (t)
i ,X (t)

best ) is a function that simulates
the snake’s movement in the search space, and X (t)

best is the
location of the global optimal solution;
Step 5: Update the current network structure, G(t+1)

=

US(G(t),X (t+1)
i )US are the functions for updating the net-

work structure according to the position and movement
direction of the snake;
Step 6: Calculate the model likelihood and penalty term

score, denoted as

Score(G(t+1)) = Likelihood(G(t+1)) + Penalty(G(t+1));

Step 7: Selecting the highest-scoring one as the next
network architecture, denoted as G∗

= argmaxG(t+1)

Score(G(t+1));
Step 8: Check if the stopping condition is satisfied, the

stopping condition is reaching the maximum number of iter-
ations or the highest score;
Step 9: Updating the global optimal solution so that the

performance of different snakes can be compared, denoted as
X (t+1)
best = argmaxi Score(G

(t+1)
i );

Step 10: Repeating steps 3 to 9, repeating the steps of
snake motion simulation, network structure updating, model
evaluation and global optimal solution updating, until the
stopping condition is satisfied. In each iteration, accumulate
the structure scores, and at the end, divide by the number of
runs to obtain the network structure with the highest average
score;
Step 11: Output the constructed Bayesian fault diagnosis

network structure G.
The above method combines the SO algorithm with the

MMHC algorithm, focusing on the search and optimization
phases of the BN structure, Specifically, in the initialization
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FIGURE 1. CPU-GPU heterogeneous parallel process.

and iterative optimization of the MMHC algorithm, which
improves and guides the search process by simulating the
snake’s search strategy. It solves the problem that the MMHC
algorithm is easy to falls into the local optimal solution when
constructing the BN fault diagnosis model, but the method
requires a large amount of computational resources, and the
high computational cost makes this method unsuitable for
fault diagnosis research with high real-time requirements.
To solve this problem, this paper adopts a heterogeneous par-
allel method [28] based on CUDA to accelerate the diagnosis
process.

V. CONSTRUCTING A BN FAULT DIAGNOSIS MODEL FOR
SO-MMHC WITH HETEROGENEOUS PARALLELISM
(PSM-BN)
To improve the real-time fault diagnosis, this paper adopts
a heterogeneous parallel algorithm and utilizes the CUDA
architecture to perform parallel computation on the GPU side.
In the design of parallel algorithms, balancing the division
granularity of computational tasks and the amount of comput-
ing, if the granularity is too small, the computational volume
of a single task is small, which may lead to excessive waste
of computational resources on the control and deployment
of threads; if the granularity is too large, the computational
volume of a single task is large, which may make the compu-
tational process of the parallelization is not high, wasting the
resources of the threads. Therefore, in this paper, taking the
computational capacity of GPU cores and the characteristics
of the network construction process into account, the partition

idea is adopted to recursively divide the computational tasks.
The parallel process of the model is shown in Figure 1, the
construction process is shown in Figure 2, and the specific
algorithm steps are as follows.
Step 1: On the CPU side, the initial positions of the

snake population are generated. The initial snake population
positions can be represented as a matrix, where each row
represents the initial position of a snake, and each column
represents a value of network structure parameters. These
initial positions can be randomly generated from a uniform
distribution, denoted as X (0)

i ∼ U (S), where U (S) represents
a uniform distribution;
Step 2: On the CPU side, the BN structure is initial-

ized using the MMHC algorithm. This includes defining
the search space and initializing the network structure
parameters. The network encompasses five fault types and
twenty-two fault features from the Southeast University gear-
box dataset. Initialization is performed using the function

G = MMHC_Initialize(Nodes,Edges);

Step 3: The initial positions of the snake population and
the network structure are transferred to the GPU side. This
includes transmitting the initial snake population positions
and network structure generated in Steps 1 and 2 to the GPU,
denoted as Transfer_to_GPU (X (0)

i ,G);
Step 4:On the GPU side, the search space is defined, which

encompasses all possibly valid BN structures. Each row in
this space represents a network structure, with each column
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representing a value of network structure parameters. This
space is denoted as S = {G|G is a valid BN }

Step 5: On the GPU side, the exploration and exploitation
phases of snake movement within the search space are simu-
lated. This is achieved by defining appropriate search space
and movement functions. The movement function governs
the direction and step size of the snake’s movement within
the search space, denoted as

X (t+1)
i =X (t)

i +α ·Mov(X (t)
i ,X (t)

best )Transfer_to_GPU (X (t+1)
i

where α is the step size control parameter, and Mov(X (t)
i ,

X (t)
best ) is the function governing the simulated snake’s move-

ment in the search space, and X (t)
best represents the global

optimal solution position;
Step 6: On the GPU side, the concurrent update of cur-

rent network structure parameters is performed based on
the snake’s movement within the search space. This can be
achieved by defining appropriate GPU functions, denoted
asG(t+1)

= US GPU(G(t),X (t+1)
i )Transfer_to_CPU (G(t+1))

where the US GPU is a GPU function responsible for updat-
ing the network structure based on the snake’s position and
movement direction;
Step 7:On the GPU side, parallel computation of themodel

likelihood and penalty scores for each network structure is
performed, and the results are transferred to the CPU side for
selecting the optimal structure, denoted as
Fitness_on_GPU (G(t+1)) = Likelihood_on_GPU (G(t+1))

and Transfer_to_CPU (Fitness_on_GPU );
Step 8:On the CPU side, the score information transmitted

from the GPU is received, and the structure with the highest
score is selected as the next step’s network structure, denoted
as G∗

= argmaxG(t+1)Fitness_on_CPU (G(t+1));
Step 9: On the CPU side, check for the satisfaction of

stopping conditions, whether the maximum iteration count is
reached, or the highest score is achieved;
Step 10: On the CPU side, the global optimum solution is

updated. If the score of the current network structure is higher
than the previous global optimum solution, the CPU updates
the global optimum solution, denoted as

X (t+1)
best = argmaxiFitness_on_CPU (G(t+1)

i );

Step 11: Repeat steps from 3 to 9, iteratively perform
snake motion simulation, network structure updates, model
evaluation, and global optimum solution updates until the
termination conditions are met. In each iteration, accumulate
the structure scores, and at the end, divide by the number of
runs to obtain the network structure with the highest average
score;
Step 12: The finalized Bayesian fault diagnosis network

structureG is outputted. This network structure is determined
based on the global optimum solution obtained during the
optimization process.

These steps integrate the SO algorithm, MMHC algorithm,
and CUDA parallel computing to accelerate the SO algorithm
for improving the computational efficiency of the MMHC

algorithm, especially when searching for the structure of
large-scale BNs, to avoid falling into local optimal solutions.
To reduce the data transmission delay, this paper uses a
polling algorithm for workflow management and schedul-
ing on GPUs so that computation and data copying can be
performed simultaneously. In the asynchronous execution,
the device execution and storage operation work simultane-
ously, which improves the overall operation efficiency of the
algorithm and mitigates the impact of data transmission on
the computational efficiency of the GPU. The detailed steps
of optimizing the MMHC-based BN construction using the
CUDA parallel SO algorithm are described below:

FIGURE 2. Overall flowchart of the algorithm.
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By combining the SO algorithm and the MMHC algorithm
with CUDA parallel computing, the space of BN struc-
tures can be searched more quickly to optimize the gearbox
troubleshooting problem, while reducing the risk of locally
optimal solutions and improving computational efficiency.
The algorithm is effective in managing the performance
complementarity between CPU and GPUs, improving the
portability of the algorithm by collecting the required infor-
mation for scheduling decisions through a message-passing
system.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
To validate the diagnostic performance of the method pro-
posed in this paper, the experimental data this paper uses a set
of gearbox vibration data provided by Southeast University,
which contains the fault vibration signals recorded during the
operation of the gearbox. The method proposed in this paper
is validated and illustrated by the following experiments
to demonstrate the reliability and accuracy of the proposed
method under different data sets.

A. EXPERIMENTAL DATA
The dataset used in this experiment is the gearbox dataset
publicly available from Southeast University, which was
collected through a dynamic simulation system [29] of a
transmission chain, as depicted in Figure 3. The experimen-
tal setup primarily consists of a motor, motor controller,
planetary gearbox, parallel-axis gearbox, and brake. Seven
vibration sensors of model 608A11 are utilized to collect
vibration data along the x, y, and z axes of the planetary
and parallel-axis gearboxes, as well as along the z-axis of
the motor. The sampling frequency is 5120 Hz, with data
collection performed under two operating conditions: 20 Hz
(1200 rpm) with a load setting of 0 V (0 Nm), and 30 Hz
(1800 rpm) with a load setting of 2 V (7.32 Nm).

FIGURE 3. Data acquisition device for gearbox fault dataset.

In this study, experiments were conducted using a subset
of data collected under the second operating condition of
30Hz-2V. The fault types considered include inner race crack
(IF), outer race crack (OF), healthy gear (N), gear foot crack
(GF1), and gear root crack (GF2). During the data processing

stage, 22 time-domain and frequency-domain features were
extracted for each sample, including mean, standard devia-
tion, slope, energy, and spectral peak frequency etc, to fully
exploit the information within the data and enhance the diag-
nostic performance of the fault models. The same diagnostic
model is experimented under four groups of different sample
sizes, with sample sizes of 200, 400, and 800 for a single
type in each group of experiments, and 1000 sample points
for each sample. A total of five classifications, which include
four fault types and one normal condition, with total sample
sizes of 1000, 2000, and 4000 for each set of experiments
to validate the diagnostic performance of different diagnostic
models under different sample sizes, and each classification
is randomly divided into training and test samples according
to a ratio of 3:1, which is used to validate the accuracy of the
proposed fault diagnostic model.

B. EX ANALYSIS OF EXPERIMENTAL RESULTS MENTAL
To validate the effect of Singular Spectrum Analysis (SSA),
this paper adds Gaussian white noise to the test set of the
current signal as shown in equation (10).

y(t) = x(t) + n(t) (10)

where y(t) represents the signal after adding the noise, and
x(t) represents the original signal, n(t) and represents Gaus-
sian white noise with mean 0 and variance σ 2. The formula
for SNR equation is shown as equation (11).

SNRdB = 10 log10

(
Psignal
Pnoise

)
(11)

where ‘‘Psignal’’ and ‘‘Pnoise’’ refer to the power values of the
signal and noise, respectively. The results after the introduc-
tion of noise are illustrated in Figure 4.

FIGURE 4. Diagnostic accuracy under SSA and NO SSA with different
signal-to-noise ratios.

As can be seen from Figure 4, at all Signal to Noise Ratio
(SNR) levels, the SSA [30] method used in this paper has
superior diagnostic performance than the method without
SSA. The experimental results show that for both methods,
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the performance increases as the SNR increases. However,
the performance of the method in this paper is more stable
when the noise increases, and at all SNR levels, the method
used in this paper shows a significant performance improve-
ment relative to not using SSA, which suggests that SSA
is effective in dealing with noise and improving diagnostic
performance. This is because SSA is effective in separating
the trend and periodic components of the signal, thus reducing
the effect of noise. The experimental results demonstrate that
SSA improves the diagnostic performance of the model in a
noisy environment.

To assess the performance of the proposed method, in this
paper, classification experiments are carried out by classify-
ing the dataset when the sample size of each class is 400,
experimental validation is carried out on the test set, and the
results include precision(P), recall(R), and F1-score(F1). The
precision is calculated as shown in equation (12).

P =
nTP

nTP + nFP
(12)

The recall rate is expressed by the equation (13) as
indicated.

R =
nTP

nTP + nFN
(13)

The fraction is expressed as per the f equation (14).

F1 =
2P× R
P+ R

=
2nTP

2nTP + nFP + nFN
(14)

where nTP is the number of true cases, and nFP is the number
of false positive cases, and nFN is the number of false negative
cases. The results of the evaluation are shown in Table 1.

TABLE 1. Evaluation of PSM-BN on the gearbox dataset.

In the gearbox dataset, the accuracy and recall rates for
all classes exceed 99%, even reaching 100%. This indicates
that the classifier accurately identifies each class without
any instances of misclassification or false negatives. The
majority of classes achieve an F1 score of 1, demonstrating
a well-balanced trade-off between precision and recall. This
implies that the classifier maintains high accuracy and recall
simultaneously, delivering excellent performance across all
class categorizations. However, the F1 score for the IF class
is slightly lower than that of other classes, indicating some
misclassification by the classifier within the IF category,
leading to a slight imbalance between precision and recall.
In summary, the experimental results demonstrate that the
proposed method exhibits excellent diagnostic performance

and reliability in fault diagnosis tasks within industrial pro-
duction. The diagnostic precision and recall for GF1, GF2,
and N have all achieved very high levels.

To evaluate the performance of this classifier, a confusion
matrix is used in this paper for analysis. The diagnostic model
is shown in Figure 5, and the corresponding results of the
confusion matrix are shown in Figure 6.

FIGURE 5. BN model of gearbox fault diagnosis.

FIGURE 6. Confusion matrix of gearbox fault diagnosis.

In Figure 5, BN’s F1-F10 represent features including
mean, rectified mean, variance, standard deviation, root
mean square, waveform factor, peak factor, pulse factor, root
amplitude, and crest factor, respectively. From the confusion
matrix, it can be observed that the diagonal elements are
99, 100, 100, 100, and 100, indicating high classification
accuracy across the five fault types. Only one sample each
from the gearbox IF and OF classes exhibits confusion in
classification, while the rest of the samples are correctly
classified. This suggests that the model achieves high accu-
racy in predicting each fault type, demonstrating excellent
classification performance for these five fault types.

To comprehensively evaluate the seven different algo-
rithms, this study conducted tests on 200, 400, and
800 samples, recording their diagnostic accuracy and
model training time. Comparative experiments primarily
contrasted PSM-BN with PM-BN (without SO), Transfer
Learning-based Convolutional Neural Networks (TCNN),
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African Vultures Optimization Algorithm combined with
Stochastic Configuration Networks (AVOA-SCN), Deep
Transfer Learning (Deep-TL), Kurtosis Weighting Fusion
and Parallel Lightweight Convolutional Networks (KW-PLCN),
and Information Fusion and Parallel Lightweight Convolu-
tional Networks (IF-PLCN). These comparisons aimed to
showcase their advantages in multi-fault diagnosis under
varying sample sizes. The experimental results are presented
in Table 2.

TABLE 2. Comparative experiments of the gearbox dataset with 200, 400,
and 800 samples.

Table 2 presents the diagnostic accuracy and training time
of different classification algorithms across varying sample
sizes. It is evident that as the sample size increases, the diag-
nostic accuracy of most methods improves. Notably, PSM-
BN consistently maintains the highest diagnostic accuracy
across different sample sizes, indicating superior diagnostic
performance compared to other methods. This suggests that
the proposed method outperforms others due to its simpler
model architecture, as it does not utilize a so algorithm.
While PM-BN exhibits slightly better diagnostic time com-
pared to PSM-BN, there is a significant gap in diagnostic
accuracy. Therefore, it can be inferred that the proposed
method effectively improves diagnostic accuracy. However,
it is worth mentioning that TCNN and Deep-TL exhibit
relatively lower accuracy when the sample size is small.
Nevertheless, as the sample size increases, their accuracy
gradually improves. AVOA-SCN and IF-PLCN demonstrate
higher accuracy under large sample sizes, albeit requiring
relatively longer training times. Overall, PSM-BN demon-
strates faster training speeds across different sample sizes and
achieves the highest accuracy, further confirming the excel-
lent performance of the PSM-BN algorithm in diagnostic
tasks.

To assess the stability of the different models, this paper
conducts 20 independent experiments on each model, each
time using a different training set. In this paper, the average
accuracy of these experiments was calculated on the test set
and summarized in Table 3. Table 3 demonstrates the average
accuracy, t-statistics, and p-values for each model.

From the table above, it can be observed that PSM-BN,
utilizing the SO algorithm, demonstrates superior perfor-
mance in the experiments. PSM-BN exhibits higher average

TABLE 3. Multiple experiment accuracy results.

precision compared to PM-BN. Through t-test analysis, the
p-value is calculated as 0.043, which is less than the sig-
nificance level of 0.05, indicating a statistically significant
difference. This suggests that the SO algorithm optimizes the
model to better adapt to specific tasks, thereby enhancing per-
formance. Therefore, it can be concluded that the proposed
method has high diagnostic performance. Additionally, PSM-
BN shows higher average precision compared to TCNN.
In terms of the t-statistic, there is no significant difference in
precision between the two methods (t-statistic=1.53), with a
p-value of 0.351, exceeding the typical significance level of
0.05. This suggests that the difference is likely due to random
factors, lacking sufficient evidence to reject the null hypoth-
esis of no significant difference in precision between the two
methods. Compared to AVOA-SCN, PSM-BN demonstrates
superior precision. In terms of the t-statistic, the difference
in precision between the two methods is not significant (t-
statistic=2.17), with a p-value of 0.344, higher than the usual
significance level of 0.05. This lack of evidence leads to the
inability to reject the null hypothesis of no significant dif-
ference in precision between the two methods. Additionally,
PSM-BN exhibits superior precision than Deep-TL. In terms
of the t-statistic, there is a significant difference in precision
between the two methods (t-statistic=13.82), with a p-value
of 0.036, lower than the typical significance level of 0.05,
further confirming the rejection of the null hypothesis of no
significant difference in precision between the two methods.
However, compared to IF-PLCN, PSM-BN does not exhibit
a significant difference in precision. Both the t-statistic and
p-value fail to provide sufficient evidence to support or reject
the hypothesis of a significant difference in precision between
the two methods. In summary, PSM-BN demonstrates a
significant advantage in precision compared to other meth-
ods, indicating optimal performance. Therefore, the proposed
PSM-BNmethod exhibits higher precision in the experiments
and possesses significant performance advantages.

VII. CONCLUSION
This paper proposes a Fault Diagnosis Method based on
PSM-BN to address the issues of insufficient interpretability
and long diagnostic time in deep learning diagnostic methods.
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This method not only possesses strong interpretability but
also effectively reduces the training time of the algorithm
by combining precise inference algorithms for probabilistic
graphical models with GPU parallelization techniques, thus
improving the diagnostic efficiency of existing fault diag-
nosis methods. Regarding the construction of BN models,
this paper presents a solution to the problem of the MMHC
algorithm easily falling into local optima. By employing the
SO algorithm, where each individual represents a potential
solution and their positions are updated at each iteration to
maintain multiple individuals, the dilemma of falling into
local optima is effectively avoided, thereby enhancing the
diagnostic quality of the BN. Another crucial issue is how
to balance diagnostic complexity and real-time performance
in Bayesian fault diagnosis methods. Considering that tradi-
tional serial computing cannot meet real-time requirements,
this paper adopts the CUDA platform as the development
framework and utilizes the divide-and-conquer approach to
implement a CPU+GPU heterogeneous parallel BN fault
diagnosis method, thereby improving the real-time perfor-
mance of fault diagnosis. Ultimately, through experiments on
multiple fault datasets, it is demonstrated that the proposed
method exhibits significant advantages over traditional meth-
ods in terms of diagnostic accuracy and modelling speed with
the same number of fault samples.
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