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ABSTRACT Wireless sensor networks have gradually attracted widespread attention from academia and
industry due to their wide application potential and versatility. In response to the coverage and routing
issues of wireless sensor networks, this study combines the improved cuckoo algorithm and non-uniform
clustering algorithm to design a coverage and routing optimization scheme for wireless sensor networks.
Firstly, a wireless sensor network system is studied and built. Subsequently, the traditional cuckoo algorithm
is optimized using the Cauchy distribution, and a coverage optimization scheme for wireless sensor networks
based on the Cauchy distribution improved cuckoo algorithm is designed. Finally, by optimizing the dynamic
range of network area and cluster radius respectively to improve the shortcomings of non-uniform clustering
routing algorithms, a wireless sensor networks routing optimization scheme based on dynamic cluster radius
optimization non-uniform clustering algorithm is designed. The research results indicated that the designed
coverage scheme and routing scheme achieved good application results. Among them, the designed coverage
scheme had a minimum running time of 0.89 minutes in node coverage problems and a maximum node
coverage rate of 99.52%. The designed routing scheme had a minimum running time of 1.47 minutes and an
energy loss rate of 0.84% in the routing optimization problem. In summary, the coverage scheme and routing
optimization scheme designed by this research institute have good application effects and can provide certain
technical support for the application of wireless sensor networks in other fields.

INDEX TERMS Cuckoo algorithm, wireless network, sensors, router, signal coverage, node.

I. INTRODUCTION
Wireless sensor networks (WSNs) are composed of spa-
tially distributed autonomous sensors, commonly used to
monitor physical or environmental conditions such as tem-
perature, sound, pressure, and other data, and transmit the
collected data to the host for in-depth analysis through the
network [1], [2]. Although WSNs are widely used, their
design and optimization still face many challenges. Among
them, network coverage and routing selection are the two
main issues in WSNs [3]. The network coverage problem
focuses on how to use the minimum number of sensors to
cover the area of interest, while the routing problem focuses
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on how to choose the optimal data transmission path to ensure
data accuracy and minimize energy consumption. Traditional
clustering routing algorithms typically divide the network
evenly into multiple clusters, with each cluster selecting
a cluster head for data forwarding. This routing algorithm
method may be effective in uniformly distributed networks,
but in environments with non-uniform distribution or large
changes in network density, it may cause cluster heads to
consume energy too quickly, thereby reducing the network’s
life-cycle [4]. The cuckoo bird optimization algorithm is a
new heuristic algorithm proposed in recent years, which has
performed well in many optimization problems. However,
its application in WSNs coverage and routing optimization
is still in its early stages [5]. The wide range of applica-
tions of WSNs in various industries, such as environmental
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monitoring, health care, and industrial automation, highlights
their great potential as a versatile technology. This research
is dedicated to solving one of the core problems in WSNs,
i.e., optimizing network coverage and data routing. To this
end, the research proposes a comprehensive scheme com-
bining the improved cuckoo search algorithm(CSA)and the
non-uniform cluster routing algorithm. The research focuses
on detailing the design and implementation of these two algo-
rithms and exploring how they work together to improve the
performance of WSNs, especially in complex environments.
In addition, the research will explore the application of these
algorithms in different network types and conditions, and
their importance in improving the efficiency and reliability
of WSNs. This research aims to provide a more efficient
and reliable approach to the design and implementation of
WSNs, thereby promoting their widespread use in a variety
of practical applications.

This research is divided into six parts, the first part is an
introduction to the article, the second part is an analysis and
summary of the related research of others, the third part is an
introduction to the methodology of the article, the fourth part
is an analysis of the performance of the algorithmic model,
the fifth part is a discussion of the article, and the sixth part
is a summary of the full text.

II. RELATED WORKS
CSA is an optimized search algorithm based on the para-
sitic strategy of the Cuckoo. This algorithm was proposed
by Xin-She Yang and Suash Deb in 2009. CSA is popu-
lar for its simplicity and efficiency in various optimization
problems. S. T. Shishavan et al. improved the cuckoo bird
search optimization algorithm through a genetic algorithm
and applied the optimized algorithm to community detection
in complex networks. CSA has problems such as prema-
ture convergence, delayed convergence, and falling into local
optima. Genetic algorithms can optimize the shortcomings
of the cuckoo bird search algorithm, thereby increasing the
search and utilization efficiency of the algorithm. Finally, the
modular objective function and standardized mutual infor-
mation were used as optimization functions to optimize the
hybrid algorithm. The research results indicated that the
cuckoo bird search algorithm optimized by genetic algorithm
had better performance, and compared with other algorithms,
the optimization algorithm had an average improvement of
54% in search accuracy in terms of modularity [6]. In medical
image processing, fundus images are often affected by non-
uniform lighting, low contrast, and noise. Therefore, image
pre-processing is necessary to enhance the quality of the
original fundus image. Regarding such issues, D Toresa et al.
evaluated the effectiveness of various optimization algo-
rithms in selecting the best technology to identify diabetes
retinopathy. The image pre-processing techniques compared
in the study included various types of contrast stretching and
were finally evaluated using standard performance indicators
such as mean square error and entropy. The research results
indicated that the images processed using the cuckoo bird

search algorithm had better performance, and their image
quality was significantly higher than that of the comparative
images [7]. H. Zavieh et al. combined the cuckoo algorithm
and particle swarm optimization algorithm to design a new
hybrid algorithm. This hybrid algorithm can determine which
virtual machine can be assigned to each host, thereby select-
ing the best virtual machine. Moreover, when the selected
host is overloaded, the hybrid algorithm can determine which
virtual machines are generating high loads and migrate them
to another host. The research results indicated that compared
to individual intelligent algorithms, the proposed hybrid
algorithm had lower energy consumption and faster execution
speed in the CloudSim simulation environment [8].WSNs
have become a hot research direction in modern information
technology due to their widespread applications in various
fields such as military reconnaissance, environmental mon-
itoring, and smart homes. To extend WSNs’ survival time,
G Tong et al. proposed a particle swarm optimization rout-
ing scheme for energy consumption issues between nodes
in WSNs. This scheme considered the factors of residual
energy and node distance when selecting cluster heads and
found the optimal transmission path through the ant colony
algorithm. The final research results indicated that the pro-
posed optimized routing scheme significantly improved the
usage time of network survival nodes [9]. To extend the
WSNs’ life-cycle, S U. Sankar et al. adopted a clustering
strategy to optimize the energy consumption of batteries.
They developed a secret protocol and determined the distri-
bution of cluster heads and nodes in this protocol. Finally,
the information was transmitted to the base station through
the determined optimal path to achieve effective data trans-
mission. The research results indicated that the designed
secret protocol effectively reduced WSNs’ energy consump-
tion, thereby extending their life-cycle [10]. The comparative
analysis of relevant studies is shown in Table 1.

In summary, the current cuckoo algorithm has shown
good application results in many optimization problems, but
its application in WSNs coverage and routing optimization
is still in its early stages. Therefore, this study combines
the cuckoo bird algorithm with WSNs and optimizes the
algorithm to solve node coverage and routing optimization
problems in WSNs, aiming to improve WSNs’ performance
in various application scenarios.

III. WIRELESS SENSOR NETWORKS COVERAGE AND
ROUTING OPTIMIZATION BASED ON IMPROVED CUCKOO
BIRD AND NON-UNIFORM CLUSTERING ROUTING
ALGORITHM
To ensure effective and accurate transmission of sensor data,
the coverage and routing strategies of WSNs are partic-
ularly crucial. This study optimizes the coverage strategy
and routing settings of WSNs using the improved cuckoo
algorithm and non-uniform clustering routing algorithm, aim-
ing to further improve the network’s coverage range and data
transmission capability.
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TABLE 1. Comparative analysis of relevant studies.

A. WIRELESS SENSOR NETWORKS SYSTEM
ARCHITECTURE DESIGN
WSNs refer to a network composed of small and inexpen-
sive sensor nodes. These nodes communicate wirelessly to
jointly achieve information perception and data collection
in the target area [11], [12]. In complete WSNs, there are
generally three types of nodes, namely data processing nodes,
task scheduling management nodes, and data aggregation and
transmission nodes. Each of these three nodes has a unique
function and role. First, the data processing node is responsi-
ble for receiving the raw data collected by the other sensing
nodes and performing the necessary processing, such as data
filtering, compression, and preliminary analysis, to ensure the
accuracy of the data and to prepare for the subsequent steps.
Second, task-schedulingmanagement nodes play a key role in
the network and are responsible for the resource management
of the overall network and the scheduling of data transmission
tasks. Such nodes optimize the performance and efficiency
of the entire network by dynamically allocating network

FIGURE 1. WSNs architecture diagram.

FIGURE 2. Structure of wireless sensor node combination.

resources and adjusting data transmission schedules. Finally,
data aggregation and transmission nodes, as an important
part of the network, are mainly responsible for collecting
data from each data processing node, performing effective
data aggregation, and transmitting the aggregated data to the
central server or base station. These nodes ensure effective
data integration and efficient transmission and play a key role
in ensuring network lifetime and data transmission reliability.
The common architecture diagram of WSNs is shown in
Figure 1.

In Figure 1, the key elements that make up the WSNs sys-
tem include various sensor nodes, external networks, remote
task scheduling management centers, users, perception sites,
and data transmission targets. To achieve information trans-
mission and monitoring, WSNs first perceive information
through their deployed sensor nodes in the target area. These
sensors can monitor various types of information, such as
sound, vibration, etc. After collecting data, sensor nodes
can perform preliminary data pre-processing to reduce the
data that need transmission and improve data accuracy. After
data processing, data fusion technology in the WSNs system
integrates data from multiple sensors to further reduce data
volume and improve data quality. After confirming the target
object and data transmission path, data are transmitted to an
external network base station or data collection center, and
then interact with the remote task scheduling management
center to complete the final monitoring task. As a key part of
WSNs systems, sensor nodes play a crucial role in collecting
and processing data. The structural composition of sensor
nodes is shown in Figure 2.
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In Figure 2, the main modules that make up the wire-
less sensor node include the battery module, sensor module,
processor module, and communication module. The battery
module provides the energy supply required by sensor nodes.
The sensor module is mainly responsible for the sensing
function of nodes, ensuring that nodes can collect informa-
tion within the sensing area. The processor module mainly
processes the collected data information further to ensure the
quality and efficiency of data transmission. The communi-
cation module is responsible for data transmission between
nodes. In general, sensor nodes have six energy consump-
tion states: sensing, computing, sending, receiving, idle, and
sleeping. Among them, the node state that consumes the most
energy is sending and receiving [13].

The node coverage problem in WSNs is the core research
content, and higher coverage means more accurate and stable
monitoring results. The node coverage problem in WSNs
essentially explores how tomaximize the coverage area under
a limited number of nodes or ensure complete monitoring
with the minimum number of nodes. When designing cover-
age algorithms for WSNs, it not only meets the requirements
of monitoring coverage but also optimizes node energy con-
sumption and improves the long-term utilization efficiency
of the network. The perception range, communication range,
and network coverage of nodes can all be used for the perfor-
mance evaluation of coverage algorithms. The common types
of the WSNs coverage are mainly divided into the following
three types, as shown in Figure 3.

In Figure 3, three different types of the WSNs coverage
are introduced, namely fence coverage, area coverage, and
target coverage [14], [15]. The main focus of fence coverage
is how to use the least number of sensors to form a sensor
‘‘fence’’ to detect or block any target passing through this
fence. The main goal of fence coverage is to ensure that
any moving target crossing this fence will be detected by
at least one sensor. Regional coverage focuses on how to
use sensor networks to cover a specific area, ensuring that
any events or changes within that area can be detected. The
goal is to maximize coverage within the region of interest
while minimizing the number or energy consumption of
sensors. Target coverage focuses on how to use a sensor
network to cover a specific set of target nodes, rather than
the entire area of nodes. For example, there may only be
a few key locations within a large area that require special
monitoring. The purpose of target coverage is to ensure that
all these key target points are covered by enough sensors
to ensure data accuracy and reliability.Fence coverage gen-
erally places sensors around a specific area (e.g., around a
borderline or critical facility) to form a sensor ‘‘fence’’ to
monitor or prevent any unauthorized crossings. For example,
sensors may be placed along national borders to detect illegal
crossings. Area coverage involves deploying sensors over
a larger area (e.g., a farm or forest) to ensure that events
or changes (e.g., temperature changes, fires, or trespassing)
throughout the area are detected promptly. Targeted coverage
focuses on monitoring a specific set of target points (e.g.,

FIGURE 3. Wireless sensor networks coverage types.

critical infrastructure or a specific geographic location) to
ensure the security and operational status of these important
points.

In addition to studying the node coverage problem in
WSNs, it is also necessary to optimize the routing strate-
gies in WSNs. The routing strategy in WSNs determines the
transmission path and form of the sensor node. At present,
how to complete routing tasks with minimal energy con-
sumption is the main research direction of routing problems.
A routing protocol is a set of rules and conventions that
define information exchange between routers in a network.
Routing protocols enable routers to learn and maintain net-
work topology information, and based on this, decide how
to route data packets from the source address to the desti-
nation address. The common routing topology is shown in
Figure 4.

Figure 4 presents two routing topologies for WSNs,
namely hierarchical routing protocols and planar routing
protocols. These two classifications represent different meth-
ods of routing information and data transmission. The main
advantage of hierarchical routing protocols is their ability
to reduce energy consumption and extend the life cycle of
the network; however, the disadvantage is that the clus-
ter head nodes may face a larger energy burden, and the
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FIGURE 4. Types of routing topology for WSNs.

maintenance of the clusters may incur additional overheads.
Planar routing protocols have the advantage of being simpler
and easier to maintain, and they avoid the energy overload
problem by not requiring cluster head nodes, thus being more
cost-effective; the disadvantage is that they may not per-
form well with long-distance communication and high data
transfer volumes, leading to less efficient routing, increased
energy consumption, and network congestion. Hierarchical
routing architectures are particularly suitable for situations
that require long-term operation and frequent data trans-
mission, such as environmental monitoring or agricultural
applications. Planar routing protocols are usually suitable for
scenarios where data is uniformly distributed and the network
size is small or dense with nodes, such as urban transport
or home automation. The choice of hierarchical routing pro-
tocols is usually motivated by the optimization of network
energy consumption and the improvement of network man-
agement. The main motivation for choosing planar routing is
to simplify the architecture and reduce the cost, especially in
resource-limited environments.

B. WIRELESS SENSOR NETWORKS COVERAGE
OPTIMIZATION BASED ON CAUCHY DISTRIBUTION AND
IMPROVED CUCKOO BIRD ALGORITHM
With the WSNs’ gradual application in various fields of
human life, the sensing and detection capabilities of sensors
are inevitably limited by different environments. Therefore,
it is necessary to optimize them through joint intelligent
algorithms [16]. Traditional CSA still has the drawbacks of
slow convergence speed and low convergence accuracy, so it
needs to be optimized to overcome a series of shortcomings
of traditional CSA. Using optimized CSA to solve the cover-
age problem of WSNs can not only improve the networks’

performance and efficiency, but also extend their lifespan,
reduce costs, and ensure that the sensor network meets the
needs of specific applications.

To ensure the smooth progress of subsequent simulation
experiments, the research regards the network monitoring
area as a two-dimensional plane, and first builds a perception
model and an energy consumption model. The entire plane
length is L, the height is H , the set of sensor nodes is denoted
as S = {S1, S2, · · · , SN }, and the coordinate of the node i in
the two-dimensional plane is denoted as (Xi,Yi). Assuming
that each node can move freely and is in a dormant state
in its initial state. In addition, the perception radius and
communication radius of each sensor node are Rp and Rc,
respectively, Rc = 2Rp. The distance expression for node i
and j is shown in equation (1) [17], [18].

dij =

√(
Xi − Xj

)2
+

(
Yi − Yj

)2 (1)

In equation (1), dij represents the distance between i and j.
Xj and Yj represent the horizontal and vertical coordinates of
node j in the two-dimensional plane. The calculation expres-
sion for the coverage probability of the sensor node Si is
shown in equation (2).

Pcov
[
Si,

(
Xg,Yg

)]
=

{
1 d

[
Si,

(
Xg,Yg

)]
≤ R

0 d
[
Si,

(
Xg,Yg

)]
> R

(2)

In equation (2), Pcov represents the coverage probability.[
Si,

(
Xg,Yg

)]
represents the sensor node Si in the coordi-

nate
(
Xg,Yg

)
of the grid point g. R represents the radius of

the entire detection area. d represents the distance between
nodes. The expression for calculating the ratio Rarea of the
area perceived by the sensor node to the area to be measured
is shown in equation (3).

Rarea =

L∑
X=1

H∑
Y=1

Pcov [Si, (X ,Y )]

L × H
(3)

In equation (3), Rarea represents the ratio, (X ,Y ) represents
the overall coordinates of the grid. The calculation expression
for communication energy consumption ETx between two
nodes is shown in equation (4).

ETx (k, d) =

{
kEelec + kεfsd2, d < d0
kEelec + kεmpd4, d ≥ d0

}
(4)

In equation (4), k and d respectively represent the size and
distance of data transmission between two nodes. Eelec rep-
resents the transmission energy of the loss. d0 represents the
distance boundary point. If d < d0, the free space model is
used for ETx calculation. if not, the multi-path decay model
is used for ETx calculation. εfs and εmp represent the power
parameters of the two models.

After obtaining the perceptionmodel and energy consump-
tion model, the research will use the cuckoo bird search nest
idea in CSA to simulate the scenario where the node searches
for the optimal perception environment in the lowest energy
consumption state [19]. When optimizing, the first step is
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objective function calculation. The gradient descent method
accelerates CSA optimization speed, and its optimization
expression is shown in equation (5).

θ ′
i = θi − η

∂

∂θi
J (θ) (5)

In equation (5), J (θ) represents the loss function of CSA.
η indicates the learning rate. θ ′

i indicates the direction of
gradient descent. θi indicates the opposite direction of gra-
dient descent. ∂ represents a partial differential symbol. The
momentum gradient descent method is used to optimize the
flight step size in CSA in equation (6).{

1l = β1lt−1 + (1 − β) lt
l = l0 − η′1l

(6)

In equation (6), l and 1l respectively represent the flight step
size and step size variation. β is a weight parameter. lt−1 and
lt represent the step size of t − 1 and t time, respectively.
l0 represents the initial value step size, with a value of 1.
η′ represents the learning rate of step size updates. The root
mean square calculation method is further used to optimize
the learning rate in the horizontal and vertical directions in
equation (7). 

Sdxy =
1
n

n∑
1

|(x − xbest)|

V = V0 − ω
1√

Sdxy + ε

(7)

In equation (7), Sdxy represents the average distance from
each nest to the optimal location. x and xbest represent
the position and optimal nest position of each bird’s nest,
respectively. V and V0 respectively represent the updated
optimization speed and initial speed. n counts bird nests. ω

denotes the root mean square calculation method learning
rate. ε represents a variable. After optimizing various learning
rates through the above methods, the study finally combines
the Cauchy mutation algorithm to optimize the local optimal
solution of CSA. By incorporating the optimized CSA into
the sensor coverage problem, the sensor node distribution
under Cauchy mutation is obtained as shown in equation (8).

S =
τ

π
(
x2 + τ 2

) , −∞ < x < +∞ (8)

In equation (8), τ is the scale parameter. Since the law
of Cauchy mutation first monotonically increases and then
monotonically decreases, applying the Cauchy mutation
rule to CSA algorithms can effectively reduce the local
search time of CSA, thus enabling it to better spread
globally and detect the coverage of all wireless network
sensor nodes better. The Cauchy distribution calculation
expression is obtained through equation (8) as shown in
equation (9).

x ′
= x + γCauchy (0, 1) (9)

In equation (9), x ′ represents the nest position obtained
by optimizing CSA using Cauchy mutation rules. γ rep-
resents the influencing factor. Cauchy (0, 1) represent the
Cauchy random distribution when τ = 1. γ is calculated in
equation (10).

γ =
θ

[
f (x) − f (x)worst

]
T

(10)

In equation (10), θ represents the Cauchy variation intensity
coefficient. f (x) represents the probability that the current
bird’s nest is covered. f (x)worst is the lowest value among all
bird nest coverage rates. T is the max iteration.
The optimized cuckoo algorithm after the Cauchy varia-

tion algorithm is denoted as the Cauchy Distribution-Cuckoo
Search Algorithm (CD-CSA). In this paper, we choose to use
CD-CSA to optimize the coverage problem ofWSNs because
the Cauchy variation can effectively improve the explo-
ration ability of the algorithm and reduce the risk of falling
into local optimal solutions. This improvement enables the
CD-CSA algorithm to explore the entire solution space
more effectively when dealing with the coverage problem
of sensor nodes, thus achieving better coverage and higher
computational efficiency. Its operation flowchart is shown in
Figure 5.

In Figure 5, when running the CD-CSA algorithm, all
cuckoo populations and algorithm parameters need to be ini-
tialized first. Next, countless nest locations will be randomly
generated, and the coverage rate of each nest and the nest
location with the highest coverage value will be recorded.
Then, the step size will be calculated based on equation (6)
above, and the current position of the bird’s nest will be
determined using the calculated step size value. The Cauchy
distribution will be introduced to update the current position
of bird nests, and a comparison will be made to determine if
their updated coverage is higher than that of the previous gen-
eration of bird nests. If the current coverage is not higher than
the previous generation, it is determined whether iteration is
max. If max, the coverage value is output at this time and the
algorithm is ended.

C. WIRELESS SENSOR NETWORKS ROUTING
OPTIMIZATION BASED ON DYNAMIC CLUSTER RADIUS
OPTIMIZATION NON-UNIFORM CLUSTERING ALGORITHM
In addition to optimizing the coverage of WSNs, the nodes’
energy loss is considered during their work process. There-
fore, it is necessary to design high-performance routing
algorithms to improve nodes utilization efficiency and reduce
their energy loss and transmission time. Among the common
routing algorithms, the clustered routing algorithm is widely
used due to its powerful node collection and processing
capabilities. The non-uniform cluster routing algorithm is
an improved algorithm of cluster routing algorithm, which
generates clusters of varying sizes by setting the node radius
competition rules. Then, the node data is received through
these cluster head nodes which reduces energy loss. Although
the non-uniform cluster routing algorithm can effectively
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FIGURE 5. Flow chart of CD-CSA operation.

reduce the energy loss, this algorithm is prone to problems
such as uneven distribution of cluster heads and node failure
because it does not fully consider the positional relation-
ship of each node in space [20]. Based on this background,
this study improves the shortcomings of the non-uniform
cluster routing algorithm by optimizing the dynamic range
of the network area and cluster radius respectively, and
finally proposes a Dynamic Cluster Radius Uneven Clus-
tering (DCRUC) algorithm based on dynamic cluster radius
optimization, which aims to better optimize the nodes’ rout-
ing strategies to improve the utilization of wireless network
systems. DCRUC can better cope with the challenges of
uneven network density and node energy constraints by
dynamically adjusting the competitive radius of cluster head
nodes. This approach effectively reduces energy consumption
and improves the efficiency of data transmission and net-
work stability, especially in environments with uneven node
distribution.

Firstly, the WSNs distribution space is optimized. The
WSNs area is divided into two types of transmission areas:
direct and indirect, and sequentially number each area to
enable cluster head nodes to prioritize selection based on
node positions and node energy in different areas, thus
achieving the goal of distributing cluster head nodes evenly.
The optimized WSNs distribution diagram is shown in
Figure 6.
In Figure 6, the spatial distribution of the WSNs is divided

into four regions. The base station divides each area by

transmitting messages to nodes within the sensing area.
Region 1 is designated as a direct transmission region, while
Region 2, Region 3, and Region 4 are designated as indi-
rect transmission regions. Dividing the space of WSNs into
regions can enable cluster head nodes to better select nearby
nodes for energy and data collection andmake the distribution
of cluster heads more uniform [21].

From the WSNs energy consumption calculation expres-
sion, it is found that receiving and sending data are the
main energy consumptions of cluster head nodes. To reduce
them, it is necessary to appropriately reduce the cluster radius
of cluster head nodes. Therefore, further research will pro-
pose an optimization model for cluster radius. Assuming
that each cluster head node is a regular circular shape with
a radius of R1 and a density of ρ, the expression for cal-
culating nodes within the cluster is obtained as shown in
equation (11).

n1 = πR21ρ (11)

In equation (11), n1 represents the number of nodes within the
cluster. The total energy consumption calculation expression
is shown in equation (12).

Etotal =

(
πR21ρ · E1 + E2

)
· E ′

elec + E3 ·

(
E ′
elec + εfsd2

)
(12)

In equation (12), Etotal represents the total energy con-
sumption. E1 and E2 represent a single node receiving data
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consumption and consumption from a cluster head node. E3
and E ′

elec represent the current cluster head node sending data
consumption and the energy consumption during communi-
cation between the sender and receiver. From equation (12),
it can be found that the nodes’ radius and the transmission
distance between nodes will affect the nodes’ consumption.
Therefore, by optimizing these two parameters, energy loss
can be reduced by reducing the cluster radius. The competi-
tion radius is calculated in equation (13).

r =

(
1 − c

dmax − dp
dmax − dmin

)
∗ R0 (13)

In equation (13), c represents the influencing factor. R0 is
the maximum node communication radius. dmax and dmin
represent the maximum and minimum distance from a node
to a base station, and dp represents the distance from node
p to a base station. Due to the fixed competition radius of
cluster head nodes in equation (13), overloaded computing
tasks can easily lead to premature failure with an unchanged
competition radius when the algorithm runs to a later stage.
To avoid this situation, the expression for calculating the
competition radius of cluster head nodes in equation (14) is
proposed for optimization [22].

r ′
=

[
λ1 ∗

(
1 − c

dmax − dp
dmax − dmin

)
+ λ2

Epres
Einit

]
∗ R0 (14)

In equation (14), two influence factors, λ1 and λ2, are intro-
duced, with values ranging from [0,1]. r ′ represents the
optimized cluster head node competition radius value. Einit
andEpres represent the initial energy values of all nodes and the
p current remaining energy values, respectively [23]. Com-
bining the equations for calculating the competition radius
with the area division rules of WSNs, the expression for
calculating the competition radius in indirect transmission
areas is shown in equation (15).

r ′′
=

[
1 − c

dmax − dp
dmax − dmin

]
∗ R0

+

[
β1 ∗ Sgn

(
Epres − Enave

)
+ β2

np
m

]
∗ 1R (15)

In equation (15), β1 and β2 are the two optimized influ-
encing factors, whose value range is still between [0, 1].
r ′′ represents the optimized cluster head node competition
radius value in the indirect transmission area. np indicates
the region where the node p is located. m is the number
of regions. Enave represents the average remaining energy
in the region n. 1R represents the adjustment value of the
competition radius [24]. By combining the region division
rule with the cluster head node competition radius opti-
mization rule through equations (11) to (15), a non-uniform
clustering algorithm based on dynamic cluster radius opti-
mization is obtained. The flowchart of the DCRUC algorithm
in the WSNs routing optimization problem is shown in
Figure 7.
In Figure 7, the base station broadcasts a message to the

nodes in the sensing area in advance to inquire about their

FIGURE 6. Schematic diagram of WSNs distribution.

information. Then, the WSNs need to be divided into several
regions and the competition radius needs to be calculated.
Next, based on the above expression, the energy consumption
and competition radius optimization value are calculated,
and the algorithm is ended through a series of judgment
rules. After integrating all the feedback data received, the
base station can automatically modify the nodes’ radius
based on the energy consumption expression until the min-
imum node competition radius is obtained in the allowed
state.

IV. SIMULATION EXPERIMENT SETTINGS AND RESULT
ANALYSIS
To better demonstrate CD-CSA and DCRUC performance,
the study first established coverage simulation environments
and routing simulation environments for algorithm perfor-
mance testing. In addition, the study applied two algorithms
to the WSNs system, and optimized network coverage and
routing strategies in the system in practical applications, fur-
ther proving that the two algorithms also perform better in
practical applications.

A. COVERAGE OPTIMIZATION ALGORITHMS FOR WSNS
PERFORMANCE ANALYSIS
To test the proposed CD-CSA performance in wireless sensor
node coverage, the algorithm was studied to calculate the
coverage of sensor nodes, and CD-CSA was compared with
traditional CSA and Principal Component Analysis Opti-
mized Cuckoo Search Algorithm (PCA-CSA). The parameter
settings for covering the simulation experimental environ-
ment are shown in TABLE 2.

Table 2 provides the specific parameter indicators and
values for this coverage simulation experiment. The selected
parameter values in Table 2 were intended to reflect a typ-
ical small-scale WSNs environment. An experimental area
of 100m2 and 40 nodes was chosen to simulate a densely
deployed sensor network, and a sensing radius of 10m and
a communication radius of 20m were effective in demon-
strating the interactions between nodes.500 iterations and a
learning rate of 0.5 were set to ensure that the algorithm
converged to a stable solution in a limited amount of time.
These parameter values brought the simulation closer to real-
world applications, thus increasing the realism and relevance
of the study. Under the parameter conditions in Table 2,
sensor nodes were randomly arranged and the optimization
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FIGURE 7. Flowchart of DCRUC algorithm operation.

results of different algorithms for sensor node area coverage
were obtained, as shown in Figure 8.
Figure 8 shows the random coverage of nodes and the

coverage optimization of nodes under three coverage algo-
rithms. In Figure 8 (a), there are 36 nodes initially, which
are randomly distributed in the spatial coordinate system.
From Figures 8 (b), (c), and (d), the CD-CSA algorithm
can better optimize the coverage positions of 36 nodes in
the spatial coordinate system, making the nodes arranged
more orderly. Compared to the CD-CSA algorithm, the
CSA and PCA-CSA algorithms can optimize the posi-
tion of some nodes in the spatial coordinate system, and
the optimization effect is not as good as the CD-CSA
algorithm.

Figure 9 shows the coverage changes under three coverage
algorithms: CD-CSA, CSA, and PCA-CSA. Figure 9 (a)
shows the coverage of nodes in three different algorithms
as the number of iterations changes in a single experiment.
Among them, the coverage of CD-CSA ranges from 0.92 to
0.97, the coverage of PCA-CSA ranges from 0.83 to 0.88, and
the coverage of CSA ranges from 0.76 to 0.85. Figure 9 (b)
shows the average coverage of nodes in three different algo-
rithms as the number of iterations varies under multiple
experiments. Among them, the average coverage of CD-CSA

TABLE 2. Parameters of coverage simulation experiment.

is around 0.96, CSA is around 0.83, and PCA-CSA is around
0.89.

B. ROUTING OPTIMIZATION ALGORITHMS FOR WSNS
PERFORMANCE ANALYSIS
To test the proposed DCRUC performance in wireless
sensor routing optimization, the study compared DCRUC
with the traditional Energy efficient Unequal Clustering
Algorithm (EEUC) and immune-based Uneven Clustering
(IBUC) proposed by others in a routing simulation envi-
ronment. Table 3 shows the routing simulation experimental
environment.
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FIGURE 8. Random coverage of nodes with optimization.

Table 3 provides the specific parameters of the routing
simulation experimental environment. The parameter settings
in Table 3 are designed to simulate large-scale WSNs. 200m2

of experimental area and 400 nodes reflect awidermonitoring
area and a larger number of nodes, while the packet size

FIGURE 9. Coverage iterations for different coverage algorithms.

of 3000bit and the control message size of 80bit reflect the
need for transmission of data and control information in a
real network. Node initial energy of 0.5J was then used to
model the energy limit of the nodes. These parameter settings
help in evaluating the performance of the routing algorithm in
real applications and ensure the realism and relevance of the
simulation results. Under the parameter conditions in Table 3,
the iterative performance of three routing algorithms, EEUC,
DCRUC, and IBUC, was first compared. Then, the nodes’
energy changes and the number of failed nodes of the three
routing algorithms were compared in the same simulation
environment. The iteration of the three routing algorithms is
shown in Figure 10.

In Figure 10, the optimal fitness values of three routing
algorithms, EEUC, DCRUC, and IBUC, are shown as a
function of iteration. Among the three routing algorithms,
EEUC needs to iterate 141 times, IBUC needs to iterate
109 times, and DCRUC can iterate as quickly as possi-
ble, only requiring 68 iterations for optimal fitness value.
In summary, DCRUC has better stability during the iteration
process.

In Figure 11, the energy changes and the number of failed
nodes under the three routing algorithms of EEUC, DCRUC,
and IBUC are shown. The ‘‘Energy consumption of cluster
head nodes’’ in Figure 11(a) is in Joules (J) and it measures
the energy consumption of cluster head nodes over a certain
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TABLE 3. Routing simulation experiment parameters.

FIGURE 10. Iterations of different routing algorithms.

period. A low value of energy consumption of cluster head
nodes indicated that the algorithm was more efficient in
conserving energy, which was essential for extending the
life-cycle of the WSNs. For example, in Figure 11(a), the
minimum magnitude of cluster head node energy consump-
tion under the DCRUC algorithm implies that the algorithm
outperforms the EEUC and IBUC algorithms in terms of
energy utilization efficiency. The ‘‘Number of dead nodes’’
in Figure 11(b) shows the number of nodes that fail in
each iteration in terms of rounds. Early failure of nodes
reduced the overall performance and coverage of the network,
so this metric reflected the algorithm’s ability to maintain
network stability and functionality. For example, the DCRUC
algorithm only started to increase the number of failed nodes
at iteration 900, which indicated that it was more effective
in maintaining the stability and continuous operation time
of the network compared to other algorithms. Specifically,
in Figure 11(a), the cluster head node energies under all three
routing algorithms show an increasing and then decreasing
trend as the number of iterations increases, but the cluster
head node energies under the DCRUC optimization show the
smallest change. When the number of iterations was 400,
the cluster head node energy value under DCRUC stabilized
around 0.63. In Figure 11(b), the number of failed nodes
under all three routing algorithms increases as the number of
iterations increases. Compared to EEUC and IBUC, DCRUC
needed to iterate up to 900 generations before it started
increasing the number of failed nodes.

In Figure 12, the energy calculation accuracy values of
cluster head nodes under three routing algorithms are shown.
As nodes increase, the accuracy values of the energy cal-
culation for all three algorithms have changed. Compared
to EEUC and IBUC, DCRUC has a calculation accuracy

FIGURE 11. Iterations of different routing algorithms.

FIGURE 12. Accuracy of energy calculation for different routing
algorithms.

of over 0.95 for the nodes’ energy consumption value,
thus being able to calculate the energy loss of nodes more
accurately.

To demonstrate the good performance of the coverage
algorithm and routing algorithm proposed in this study in
practical applications, three types of WSNs were randomly
selected for testing. The application effects of the algorithm
proposed in the article and the optimization algorithm pro-
posed by others in practical network problems are shown in
Table 4.
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TABLE 4. Effect of different algorithms in practice.

In Table 4, the actual application effects of different algo-
rithms in three network problems under two scenarios of
node coverage and routing optimization are presented. The
accuracy of the energy calculation was measured by com-
paring the difference between the energy consumption values
calculated by the algorithm and the actual energy consump-
tion values. This is represented by a value between 0 and 1.
The closer the value is to 1 the higher the accuracy of the
calculation. For example, the DCRUC algorithm achieved
an accuracy of more than 0.95 in calculating the energy
consumption value of the cluster head node, which indicated
that its predicted value was very close to the actual energy
consumption, thus verifying the efficiency of the algorithm.
The high accuracy of the energy calculation had a significant
impact on the effectiveness of the algorithm as it ensured
a more accurate prediction of the energy consumption,
which helped to optimize the energy allocation and prolong
the operation time of the network. Therefore, this metric
directly affected the overall performance and stability of
the WSNs.

In the node coverage problem, the running time of
CD-CSA was 1.25 minutes, 0.89 minutes, and 1.57 minutes
in Type 1, 2, and 3, respectively, with node coverage rates of
98.65, 96.78, and 99.52. The running time of PCA-CSA was
3.10 minutes, 1.85 minutes, and 3.26 minutes, respectively,
with node coverage rates of 93.21, 92.62, and 95.14, respec-
tively. The runtime of CSA was 5.12 minutes, 2.02 minutes,
and 5.54 minutes, respectively, with node coverage rates of
87.32, 85.65, and 86.23.

In the routing optimization problem, the running time of
DCRUC was 1.65 minutes, 1.95 minutes, and 1.47 minutes,
respectively, with energy loss rates of 1.25, 0.97, and 0.84,
respectively. The operating time of IBUC was 3.65 minutes,
3.81minutes, and 4.02minutes, respectively, with energy loss
rates of 5.62, 7.26, and 3.21. The operating time of EEUCwas
5.48 minutes, 4.99 minutes, and 8.65 minutes, respectively,
with energy loss rates of 9.06 minutes, 13.63 minutes, and
6.37 minutes.

V. DISCUSSION
To prove that CD-CSA andDCRUC have better performance,
the study introduces the metrics such as coverage, iteration

case of fitness value, and the cluster head node energy
calculation accuracy value, respectively, which are tested,
and the corresponding data results are obtained. Figure 8
shows the random coverage of nodes and the coverage opti-
mization under three coverage algorithms CD-CSA, CSA,
and PCA-CSA. In the initial layout, 36 nodes are randomly
distributed in the spatial coordinate system. The CD-CSA
algorithm performs best in optimizing the node locations,
resulting in a more orderly arrangement of nodes, which
improves the coverage efficiency. In comparison, the CSA
and PCA-CSA can only optimize some of the node locations,
and their optimization is not as effective as the CD-CSA.
Figure 9 shows the coverage changes under CD-CSA, CSA,
and PCA-CSA. The results of a single experiment showed
that the coverage ratio of CD-CSA ranged from 0.92 to
0.97, which was significantly better than that of PCA-CSA,
which ranged from 0.83 to 0.88, and that of CSA, which
ranged from 0.76 to 0.85. The average coverage ratios under
multiple experiments showed a similar trend. These data
indicated that the CD-CSA had a significant advantage in
improving node coverage, which was crucial to ensuring
effective monitoring of WSNs. In Figure 10, compared to
EEUC and IBUC, DCRUC iterated to a steady state with only
68 iterations, which indicated that the algorithm had better
stability. Figure 11(a) and Figure 11(b) show the change in
the energy of cluster head nodes and the change in the number
of failed nodes under different routing algorithms, respec-
tively. The DCRUC algorithm performed the best in terms
of cluster head node energy consumption and the number
of failed nodes, which indicated that it had the advantage of
maintaining network stability and conserving energy. In par-
ticular, the DCRUC algorithm showed a lower energy loss
rate and later node failure trend with an increasing number
of iterations, which reflected its effectiveness in network
lifetime extension. In Figure 12, the cluster head node energy
calculation accuracy values are given for the three routing
algorithms. With the increase in the number of cluster head
nodes, the accuracy of DCRUC for calculating the cluster
head node energy consumption value was above 0.95, which
indicated that the algorithm cancalculate the energy loss situ-
ation more accurately. Finally, to prove that both the coverage
algorithm and the routing algorithm proposed in this study
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have better performance in practical applications, the study
randomly selected three types of WSNs types for testing.
As further shown by the results in Table 4, the CD-CSA
algorithm performed well in terms of node coverage, espe-
cially in network type 3, where the coverage was as high as
99.52%, which was significantly higher than the other algo-
rithms. This indicatedthat the CD-CSA algorithm washighly
applicable and efficient in dense and high-demand network
environments. In the node coverage problem, the CD-CSA
algorithm significantly improved the coverage of the network
by optimizing the layout of sensor nodes, which wascrucial
for practical applications such as environmental monitoring
or military reconnaissance scenarios. Second, the DCRUC
algorithm showed higher efficiency in routing optimization.
In the experiments, the algorithm outperformed other com-
pared algorithms in terms of system runtime and node energy
consumption. Especially in terms of energy efficiency, the
DCRUC algorithm effectively reduced the energy loss and
prolonged the lifetime of the network by optimizing the
selection and adjustment of cluster head nodes.

In summary, this study verifies the effectiveness of
CD-CSA and DCRUC algorithms in coverage and rout-
ing optimization for WSNs through detailed experiments
and analysis. These findings not only enhance the theo-
retical understanding but also provide valuable references
for the design and optimization of WSNs in practical
applications.

VI. CONCLUSION
To improve the WSNs’ node utilization and reduce sys-
tem energy loss, this study combined the cuckoo algorithm
and non-uniform clustering algorithm to design coverage
optimization and routing optimization schemes for WSNs,
respectively. The research results indicated that in algorithm
performance testing, the average coverage of CD-CSA was
around 0.96, much higher than the 0.83 of CSA and the
0.89 of PCA-CSA. DCRUC only needed to iterate 68 times
to achieve stability. In addition, when iteration was 400,
the cluster head node energy value under DCRUC remained
stable at around 0.63. The calculation accuracy of DCRUC
for the nodes’ energy consumption value was also above
0.95, far higher than EEUC and IBUC. In practical appli-
cations, taking the node coverage problem as an example,
compared to the PCA-CSA, CD-CSA had shorter system
runtime and higher node coverage in various network types.
Especially in Network Type 3, the node coverage of the
CD-CSAwas as high as 99.52%, far exceeding 95.14% of the
PCA-CSA. In routing optimization problems, the DCRUC
algorithm outperformed the IBUC algorithm in system run-
time and energy loss rate. The minimum running time of
the DCRUC algorithm in routing optimization problems was
1.47 minutes, and the minimum energy loss rate was 0.84%.
In summary, the node coverage algorithm and routing opti-
mization algorithm designed by this research institute have
good performance and application performance. However,
due to the complex structure of WSNs, there are still certain

limitations in studying only their coverage and routing issues.
Therefore, the scope of research can be further expanded in
the future.
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