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ABSTRACT Hyperspectral images consist of a multitude of spectral bands for each pixel. Spectral bands
provide information about wavelengths that may cover a larger spectrum of what the human eye may
see. In the hyperspectral domain, the classification of hyperspectral images is usually addressed by taking
into account only the spectral information. However, in the wood domain, spatial information is also
relevant. To bridge this gap, this paper proposes a CNN-based end-to-end framework for the classification
of hyperspectral images in the wood domain. The proposed framework consists of a spatial and spectral
classifier that are integrated to make the final prediction. Each classifier is built by adapting a general image
classifier, which is suitable for the classification of three-band images, to handle hyperspectral images. The
framework is trained and validated on a real dataset, provided by a company working in the wood domain
to detect wood fungi. The results obtained have shown that the proposed framework is a lightweight and
effective approach for the recognition of wood fungi categories. The framework outperforms a benchmark
classifier by 17% and can generate a classification map of hyperspectral images of wood boards of any size
with an accuracy of 96%.

INDEX TERMS Application of hyperspectral images, detection of wood fungi.

I. INTRODUCTION
Hyperspectral imaging is an evolving field used in a variety of
applications, such as astronomy, molecular biology, physics,
medicine, surveillance and mineralogy [1]. Unlike RGB
images, which are associated with three wavelength bands,
hyperspectral images encompass a more extensive range of
bands, and they can capture a broader spectrum than what the
human eye can perceive.

In the field of hyperspectral image (HSI) analysis, pixel-
level classification has been applied for a variety of applica-
tions, including image segmentation and object recognition.
For HSI classification, two primary elements must be
considered: two dimensions representing the image’s spatial

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Callico .

characteristic, and the third representing its spectral features.
In contrast to common RGB images, spectral bands pro-
vide valuable spectral information. However, the increased
complexity associated with these bands requires advanced
classification solutions that differ from conventional Deep
Learning techniques.

In the literature, approaches for HSI classification fall
under two categories: i) studies that follow a two-steps
approach in which, first, features are manually extracted,
and, then, a classification model is developed based on
these extracted features; ii) studies that adopt Deep Learning
techniques to combine feature extraction and classification in
a single framework. In the first category, various extensions of
kernel-based methods like SVM have been investigated [2],
[3], [4] on the basis of feature extraction algorithms like
PCA [5]. While these methods can yield competitive results,
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their performance is significantly influenced by the expertise
of expert users in feature extraction. In the second category,
approaches based on Deep Belief Networks [6], Stacked
Autoencoders [7] and CNNs [8], [9], [10], [11] can be
used to extract hierarchical features automatically. Most of
these approaches mainly focus on exploiting the spectral
information, since it is typically richer and more informa-
tive than the spatial information in satellite or air-borne
images.

In the wood domain, on the other hand, spatial information
is also available. Thus, making use of both spatial and spectral
information is worth investigating. To take full advantage
of the characteristics of HSIs, we propose a CNN-based
end-to-end framework for hyperspectral images classification
(Fig. 1) that combines spatial and spectral classification. The
framework is trained and validated on a real dataset shared by
a company working in the wood domain. The classification
task consists of recognizing four different categories of fungi
by which some wood boards can be affected. The results
obtained prove that the end-to-end framework offers various
advantages: (i) it is lightweight in the sense that training
the framework does not require a large dataset, or special
GPU and memory requirements; (ii) it combines a spatial
and a spectral classifier, which can be trained following
independent strategies, improving the performance of both.
Furthermore, once the spatial and spectral branches have been
trained, the framework does not need any further training;
(iii) it obtains multiclass classification accuracy close to
96%; (iv) it outperforms a benchmark classifier by 17% of
accuracy.

II. RELATED WORK
There is an extensive use of deep-learning techniques in
hyperspectral image classification in the remote image
sensing domain [9], [12], [13], [14], [15], [16], [17], [18].
Nonetheless, all these approaches work under the assumption
that they have only one hyperspectral image. Thus, training
and testing are performed on this single image only. Our
approach is intrinsically different, since the objective of our
work is to train a model on a set of images of wood boards
and then use the trained model to classify images which
might be different from the images which were used during
the training process. Thus, the testing data in our approach
does not originate from the same hyperspectral image as
might happen in the remote image sensing domain mentioned
above.

The rest of this section is going to consider works related to
the proposed work from two perspectives: 1) works related to
wood classification, and 2) works related to classification of
hyperspectral images using spatial and spectral information.

The work described in [19] uses a neural networks to
classify the input RGB image of wood into two categories,
namely sapwood and non-sapwood. In this work, the input
image is divided into blocks. Then, three histograms of
the red, green, and blue channels of each block are
evaluated. The input data to the network is related to the

generated histograms. Different approaches were investi-
gated to generate the input data. The approach that provided
the highest sapwood detection accuracy (which yielded an
accuracy of 77.8%) is the one that uses information related
to the histograms of the block to be classified and the
four non-adjacent neighboring blocks as input data. The
outcome of this work might be considered to indicate
the importance of considering the spatial information of
neighboring blocks while classifying the current block.
A direct comparison of our proposed work with this work
might not be regarded as appropriate since the proposed
work uses hyperspectral images, whereas this work uses RGB
images.

The work presented in [20] is about the recognition of
wood species by using hyperspectral images of the wood.
In this work, Principle Component Analysis (PCA) was used
to reduce the dimensionality of the data. Then, features
related to these reduced dimensionality data were generated.
These generated features were used as input to train a
neural network. This recognition task might be regarded
as a relatively easier task with respect to the task of
recognizing different parts that constitute a board of wood
(if the assumption that differences within the species are
smaller than the differences between different species holds).
In this work, the reported recognition rate of five species
is 96.5%.
Another work which aims at recognizing the species

of the wood is described in [21]. This work investigates
the effectiveness of three variants of neural networks,
namely Artificial Neural Network (ANN), Deep Neural
Network (DNN), and Convolutional Neural Network (CNN),
in classifying different species of softwood lumber using
Near-Infrared Spectroscopy (NIR). The performance of each
network variant was evaluated based on the precision of
the classification task. The results obtained revealed that
the CNN-based model outperformed the other two models
and attained a validation accuracy of 99.3%, 99.9%, and
100% for raw spectra, standard normal variate (SNV) spectra,
and Savitzky-Golay second derivative spectra, respectively.
Additionally, the CNN-based model was found to be stable
during the training process, indicating its robustness and
reliability. The study highlights the potential of CNNs as
a valuable tool for the accurate and reliable classification
of various types of materials in a variety of industrial
applications.

In a similar vein, a recent study [22] proposed a novel
approach based on ‘cognitive spectroscopy’ to classify
different hardwood species using hyperspectral imaging
(HSI) images obtained from a Near-Infrared HSI camera.
This framework involved feature extraction from the complex
spectroscopic data, specifically 120 hyperspectral samples
representing 38 different hardwood species, followed by the
principal components (PC1-PC6) image extraction and the
application of a Deep Neural Network (DNN) for classifi-
cation. The authors reported an overall accuracy of 90.5%
that exceeded the accuracy of 56% achieved in conventional
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visible images. These results demonstrate the effectiveness
of cognitive spectroscopy in accurately identifying different
species of hardwood, even in complex and challenging
scenarios.

In another study [20], the authors used hyperspectral
data of five typical wood species located at Northeast
Forestry University, Northeast of China. This wood species
sample was obtained in the range of 400-2500 nm. They
used PCA to reduce the dimension of the original hyper-
spectral image data, and the principal component image
sequence was obtained. The parameters of the wood texture
feature are extracted from the image sequence of the
principal component. Each three species has 100 samples,
including 500 experimental samples. The recognition rate
of the Probabilistic Neural Network (PNN) classifier is
96.5%. PNN is a kind of radial basis function network.
Their experiment shows that their proposed method is
suitable for solving the problem of recognizing wood
species.

The work presented in [6] uses spectral information and
spatial information to classify pixels of the hyperspectral
image of remote sensing. In this work, it seems that the
training and testing data are related to the same image,
where, in particular, two images were used, namely the
Indian Pines image and the Pavia image. Similarly, the work
presented in [23] seems to use spectral information and
spatial information to classify the pixels of a hyperspectral
image. In this work, it seems that training data and testing
data are related to the same image.

The work presented in [8] compares three classification
approaches for hyperspectral images. These three approaches
use convolutional neural networks. In this work, 50% of
the pixels in an image were used to train the model and
the remaining pixels were used to test the model. The
Salinas Valley and Indian Pines images were used to assess
these three approaches. The reported results on both images
showed that using information related to neighboring pixels
with respect to the pixel considered for classification provides
the highest classification accuracy. It should be noted that
in at least two reported cases, the area from which the
neighboring pixels were taken is the 21 × 21 pixels around
the pixel being considered. Considering that 50% of pixels
are used to make the training data and considering the size
of the neighboring areas, this seems to suggest that there is a
relatively high probability of having the testing data among
the neighboring pixels which were considered for the training
process.

The work in [24] proposes a framework that combines
Locality Preserving Projections (LPP), Deep Convolutional
Neural Network (DCNN), and logistic regression for effective
hyperspectral image classification. LPP is used to process
hyperspectral image data and reduce its dimensionality.
Subsequently, a DCNN is constructed using autoencoders
to extract deep features from the data. These deep fea-
tures are then fed into logistic regression for the final
classification. The work in [25] proposes a spatial-spectral

FIGURE 1. Conceptual framework for HSI classification.

classification framework that mitigates the loss of valuable
bands (for example, due to noise from water absorption
and corrections) through interpolation. The framework uses
PCA and LPP to extract hybrid features that contain local
and global spatial information, making classification more
efficient.

Readers interested in approaches to hyperspectral image
classification in the remote image-sensing domain may refer
to the surveys in [26] and [27].

III. PROBLEM STATEMENT
The ability to recognize wood defects automatically and at
an early stage can have significant economic implications for
the wood industry and is worth investigating. Grayscale or
RGB images are inadequate for the satisfactory detection of
fungi in wood, making the acquisition of HSIs over a chosen
electromagnetic range necessary.

There exist different types of fungi that affect wood [28].
Some types of fungi are easy to spot and are known as
fruiting bodies (e.g., deadwood conks, mushrooms). Others
are more harmful. Harmful fungi are divided into two
macro-categories, depending on the damage they cause:
wood-destroying fungi and wood-staining fungi. The former
changes the chemical properties of the wood and weakens
it, while the latter causes discoloration of the wood. In this
paper, three categories of fungi will be taken into account and
distinguished (classified) from clear wood: soft rot, belonging
to the category of wood-destroying fungi, brown stain and
blue stain, belonging to the category of wood-staining
fungi.

In the context of wood detection, several studies have
applied two-stage techniques to classify wood fungi from
HSIs: a feature extraction stage, followed by a classification
stage based on the features extracted from the previous
step (e.g., [20], [29], [30]). Nonetheless, to the best of
our knowledge, a unified framework, combining spatial
and spectral information, has not been proposed yet, nor
has a CNN architecture been utilized for the classifica-
tion of HSIs of wood. Finally, there has never been a
method for recognizing multiple species of fungi from
HSIs.

IV. END-TO-END FRAMEWORK
Fig. 1 shows a conceptual framework for the classification of
HSI. The framework takes as input a HSI with b bands and
returns a classification map. The framework consists of the
following components.
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Classification: The spatial and spectral information of a
HSI are classified by a spatial and spectral classifier. These
classifiers can be developed through structural adaptation and
fine-tuning of existing pre-trained CNNs architectures (e.g.,
Cifar10Net, VGG16, etc.). Classifiers can operate at different
resolution levels. For example, spatial classification can be
based on blocks (e.g., blocks of size h × w × b), whereas
spectral classification can be based on pixels.
Resampling: Since the spatial and spectral classifiers can

operate at different resolution levels, a resampling step is
needed to align their resolutions. For instance, in the case
where the spatial classifier is block-based and the spectral
classifier is pixel-based, this step consists of two options:
either the spatial classification is upsampled from blocks to
pixels, or the spectral classification is downsampled from
pixels to blocks.
Integration The two classification branches are integrated

to calculate the final prediction for the classification task.
This step can be implemented by some forms of information
fusion (weighted average, max operator, etc.) or by layers in
the neural network architecture.

In the context of this paper, the conceptual framework
described above is instantiated as follows. We focus on
the block-based classification, the resolution alignment is
based on the downsampling of the spectral branch, and
the integration is performed at network level. To merge
the spatial and spectral branches, the weights and biases
of the last convolutional layer from each branch are
combined into a new convolutional layer. An additional
convolutional layer is introduced to calculate the average
scores obtained from the two branches (for more information
on the integration of the two branches, see Section IV-F).
The input hyperspectral images contain 337 bands and the
pre-trained CNN classifier taken as a basis is Cifar10Net.1

Cifar10Net takes as input RGB images of size 32 × 32 ×

3 and performs multi-class classification (10 classes). Its
architecture consists of 3 convolution layers (5×5, symmetric
padding of 2, stride equal to 1), each followed by ReLU
and max-pooling units. The network ends with two Fully
Connected (FC) layers that generate 64 and 10 feature
maps, respectively, the last of which is fed into a softmax
unit.

A. DATA PREPARATION
The raw data consists of 88 HSIs of eucalyptus boards of
size 897 × 512 × 384 that comes from a VisNIR (visible
and near-infrared spectroscopy) hyperspectral camera with
nominal sensitivity in the range 400-1000nm. The data was
made available by a company working in the wood industry.

1Cifar10Net was chosen based on the input size required by the input
layer. The size of 32×32 was particularly suitable for extracting an adequate
number of cuboids with spatial information from the hyperspectral images.
Although it would have been feasible to extract cuboids of larger sizes for
clear wood data, it would not have been possible for the other categories
representing wood fungi, such as soft rot, brown stain, and blue stain, due to
the small portion of the wood affected by the fungi themselves.

TABLE 1. Average results of the best configuration of learning rates for
the spatial branch (10−4, 10−3, 10−3 for Phase 1, Phase 2 and Phase 3,
respectively).

TABLE 2. Confusion matrix of the spatial branch performing block-based
classification.

Domain experts labeled the spatial region in which one of the
four classes considered is present. An exploratory analysis
of the spectral bands revealed that, in all 88 hyperspectral
images, bands 1 to 47 consistently had a mean and standard
deviation of 0 since they fell outside the sensitivity range
of the VisNIR hyperspectral camera. Consequently, these
47 bands were excluded, and the spectral bands considered
for the hyperspectral images were limited to 337 bands in
the range [48, 384]. The training data consists of cuboids
with a spatial size of 32 × 32 pixels extracted from the
hyperspectral data. 80 and 20 samples were extracted for
each class to create the training and testing set, respectively.
Each cuboid contains pure information about the classes
considered.

B. EXPERIMENT SETUP
A grid search was carried out to identify optimal hyperpa-
rameters to train the spatial and spectral branches. The search
involved learning rates in the range [10−3, 10−4] and the
number of training epochs in the range [500, 1000, 1500].
Regarding the mini-batch size, considering that the two
branches are trained on data with different sizes (cuboids vs.
pixels), the explored values were [10, 25, 50] for the spatial
branch and [100, 200, 300] for the spectral branch.

All training experiments were repeated five times.
To ensure that training was not dependent on a specific
portion of the dataset, in each run, the training and testing
data (80-20) were selected from different portions of the
dataset, thereby implementing a 5-fold cross-validation
method.

The simulations carried out for the training strategies of
the spatial and spectral branches were performed on two
different machines: i) a laptop with CPU Intel Core i5 dual-
core at 1.6 GHz and memory of 8Gb at 1600MHz; ii) a
machine with CPU Intel i7-9700k 8core at 3.6GHz, installed
memory of 16Gb at 3600MHz and GPU RTX 2080Ti with
12GB memory. The computation times for the training of the
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spatial and spectral branches are reported in Tables 1 and 3,
respectively.

C. SPATIAL BRANCH
1) ARCHITECTURE
The architecture of the hyperspectral spatial classifier is
defined by manipulating the input unit and the outputs unit
of the pre-trained Cifar10Net classifier as follows. First, the
input unit is restructured so that it can process 337 bands
instead of three RGB channels. For this purpose, the filter
of the first convolution layer is modified from 5 × 5 × 3 to
5 × 5 × 337 to handle input images of size 32 × 32 × 337.
Then, since the number of classes for the given domain is
4 instead of 10 (the number of output categories of the Cifar10
dataset), the last fully connected layer of the general image
classifier, composed of 10 output units, is replaced with a
fully connected layer with 4 output units. This structural
adaptation shapes the spatial classifier that can handle the
HSIs of wood and classify them as one of the four wood
categories.

2) TRAINING
The training strategies described below share the following
training hyperparameters: the number of training epochs
is 1500, the mini-batch size is 50, stochastic gradient
descent with momentum (SGDM) equal to 0.9. The spatial
classifier is trained with all possible combinations of fixed
learning rates (namely, 10−3 and 10−4) for all three phases
and 5 independent simulations are repeated to validate the
results. The classifier is trained following a training strategy
consisting of three phases. In Phase 1, the output unit of
the HSI classifier is tuned. In Phase 2, only the input unit
is trained, while in Phase 3 both input and output units are
tuned. It is worth noting that both input and output layers in
this strategy are trained twice to fine-tune their parameters
and fully exploit the tuning process. Experiments were also
carried out by training the network with a subset of the above-
mentioned phases, e.g., by training the network in one phase
or in two phases. However, the results in terms of testing
accuracy show that training the classifier with all the three
phases yields the highest average accuracy (Table 1) and the
overall highest accuracy (Table 2). The CPU training times
achieved on a common laptop are not significantly high,
showing that the developed classifier can be trained without
the need of a large dataset, nor of special GPU or memory
requirements.

3) CLASSIFICATION
Finally, to produce the classification map of an HSI of
arbitrary size, the classifier needs to be transformed into
a Fully Convolutional Network (FCN), that is, a network
with 1 × 1 convolutions that accomplish the function of
FC layers and remove the input size constraint proper of
CNN architectures that end with one or more FC layers.
The spatial classifier produces a block-based prediction

TABLE 3. Average results of the best configuration of learning rates for
the spectral branch (10−3, 10−3, 10−4 for Phase 1, Phase 2 and Phase 3,
respectively).

TABLE 4. Confusion matrix of the spectral branch performing pixel-level
classification.

by classifying each spatial 32 × 32 region of the input
HSI.

D. SPECTRAL BRANCH
1) ARCHITECTURE
The spectral classifier is based on the Cifar10Net archi-
tecture, manipulated to process the spectral component of
the hyperspectral image rather than the spatial component.
To adapt Cifar10Net to focus on processing spectral infor-
mation, the kernel size of the convolution layers is changed
from 5× 5 to 5× 1, and the output of the last fully connected
layer is changed from 10 to 4. For the max-pooling layers,
the original 3 × 3 kernel is replaced by a 3 × 1 kernel.
Training data samples are first extracted in vector format (i.e.,
1×1×337) and then reshaped into 337×1×1. The reshaping
process allows the spectral classifier to process the spectral
components exclusively.

2) TRAINING
The spectral classifier is trained on selected training samples
by phases. To reduce the negative effects caused by noisy
data, training data is divided into different groups based on the
classification scores achieved by a simple classifier, such as
a neural network-based classifier, or classical methods based
on SVM or random forest. Based on this, three groups of data
whose associated probability score is 90− 100%, 80− 90%,
and 70− 80% were created. These groups were used to train
the classifier in 3 phases. In Phase 1, the network is trained
with data that is correctly predicted with probability greater
than 90%. In Phase 2, the last two fully connected layers are
set to be trainable. Then, the network is trained with data that
is correctly predicted with a probability between 80% and
90%. In Phase 3, only the last fully-connected layer is set
to be trainable and the network is fine-tuned with data that
has prediction probability between 70% and 80%. To find the
optimal performance, two fixed learning rates are used for
each stage, namely 10−3 and 10−4. The training options are
kept the same except for the learning rates: the number of
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training epochs is 100, mini-batch size is 128, and stochastic
gradient descent with momentum algorithm is used, where
momentum is 0.9. The optimal average test accuracy for each
phase and the computation time are shown in Table 3. The
performance of the spectral classifier is evaluated on the test
set of extracted pixel vectors: we report the confusion matrix
and the corresponding accuracy in Table 4. The CPU training
times achieved on a common laptop are not significantly high.

3) CLASSIFICATION
The spectral branch operates at pixel-level resolution. The
classifier receives as input a hyperspectral image of size
n×m×b, and produces a prediction for each pixel, producing
an output of size n × m × n_classes, with the number of
classes equal to 4 in our case. The spectral branch applies
3D convolutions and 3D pooling layers, i.e., it applies sliding
cuboidal convolution filters to the 3D input that moves
along the input horizontally, vertically, and along the depth
dimension. The use of 3D layers is necessary to process the
spectral information without considering the spatial one.

E. DOWNSAMPLING
The spatial and spectral branches operate at different resolu-
tion levels namely, block-based and pixel-based, respectively.
Before integrating these two branches, a resampling step is
needed to make their resolutions compatible. In this paper,
we focus on downsampling from pixels to blocks in the
spectral branch.2

FIGURE 2. Architecture and volume transformation of the end-to-end
framework, after the downsampling and integration steps.

TABLE 5. Confusion matrix of the downsampled spectral classifier
performing block-based classification.

The downsampling was implemented as follows. After the
fourth convolution layer (Fig. 2), a total of 32 features are
extracted for each of the 32 × 32 pixels of the HSI. This is
obtained by applying 64 3D convolution filters of size 1 ×

1 × 39 on the input dimension of size 32 × 32 × 41 × 64.
This is where the downsampling technique is applied, with

2Upsampling from blocks to pixels could be also achieved, for instance,
by adopting transposed 3D convolutions in the spatial branch.

TABLE 6. Confusion matrix of the end-to-end framework performing
block-based classification.

the aim of obtaining 64 features for the entire 32× 32 spatial
block. To this end, the fourth convolution layer is modified to
include 64 filters of size 32 × 32 × 39, which applied to the
input features of size 32 × 32 × 41 × 64 produces as output
64 features for the entire original block (Fig. 2, bottom). The
performance of the spectral classifier after the downsampling
step is evaluated on the test set. The confusion matrix and the
corresponding accuracy are reported in Table 5.

After downsampling, there are 64 extracted features after
the fourth convolution layers in both branches. However,
the volume transformations at each layer of the spatial
branch are 3-dimensional, while those of the spectral branch
are 4-dimensional. To compensate for this difference, the
spatial branch convolutional filters are converted to 3D
convolutions: each convolution layer composed by n filters
of size f × f × c is converted into a 3D convolution
layer composed by n filters of size f × f × 1 × c, with
the weights and biases reshaped accordingly. It was tested
that this conversion does not affect the performance of
the classifier, and it finally allows to align the dimensions
of the features extracted after the first four convolutional
layers (Fig. 2). This alignment supports the integration of
the two branches, as it will be described in the following
section.

F. INTEGRATION
The integration of the two branches into a single end-to-
end framework requires two final steps: input adjustment and
extracted features concatenation.

1) INPUT ADJUSTMENT
The spatial branch expects an input volume of size 32 ×

32 × 1 × 337, while the spectral one expects an input
volume of size 32 × 32 × 337 × 1. Furthermore, the
spatial branch applies zero-centred normalization for each
of the bands (1 × 337 mean values), while the spectral
branch applies zero-centred normalization by subtracting a
single value. These differences needed to be resolved to
align the two branches. To this end, an intermediate layer
called the normalization layer was created. In the spatial
branch, the normalization layer performs both reshaping and
normalization functions. It is a 3D convolution layer made up
of 337 filters of size 1× 1× 337× 1, such that for each filter
i, with 1 ≤ i ≤ 337, the ith value of the filter is equal to 1,
and the others are equal to 0. Since the 3D convolution layer
applies an element-wise multiplication, it copies the value
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FIGURE 3. Example of classification map produced by the end-to-end
framework on a sample HSI wood board of size 897 × 512 × 337.

of the corresponding element from the third to the fourth
dimension, converting the volume from 32× 32× 337× 1 to
32 × 32 × 1 × 337. At the same time, the 337 mean values
of the input layer are used as bias values to emulate the
normalization. In the spectral branch, the normalization layer
is composed of a convolution layer that emulates the zero-
centred normalization. The size of the filters is 1× 1× 1× 1
(to preserve the dimension of the input), the weights are made
by 1s (to preserve the values), and the bias is obtained by
negating the mean value. This solution let the framework be
flexible w.r.t. input sizes of the spatial and spectral branch.

2) EXTRACTED FEATURES CONCATENATION
To combine the predictions of both branches into a single
final prediction, the aligned features that are produced
after the fourth convolutional layer are concatenated along
the fourth dimension, to produce a total of 128 extracted
features. Moreover, the weights and biases of the fourth
3D convolution layer for each branch are re-used and
concatenated into a new 3D convolution layer. Finally,
a last 3D convolution layer is added. This layer performs
the average of the scores coming from the two branches,
producing 4 scores that are fed into a softmax unit to perform
classification.

V. EXPERIMENTS AND RESULTS
The final end-to-end framework architecture allows us to
process HSIs, to extract features from both spectral and
spatial information, and combine them to produce a final
prediction of one of the four categories under consideration.
The performance of the complete framework was evaluated
on the test set: results are reported in Table 6. The results
clearly show the benefit of combining spectral and spatial
information to produce HSI classification. Specifically, the
combined framework yields an improvement of around 5%
and 17% over the spatial and spectral branches, respectively.
Furthermore, a detailed analysis of the misclassified samples
revealed that 3 samples were misclassified by both inde-
pendent branches, out of a total of 7 and 14 errors for the
spatial and spectral classifier, respectively. The combined

TABLE 7. Precision and Recall of PLS-DA vs End-to-end framework.

FIGURE 4. Accuracy of the combined framework after being trained
following three levels of tuning.

classifier reported exactly the 3 errors that were shared by
both branches. Consequently, the combination and interaction
of the spectral and spatial information allowed 15 of 15 errors
to be corrected in cases where one of the two branches had
correctly classified the input HSI. Another advantage of the
framework is that it is independent of the spatial and spectral
branch. The two branches can be trained using different
strategies.

Finally, the architecture of the end-to-end classifier is able
to produce a classification map of HSIs of arbitrary size. The
complete end-to-end framework was tested on the original
HSI of wood boards (Fig. 3).

A. COMPARISON WITH BENCHMARK CLASSIFIER
We compared the obtained results with a benchmark classifier
used by the company that provides the data. The classifier
in question is Partial Least Square Discriminant Analysis
(PLS-DA), a supervised classification algorithm. The two
classifiers are trained and tested on the same samples. The
PLS-DA classifier obtains a testing accuracy of 78.75%. Con-
sequently, the end-to-end framework developed outperforms
PLS-DA by approximately 17%. It also improves precision
and recall for each category (see Table 7), highlighting the
benefit of integrating spatial and spectral information in a
single framework.

B. TUNING THE FRAMEWORK
Further experiments were conducted on the combined frame-
work. Specifically, the combined framework was trained
again after the downsampling and integration steps, with
the aim of tuning some layers after the combination of the
branches. The framework was trained with two different
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learning rates (10−4 and 10−5) andwith three levels of tuning:
(i) freezing the spatial and spectral branches, tuning the
layers after the concatenation layer (level 1); (ii) tuning the
layers after concatenation together with the last layer of each
branch (level 2); (iii) tuning the layers after concatenation
together with the last two layers of each branch (level 3).
The results in term of testing accuracy revealed that none
of the tuning techniques reported an improvement over the
approach without further training. This seems to suggest that
retraining the end-to-end classifier is not needed once the two
branches have been trained separately and integrated.

VI. CONCLUSION AND FUTURE WORKS
This paper proposed a CNN-based end-to-end framework for
hyperspectral image classification, investigating a case study
in the detection of wood fungi. The proposed framework
consists of a spatial and spectral classifier that are combined
to produce a final classification. Each classifier is built on the
basis of a pre-trained RGB general image classifier, without
the need of a large dataset, nor of special GPU or memory
requirements. The framework is trained and validated on a
real dataset provided by a company working in the wood
domain, with the aim of recognizing four different categories:
clear wood, soft rot, brown stain and blue stain. The proposed
classifier outperforms a benchmark classifier by 17% and it
produces a classification map of HSI wood boards of any
size with an accuracy of 96%. The framework is available
at https://github.com/rconfalonieri/hsi-framework.

As future work, we plan to apply the proposed framework
to additional hyperspectral image datasets in different
domains and to an extended version of the dataset described
in this paper.
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