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ABSTRACT The rapidly evolving landscape of artificial intelligence (AI) and machine learning has placed
data at the forefront of healthcare innovation. Electroencephalography (EEG) has gained significant attention
for its potential to revolutionize healthcare applications. However, the effective utilization of EEG data in
advancing medical diagnoses and treatment hinges on the availability and quality of relevant datasets. In this
context, we conducted a scoping review to explore the wealth of EEG datasets designed for healthcare
applications. This review serves as a critical exploration of the current landscape, aiming to identify
datasets related to healthcare conditions while assessing their reusability. Our findings highlight both the
opportunities and limitations in the wealth of open access EEG datasets. Available. As AI increasingly relies
on high-quality, well labelled data, barriers impeding the sharing and utilization of EEG data for healthcare
(such as lack of comprehensive documentation or adherence to FAIR principles) must be addressed so as
to leverage the potential of advanced deep learning models to unlock new possibilities for diagnosis and
analysis of a wide array of medical conditions.

INDEX TERMS Electroencephalography, EEG, deep learning, open access, data sets.

I. INTRODUCTION
Electroencephalography (EEG) is a method of recording
the electric field generated by postsynaptic activity of large
groups of neurons in the cerebral cortex. This is generally
accomplished by placing electrodes on the subject’s scalp.
The EEG signal recorded is an oscillating continuous signal
whose characteristics change depending on the consciousness
and general neural activity of the subject [1].
In general, there are two types of EEG recording: rest and

task. EEG recordings carried out during rest usually involve
participants being seated on a chair and instructed to relax
and keep their eyes open or closed. Task recordings, instead,
are those where the participants are instructed to perform a
specific task (i.e., cognitive, motor, etc). Both rest and task
recordings are the direct measurement of EEG without the
need for stimulations or markers.

On the other hand, Evoked Potentials – EP (also known
as event-related potentials, ERP) are the category of EEG
recordings where a stimulus, usually audio or visual, is shown
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to the subject and a marker is sent to the EEG measurement
device to record when the stimuli presentation started. These
stimuli cause a specific known reaction in the recorded
EEG, such as the P300 wave for visual recognition [1] or
a driving response for oscillating stimuli where the EEG
wave synchronizes with the stimulus frequency [2]. The
EEG signals are time-locked to the stimuli, and appear as
somatosensory, visual, or auditory potentials. For example,
the P300 wave is an ERP that indicates that the subject has
detected the target item in a sequence of non-target stimuli
items.

From a medical point-of-view, EEG has a long history of
being used to study and detect abnormalities in participants.
One of the first documented experiments of EEG recording
in humans was detecting EEG changes during sleep [3], [4],
pointing to the existence of different phases of sleep. Today,
it is used in a clinical setting for epilepsy diagnosis [5],
Alzheimer’s Disease diagnosis [6], [7], sleep studies [8],
[9], [10], and monitoring depth of anaesthesia, coma, and
other brain states [11]. It is also used in research for other
neurological and psychiatric conditions [12], [13], [14].
Brain-Computer Interface (BCI) is an active area of research,
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and it uses EEG to allow people to control a computer even
when paralyzed or with neuromotor difficulties [15]. BCI also
studies how to identify emotional states in human participants
[16]. A comprehensive overview of BCI methods of EEG
analysis is given in [17].
With the development of mobile wearable devices, EEG

headsets are now more available and accessible for both
consumers and researchers. At the same time, the devel-
opment of novel deep learning (DL) models has made
possible to automatically classify and diagnose diseases and
conditions. For example, DL models have achieved lower
error-rate in cancer diagnosis than humans [18]. Specifically
for EEG analyses, DL models have a better performance that
traditional non-DL methods [19].

High-quality datasets are the cornerstone of successful DL
algorithms [20]. Although many scientists are in favour of
data sharing, there are still barriers to the practice being
standard [21], [22]. The main reasons identified include lack
of time, funding, and skills. Researchers are also wary of
the quality of the data collected by others, as there is no
way to be certain of the skill level of the data collectors,
or that the correct methodology was followed during the
data capture. Also, concerns regarding data documentation
exist when discussing the reusability of datasets. Contextual
information on the data is often necessary to fully understand
and replicate analysis, but this creates a higher burden to
researchers when publishing data [21].

However, sharing data used in research studies is one of the
fundamental mechanisms for combating the reproducibility
crisis which impacts on the use of AI in the health domain
[23], [24], [25]. This is particularly important in the field
of machine learning, as the models developed depend on
the data used to train it. Even if one has access to the
original data, it is not always possible to reproduceML results
[26], [27]. Indeed, when training models, there are various
settings that can be passed to the software packages that
alter how the model is trained. Added to that, deep learning
models are trained via stochastic non-deterministic methods.
As Summers and Dinneen identified [28], if the initialization
parameters are even slightly different, the same model with
the same data produces vastly different results. Therefore,
to fully reproduce aDLmodel one needs not only the data, but
the training methodology used to develop the model which
includes the software code, initializations, and all parameters
involved.

Availability of research data decreases with publication age
[29], which means that older publications are less likely to
have their data shared. The costs of hosting and maintaining
data over time are barriers to making data available for
years after publication. Also, Miyakawa [30] suggests that
some results are not supported by raw data – 97% of
41 manuscripts that had been marked for review and asked
by the editor to provide raw data were retracted or rejected.
In some cases, raw data might be restricted due to what the
ethics approval obtained to carry out any study allows to be
shared.

There has been an increased emphasis in recent years
to make science more open and reproducible. Efforts like
the FAIR data [31] and the increased requirement of data
management plans by funding organizations has increased the
visibility of best practices in data sharing.

Considering this, to determine which datasets are available
that contain EEG signals, and to understand which medical
conditions are contemplated in these datasets, and how
reusable these datasets are, the following scoping review was
carried out by the authors.

The research questions being addressed in this scoping
review are as follows:

RQ1 - Which datasets containing EEG signals focused on
healthcare applications (non-epilepsy related) are available?

RQ2 - Which health conditions are covered in these
datasets?

RQ3 - How reusable are these datasets?
Epilepsy diagnosis and seizure detection are thoroughly

discussed in [32] and [33], thus datasets containing epileptic
patients or seizure signals were excluded from this review.
Also, one of the largest EEG datasets is the TUH-EEG
dataset [34], which contains 26,846 clinical EEG record-
ings and annotations. Since it contains seizure events,
it has been excluded from this review. It is available on
https://isip.piconepress.com/projects/tuh_eeg/.

A significant portion of the available EEG datasets are not
healthcare related; instead, those datasets are the result of
work in BCI and Affective / Emotion detection. The authors
suggest any interested readers to read the publication [19] for
information regarding general EEG datasets, [16] and [35]
for data on emotion recognition, [36] for motor imagery, and
[37] for depression, while [19] and [38] provide an in-depth
review of deep learning and EEG.

II. METHODS
This review follows the PRISMA guidelines for Scoping
Reviews [39]. The methodology for the review is detailed
below.

A. SEARCH STRATEGY
The search was conducted using the following publication
databases: PubMed, Web of Science, and Scopus. On these
databases, the search focused on published articles that
describe and/or analyse an EEG dataset. The search was also
conducted on the following data portals: Data Cite (which
include results from IEEE DataPort, FigShare, and Zenodo)
and Mendeley Data. Further datasets were screened from
known EEG dataset repositories, listed in Table 1. The search
was conducted on the week of 14/Nov/2022.

The following search string was used for publications:

(((dataset[Title]) OR (database[Title]) OR (repos-
itory[Title]) OR (data[Title])) AND (available)
AND (health*) AND (EEG or electroencephalog-
raphy) NOT (epilepsy OR seizure OR ‘‘brain-
computer interface’’ OR emotion))
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TABLE 1. List of EEG repositories screened for suitable datasets.

The following search string was used for data portals:
health TITLE( EEG OR electroencephalogram
OR electroencephalography ) DATA_TYPE
( DATASET ) NOT epilepsy NOT emotion NOT
( BCI OR ‘‘Brain-Computer Interface’’ ) NOT
seizure

B. INCLUSION AND EXCLUSION CRITERIA
Publications were deemed eligible if they were describing a
dataset. The datasets which were deemed eligible were the
ones with a valid and unique DOI reference.

The inclusion criteria for datasets were:
• dataset has a valid and unique DOI;
• the dataset description (in the case of a publication) has
a link or direct reference to the dataset;

• dataset can have any type of access (open, restricted,
request);

• the dataset must include EEG signals;
• dataset may include other types of data, but it is not
required;

• dataset must have been collected to study a health
condition, disease, or diagnostic;

• dataset must include information about each recording,
such as to which group (i.e., diagnosis, or patients versus
healthy controls) the recording belongs to.

The exclusion criteria for datasets were:
• in the case of publications, if the publication uses the
dataset but does not describe it;

• data collected for interventional studies, i.e., the study
is analysing the results of an intervention (medication or
treatment) to a group of participants;

• datasets investigating epilepsy and/or seizures;
• non-health-related dataset, such as general BCI datasets,
motor BCI, emotion recognition, meditation, etc.;

• datasets with no reference to ethical approval for the
study (either in the dataset description or in its related
publication);

The datasets were found via three methods: (i) searching
publication databases for articles that described a dataset;
(ii) searching for datasets through data citation and data

aggregation portals (e.g., DataCite); and (iii) by searching
published datasets in repositories dedicated to neurological
and physiological datasets. These specific repositories (such
as OpenNeuro, PhysioNet, etc.) were identified from search-
ing for EEG repositories in a general search engine (Google).

The results were first screened by title, keywords, and
description, if these were available for the datasets, or alter-
natively from the abstract in the case of publications. In this
step, datasets containing no mention of EEG signals were
excluded. From the keywords and description, datasets were
excluded if there was no mention of a medical condition or
state, or if there was mention of epilepsy and/or seizures,
according to the exclusion criteria. After this first screening,
the full text of articles describing datasets were retrieved and
surveyed. If no reference to a dataset was found (either a link
or citation with DOI), it was rejected. The other inclusion
and exclusion criteria discussed abovewere also assessed. For
datasets, the repository page with metadata was accessed and
screened for suitability. Datasets were also rejected in the case
that their filenames were not in English, or not descriptive
enough to allow understanding of the contents of the file
and to which class (patients or controls) the file belonged.
One of the datasets identified in the first screening was not
yet published, which made it impossible to retrieve its full
metadata, and therefore it was also excluded. This whole
process is shown in Figure 1, where the number of records
retrieved, screened, and rejected or included are shown.

For each dataset included in this review, the related pub-
lication was found usually linked in the dataset description
or indicated as the preferred method of citation for the
dataset. In the cases that the publication was not linked, the
corresponding articles were searched via the authors listed
in the dataset metadata. This was carried out because the
data collection protocol, for most of the datasets, was usually
not described in the dataset description or files. Instead,
it was usually described in the methodology section of the
related publication. For all datasets included in this review,
the information of where the data collection protocol was
described is included in the data extracted.

C. EXTRACTED INFORMATION
For each included dataset, the following information was
extracted (either from the dataset link or its related publica-
tion):

• dataset reference (DOI and full citation);
• related publication reference(s);
• dataset URL (unique);
• access type;
• country and data collection site;
• year of publication;
• health condition or diagnosis of focus;
• data modalities contained in the dataset (such as subject
demographics, clinical history or Electronic Health
Record - EHR, psychometrical or psychological test,
physiological signals, etc.);

• population included and number of participants for each
group;
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• number of classes in the dataset (e.g., patients versus
controls, sleep stages, patient subgroups);

• type of EEG data collection: rest, task, evoked poten-
tials;

• number of recording sessions, recording time, number
of trials/tasks, and duration;

• mode of EEG data annotation: manual, task/stimulation/
event markers, automatic/algorithm/machine;

• EEG device used and form factor (i.e., cap, free
electrodes, headset/headband, polysomnography – PSG
- setup), number of channels, electrodes placement and
references, sampling frequency;

• EEG data format (.eeg, .bdf, BIDS, etc);
• if the EEG data provided is raw or is pre-processed
(and in this case, which pre-processing has been
implemented);

• whether the recording protocol is available in the dataset
description/files, the associated publication, or not
available;

• whether the dataset includes an explanation of how to
analyse it, files describing the data/variables/etc, or code
used by the researchers to analyse the dataset.

D. ASSESSMENT OF RECORDS
For each dataset included in this review, we assessed the
reusability of the dataset to answer research question 3.
This was carried out using two methods: the first was an
automated tool developed by the FAIRsFAIR Project [40],
and the second method was via a questionnaire com-
pleted by the authors when extracting metadata from the
datasets.

The FAIR guiding principles [31], Findability, Accessi-
bility, Interoperability, and Reusability, inform researchers
and data producers and publishers on the best approaches
to publish data and other research objects. The FAIRsFAIR
project [41] is an European project that aims to develop
global standards for FAIR certification of repositories.
Developed by the FAIRsFAIR project, the ‘‘F-UJI Automated
FAIR Data Assessment Tool’’ [42] is a REST web service
tool to programmatically assess a data object according
to the FAIRsFAIR Data Object Assessment Metrics [43].
These metrics were developed by the FAIRsFAIR project
to provide a method to systematically assess a data
object. For this review, we used the version v2.0.2 of
the F-UJI tool, available at https://github.com/pangaea-data-
publisher/fuji/releases/tag/v.2.0.2 . The F-UJI web server was
run in a computer, and programmatically queried for each
dataset contained in this review. The code used for this
is available in the Supplementary Materials, and at xxxxx
(permanent link to repo).

The F-UJI Automated tool reports a score for each of
the FAIR assessment metrics [43] grouped by the principles
Findable, Accessible, Interoperable, and Reusable. In this
review, we report it in terms of percentage: the highest score
possible in one of these metrics is shown as 100%, and the
lowest score (zero) is shown as 0%.

FIGURE 1. Dataset selection for inclusion using the PRISMA framework.

Considering the FAIR data requirements, information on
the documentation level of the dataset and the file format
provided was also collected. For this, the file format of the
data files was recorded during the data extraction. A scale
of 0 to 3 points was created to determine the documentation
level of the dataset — this represents how well the context of
the data provided is explained, i.e., if the dataset contains the
data collection protocol, the methodology, and the code used
for analysis. For each type of documentation present in the
dataset its score would gain one point. In this way, a score of
zero means the dataset has no contextual information (i.e.,
only the data files and a brief abstract is provided), and a
score of 3 means the dataset includes the collection protocol,
an explanation of the file structure and internal variables, and
the code used for the analysis. The datasets that provide the
collection protocol only in the associated publication have
been noted and a 0.5 score deduction was applied.

III. RESULTS
A. OVERVIEW
From the 141 records (datasets) sought for retrieval one
dataset was not published yet, so it was not retrieved. Of the
140 records assessed for eligibility 37 were journal articles
that were not describing a dataset, 23 records did not have
EEG data, 13 records were not exploring a specific diagnosis
/ condition, 9 did not have a DOI, 8 were general BCI datasets
(not healthcare related), 7 datasets had no ethics disclosed
either in the dataset metadata or the associated publication,
5 had no link or reference to where to find the data, 3 were
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repeated (same dataset but different DOIs), 2 were seizure
related, 2 had no explanation about what each file repre-
sented, and 1 was not in English. In total, 110 records were
excluded and 30 records included.

In general, the datasets included fall into three broad
categories of condition of focus: sleep studies and related dis-
orders, psychiatric conditions, and neurological conditions.
Sleep and related issues have the biggest number of datasets
found for a condition, with seven datasets. The number of
datasets found for each condition is shown in Figure 2a.
Two datasets were found related to phobias, each focusing
on different phobias (claustrophobia and arachnophobia)
but were placed under the same condition. One dataset
contains multiple conditions for the paediatric population
(developmental disorders), thus it was not included in any
single condition.

The number of datasets published in each country is shown
in Figure 2b. Some datasets were collected by researchers
collaborating in multiple locations, so the same dataset was
counted for each country in the collaboration. For example,
[73] was collected in multiple sites in Italy, Germany, and
Switzerland, and [47] was collected in the USA and Norway.

The year of publication for each dataset was also recorded
and shown in Figure 2c. The number of published datasets
has increased in the last years, which could be due to recent
efforts on open science and data sharing.

The main data modalities other than EEG included in
the datasets are shown in Figure 2d. The most common
data modalities included are physiology related: electromyo-
graphy (EMG), electrocardiography (ECG), and electroocu-
lography (EOG). Due to the considerable number of sleep
datasets in this review, a lot of the included types of data are
pertaining to PSG recordings, such as EMG to detect muscle
activity, ECG to capture heart rate metrics, EOG to record
eye movements, respiratory rate, airflow, audio recording
for snoring, body position, oxygen saturation (SaO2), and
CO2 measurement. Structural Magnetic Resonance Imaging
(MRI) and functional MRI (fMRI) are also included in some
datasets for further brain analysis. Other than the modalities
listed above, no other physiological data collection was found
in the datasets included in this review.

The following sections will list and discuss the datasets
included in this review. The datasets are organized accord-
ing to the health condition of focus on (as per the
research question RQ2), grouped by three broad categories:
sleep studies, psychiatric conditions (such as depression,
schizophrenia, among others), and neurological conditions
(such as Parkinson’s and Alzheimer’s Disease).

B. CONDITIONS
1) SLEEP
The CAP Sleep Database [66] is a dataset of polysomno-
graphic recordings from 108 participants – 16 healthy con-
trols, and other sleep related pathologies, such as insomnia,
narcolepsy, sleep-disordered breathing, among others. Each
recording contains three or more EEG channels, EOG, EMG,

airflow, respiration, SaO2, and ECG. The EEG recordings
are annotated with sleep stage and cyclic alternating pattern
(CAP) events which are correlated with sleep instability and
related pathologies. The associated publication [74] describes
how to classify CAP events, and how they present in an EEG
recording.

The ISRUC-Sleep Dataset [67] consists of polysomnog-
raphy recordings of 108 participants with sleep disorders,
of which 8 have two different recording sessions, and
10 healthy participants. Each recording contains 6 EEG
channels, EOG channels for each eye, EMG (measured
on chin and legs), ECG, airflow, respiration, SaO2, and
body position. For each subject, the dataset includes details
such as demographic data (age and gender), medication
taken, and sleep scoring. The associated publication describes
in detail the dataset and a method of automatic sleep
stage classification and its performance evaluation compared
with manual expert annotation. The automatic sleep stage
classification method is comprised of preprocessing, feature
extraction based on maximal overlap discrete wavelet trans-
form (MODWT), and a supervised learning step which uses
a Support Vector Machine classifier.

The dataset described in [68] is composed of recordings
of 64-channel EEG from 22 participants during short periods
of sleep, with manually annotated sleep stages and spindles
(specific pattern of EEG that occurs during the second part
of REM sleep). Recordings were carried out on two separate
days, after the participants undertook a high- or low-load
visual working memory task. Added to the EEG raw data, the
authors also provide code in python for signal processing and
artifact correction using Independent Component Analysis
(ICA). This is especially useful for reusing the dataset, as it
enables researchers to replicate the authors’ data processing
and verify their findings. It also enables other researchers to
build solutions based on the data collected.

TheNCHSleepDataBank [69] is a large dataset containing
3,984 paediatric sleep studies on 3,673 unique patients
associated with EHR, which includes medications, measure-
ments, diagnoses, etc. The data modalities included are EEG
for sleep stage identification, EMG channels on chin and
leg, EOG, ECG, airflow and respiratory effort, blood oxygen
saturation, and carbon dioxide measurement of exhaled
air. The data is annotated in real-time by technicians and
reviewed later by another expert. This dataset has restricted
access by means of credential assignment. Code in python for
data analysis is also provided in a separate github repository
[75]. The publication [76] specifies the transformations
carried out on the raw data (filename, EDF header, random
date shift, etc.) to anonymize patients. The publication is a
full description of the dataset and what is included in it, going
into detail such as file naming conventions, variables included
in the files, and how annotation was made. The description of
files included is helpful to potential users as they can identify
what is included and if it is relevant for their purposes.
Also, due to the huge amount of annotated raw EEG data,
it is very well suited for the development of deep learning
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FIGURE 2. Distribution of datasets found for each health condition, country, year of publication, and secondary data modalities included.

models – which the authors highlight in the publication. They
also suggest potential applications of the data and provide
starter code for analysis.

The dataset in [70] is another dataset dealing with
paediatric sleep which contains sleep recordings of infants
(between one week and seven months of age), with a high-
density EEG cap and video to measure movements. The
access to the files in this dataset is restricted to credentialed
authorized users. Analysis of the data is carried out in the
associated publication [77]. The publication reports that the
MATLAB code used for the analysis is shared in a GitHub
repository, but as of April of 2023, the repository does not
exist. Data collection protocol is described in the publication.

The Haaglanden Medisch Centrum sleep staging database
[71] is comprised of 151 whole night polysomnography
recordings, containing EEG, EOG, chin EMG and ECG,
including the manual annotations of technicians. The dataset
webpage describes the data collection protocol and the data
description of what each file contains and their formats,
as well as usage notes on how to open and interact with
the files provided. The associated publication [78] presents
a deep learning model for automatic sleep staging using this
dataset and other open sleep datasets.

The dataset in [72] includes EEG and fMRI signals
collected from 33 healthy participants during resting state
and sleep sessions, before and after a visual-motor adaptation
task. The data collection protocol is briefly described in
the dataset description, but expanded and detailed on the
associated publication [79].

2) PSYCHIATRIC CONDITIONS
a: DEPRESSION
The dataset in [50] and [52] collected EEG recordings of
122 university students aged 18-25 years during rest [50],
with eyes open and eyes closed, and during cognitive tasks
[52]. The participants were screened for major depressive
disorder (MDD) using the Beck Depression Inventory, and
classified in one of 4 groups: MDD, past MDD diagnosis (but
not current), not meeting the diagnosis criteria for MDD, and
not tested for MDD. The article associated with this dataset
is [80] which explores how depression and anxiety relate to
reward systems in the brain. The dataset is provided in the
BIDS format, which is a standard in the field [81], [82].
The data collection protocol for this dataset is not described
fully, and the dataset description notes that some of the
data might be mislabelled, some EEG channels have been
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TABLE 3. Data modalities included in each dataset.

interpolated, and no raw data is available leading to some
question as to its useability in future work. The cognitive task
part of the dataset contains the associated code to produce the
stimuli presented to participants, and the code developed in
MATLAB to analyse the data and replicate the study.

Another dataset developed in the study of depression is
[51] which provides EEG and audio data from 24 patients
clinically diagnosed with depression, and 29 matched healthy
controls. The EEG recordings were created with a standard
medical 128-channel device, and a novel 3-channel wearable
device, during rest and activities such as responding to
questions, reading, and picture description. The dataset is
provided in the BIDS format, and contains a README file,
a file describing the methodology used for the data collection,
and the information sheet given to patients for consent in
participating in the study. The publication associated with this
dataset is [83] which describes the dataset in detail.

b: DEVELOPMENTAL DISORDERS: ASD, ADHD, LEARNING
DISORDERS, ETC.
The dataset in [44] contains the raw data from a study [84]
on working memory and response inhibition. This study
was carried out on participants aged 9-16 years old, 34 of
those diagnosed with attention deficit hyperactivity disorder
(ADHD) and 25 typically developing participants. The

protocol for the data collection is in the publication, and
no other demographic data is given. In the study, the
participants had to perform working memory tasks and
response inhibition tasks. The EEG data is from 21 channels
sampling at 500 Hz, provided in .cnt format.

Another dataset [46] has EEG data acquired from adult
individuals aged 18-68 years, 28 of those with a diagnosis
of autism spectrum disorder (ASD), and 28 neurotypical
controls. The study investigated how brain aging is different
for adults with ASD compared to healthy controls. The data
was collected during rest for 150 seconds of eyes closed
for each subject. The EEG data is provided for each subject
with a pair of files .fdt for the raw EEG, and .set with
details on the recording parameters. However, no information
is provided for which participants have ASD and which are
the controls.

The dataset ‘‘Healthy Brain Network (HBN) Biobank’’
[55] includes data on over 4,000 participants aged 5 to
21 years old. The data modalities are EEG, MRI, behavioural
and cognitive phenotyping, actigraphy, eye tracking, genetics,
audio, and video. The publication details the complete
methodology of data collection: subject screening, inclusion
and exclusion criteria, assessment tests, and recording
protocols for each data modality. For each different diagnosis
included in the dataset, the respective assessment tests that
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are relevant are mentioned. The assessments included are
anxiety, ADHD, ASD, cognitive and executive functioning,
depression and mood, obsessive-compulsive disorder, physi-
cal tests, sleep, family structure and trauma, substance abuse
or addictive behaviour, verbal learning, and others. Added to
that, the publication also contains the lessons learned over
the implementation of a large-scale data collection, which
is of great benefit for other researchers also collecting large
amounts of data. The access to the full dataset is restricted by
request / project submission for validation.

c: SCHIZOPHRENIA
The dataset in [63] consists of EEG recordings of 14 patients
with paranoid schizophrenia and 14 healthy controls. In the
dataset repository, there is only information on the sampling
frequency and electrodes used. The groups are identified
via the filename, starting with h or s. The publication that
analyses this dataset [85] describes the protocol used for the
EEG recordings and the analysis implemented comparing
the controls to patients using connectivity measurements
extracted from the EEG data.

The dataset in [64] is an EEG dataset of 19 patients and
24 healthy controls recorded during a task of ultimatum
game. The protocol for the data collection is described in the
associated paper [86]. EEG was recorded with 128-channels
at 2048 Hz. No other information about patients or about data
pre-processing is available.

Another dataset for schizophrenia is divided into two
DOIs: [65] and [87]. In this dataset, EEG and MEG (magne-
toencephalography) data were recorded for two independent
samples of healthy controls and First Episodic Psychosis
(FEP) individuals. For each subject, the dataset includes
5 minutes of resting EEG collected using a 60-channel cap
setup. The associated paper [88] has the test protocol used
and analyses run on the collected data.

d: PHOBIAS
For the study of reactions of people suffering from phobias,
two datasets were found.

The first dataset [61] consists of 9 participants with
self-identified claustrophobia and 13 healthy controls. The
EEG was recorded under 3 different conditions: in a well-
lit spacious room, in a chamber with moderate light,
and a moderate lit smaller room. Information about each
participant, such as age, gender, and group are present in the
dataset. The associated publication [89] describes in detail
the dataset organization and files, and the data collection
protocol.

The second dataset in [62] consists of EEG record-
ings of 40 patients with arachnophobia and 53 controls.
No demographic information is given for the participants.
The data collection protocol is detailed in the associated
publication [90]. However, the dataset includes the code
used for the analysis done for the publication, which allows
other researchers to review the methodology and replicate
results.

3) NEUROLOGICAL CONDITIONS
a: PARKINSON’S DISEASE
The dataset in [56] studies freezing of gait in Parkinson’s
Disease. The test cohort consists of 14 participants with
Parkinson’s Disease experiencing gait freezing, 14 patients
with Parkinson’s Disease but without freeze of gait, and
13 healthy controls. No data other than to which group
the participants belong to is presented in the dataset. The
associated paper [91] describes the data collection protocol,
i.e., how the participants were screened, and the motor task
carried out during the EEG recordings. The participants were
recorded performing ankle dorsiflexion while sitting in a
chair and with gaze fixed at a specified point.

The dataset in [57] is a curated dataset derived from [92].
It contains EEG recording of 15 patients with Parkinson’s
Disease and 16 healthy controls. The dataset provides other
information regarding participants, such as age, gender,
handedness, and clinical history. The data collection protocol
is explained in [92], which consisted of rest and a stop-
signal task. The dataset curators ask that researchers using
the dataset approach them via email, as they have published
the dataset with open access, but would like to have people
ask for permission and guidance to use.

The three datasets in [58], [59], and [60] were all collected
at the same institute by the same research group. The
dataset consist of EEG recordings for 28 participants with
Parkinson’s Disease and 28 healthy controls (the last dataset
[60] contains recordings of just 25 participants for each
group). The EEG was collected during a cognitive task [58],
reinforcement learning [58], and rest and auditory stimuli
[60]. Some brief description of the data collection protocol
is present in the dataset descriptions, and the author cites an
article that explains the task, as well as supplies the Matlab
code necessary for replicating it. Also present in the dataset
are other code files for further data analysis. Results from
analysis were published in [93] for the first dataset, [94] for
the second dataset, and [95] for the third.

b: ALZHEIMER’S DISEASE
For Alzheimer’s Disease, the dataset [45] includes 230 par-
ticipants, with 5 subgroups: 33 healthy control elders,
34 with subjective cognitive decline, 79 with mild cognitive
impairment, 48 participants with Alzheimer’s Disease, and
36 healthy young controls. The full dataset has restricted
access, but 4 samples are included in the open version. The
dataset description is very informative on the data collection
protocol, EEG device and setup, and preprocessing done to
the data. The analysis of this dataset was published in [96].

c: BRAIN INJURY
The dataset in [47] contains EEG recordings of 14 patients
with unilateral prefrontal cortex lesions and 20 matched
healthy controls. Raw and pre-processed data are included,
as well as analysis code to replicate results. The data
collection protocol and results are published in [97]. The
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access to the dataset is credentialed — e.g., the user needs
to create an account to download the dataset.

The dataset in [48] consists of EEG recordings of patients
with traumatic brain injury (TBI). The population is com-
posed of 23 chronic TBI patients, 38 sub-acute mild TBI, and
24 healthy controls. The dataset also contains demographic
data, and neurophysiological assessments. Some of the data
collection protocol is explained in the dataset description, but
a full detailed explanation is present in the associated article
[98]. The task performed in this dataset generated auditory
evoked potentials using a 3 stimulus oddball paradigm
(where presentations of the different stimuli have different
probabilities of occurring), and EEG was also collected
during rest.

d: OTHERS - COGNITIVE IMPAIRMENT, HEARING
IMPAIRMENT, STROKE, MIGRAINE, ETC.
The dataset in [73] is a multi-center (Italy, Germany, and
Switzerland) dataset of various modalities of data collected
to study upper-limb movements. The dataset contains
65 post-stroke participants and 91 healthy participants. Data
modalities included are EEG, ECG, EMG, actigraphy and
kinematic data, and fMRI. The publication [99] has all of the
details of data collection procedures and what is contained in
the dataset. The dataset also contains a Matlab script to plot
data.

The dataset in [54] contains high-density (128-channels)
EEG recordings of 17 migraineurs and 18 healthy controls.
The recordings were obtained for rest and evoked potentials,
both visual and auditory. Included in the dataset files are
README files with description of the files, Matlab code
used to generate the visual and auditory stimuli, and a
document describing the data collection protocol in detail.
The analysis of the data is found in the publication [100].
EEG andMEG recordings to study hearing impairment are

present in the dataset [53]. It contains recordings of 17 normal
hearing younger adults (18-30 years old), 14 normal hearing
older adults (over 60 years old), and 17 hearing impaired
older adults (over 60 years old). The dataset description
contains an overview of the data collection protocol and file
naming convention. More details and the analysis of the data
are found in the publication [101].
The dataset in [49] investigates brain functionality involved

in chronic post-burn itch. It contains EEG data from
15 patients and 14 healthy controls recorded during rest and
stimulation of skin. The dataset also contains documents
describing the collection protocol, SPSS scripts for statistical
analysis, and the literature review completed by the authors.
The access to the dataset is restricted, i.e., the user needs
to request access to the dataset owner to download the
files.

C. EEG CONFIGURATION
The Table 4 shows the configuration of EEG system used for
the data collection of each dataset in this review, as well as the
recording type, and annotation method.

D. ASSESSMENT: HOW REUSABLE ARE THE DATASETS?
The Table 5 shows the result of using the ‘‘F-UJI Automated
FAIR Data Assessment Tool’’ [42] to programmatically
evaluate the datasets. For each category (Findability, Acces-
sibility, Interoperability, and Reusability), the value shown
represents what percentage of the FAIRsFAIR Data Object
Assessment Metrics [43] the dataset fulfils.
Since the automated tool is not able to test if the dataset

uses the standard format for EEG data (BIDS), or determine
the level of documentation of the dataset, we collected
the information shown on table 6. It indicates if a dataset
has a comprehensive explanation, a README file, some
indication of the file structure used, if the filenames are
descriptive enough to enable another researcher to identify
what the file is about, where the data collection protocol is
located (in a file inside the dataset files, in the associated
publication, or not disclosed), and if there is any code
provided by the authors to create the environment and stimuli
used and/or the data analysis done.

IV. DISCUSSION
Electroencephalography (EEG) is a reliable clinical diagnos-
tic method which can be used for different health conditions,
such as epilepsy, Alzheimer's Disease, sleep disorders, and
anaesthesia monitoring. On the research side, EEG is widely
used for psychiatric, psychological, and neurophysiological
studies of varied cognitive and psychological conditions.
It is also used in Brain-Computer Interfaces, where the EEG
signals can be used to control computers, speech devices, and
other accessibility tools. Recent research in BCI also uses
EEG to identify emotional states in participants. With these
varied use-cases and combined with its relatively low-cost
(when compared to other neurological diagnostic tools), EEG
is a crucial tool for research in neurology and related areas.

Recent advances in Machine Learning and Deep Learning
have opened up various new opportunities in research.
However, these methodologies require large volumes of data.
Open datasets greatly advance research on these methods.

A number of considerations (i.e., ethics, data availability,
etc.) needs to be taken in to account when analysing such
datasets as those selected in this review and these are
discussed below.

A. ETHICS
Seven datasets were excluded from this review as they had
not indicated whether or not they had ethics approval for
the studies undertaken. In general, with some exceptions, the
included datasets disclosed ethics approval only on the asso-
ciated publication. Also, some of the datasets did not include
a copyright disclaimer, whereas some of the repositories (e.g.,
PhysioNet) included copyright by default. These disclosures
are important from a legal perspective, as it informs potential
users of who owns the data, and what can be done with it.
The most common copyright of the datasets included in this
review is ‘‘CC0’’ in which the researcher gives up all the
copyright, placing the dataset in the public domain, where it
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TABLE 4. EEG data collection characteristics: device, number of channels, and sampling frequency used, type of recording and annotations, file format,
and where the recording protocol is available.

can be used with no conditions. The second most common is
‘‘CC BY 4.0’’ which is similar to CC0 but requires the user
to attribute credit to the original publisher.

B. HEALTH CONDITIONS PREVALENT IN THE DATASETS
Of the different conditions covered by the datasets, the most
common is sleep-related problems. This was not unexpected,
as it is standard clinical practice to record EEG associated
with other sensors (e.g., PSG) for the diagnosis of sleep
problems. Added to that, the use of EEG in research and
clinical settings has originated from the first use of EEG in
humans by Berger [3], [4] monitoring sleep.

Although some diagnoses are very prevalent in the general
population, such as migraine, depression or anxiety, there
are very few datasets found in this review that study that
condition: 1 for migraine, 3 for depression, and none for

anxiety. In the case of migraine, for example, the prevalence
in the general population is estimated to be 1 billion people
worldwide, i.e., 15% of the general population is estimated
to have a migraine attack in a year [102]. However, there is
only one relevant dataset available (from [100]) which, while
very valuable in terms of amount of data, still does not cover
the condition as a whole since only EEG recordings from
migraine patients in the interictal phase (between the attacks,
i.e., at least 3 days before or 3 days after a migraine attack)
are available. No open EEG dataset that has recordings of
patients in different migraine phases is openly available for
use at the time of publication.

C. DATA AVAILABILITY
Various research studies published in recent years have a
data availability statement, where the authors indicate that
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TABLE 5. F-UJI FAIR evaluation of the datasets. F is the Findability
category, A is the Accessibility category, I is Interoperability, and R is
Reusability. The last column shows all of the criteria combined. The
percentage values indicate the extent to which the dataset complies to
the FAIRsFAIR metrics [43]. A score of 100% indicates that the dataset
was identified by the automated tool to be compliant with all of the
metrics for that category.

‘‘data is available upon request’’. However, as Tedersoo et al.
[103] have found, only approximately 40% of data requests,
in general, are fulfilled. As the authors of [29] have
discovered, availability of research data decreases with
publication age.

The availability of data is not only important from a
replication perspective, but it creates opportunities for further
analysis with new methodologies and tools created in the
future (i.e., developing deep learning approaches to diagnosis
and treatment of diseases). The benefit of using AI models
in medical applications is the ability of the model to deal
with noisy data, uncertainties, and detect patterns in data
that are not found using more standard statistical methods.
The increase in available data also allows researchers to
compare and validate results, and further strengthens the
derived conclusions.

However, data sharing increases the burden on the
researchers, as the dataset needs to be prepared to be reused.
As Perrier et al. [21] identified, researchersmay also beweary
of sharing data due to possible misuse or misinterpretation of
data. Indeed, one of the datasets in this review has a note by
the authors asking potential users to correspond with them
to make sure the data is being interpreted correctly. Also
identified by [21] is the lack of incentives for researchers to

share data as it does not have the same weight as published
articles in regards to academic appointment and promotion.

One of the datasets in this review indicates that the
associated code is available and provides a link, but as of
the time of writing this review it was no longer available in
the link provided (dataset [70], the associated paper [77] links
to https://github.com/gsokoloff/Infant-Sleep-Study-I which
does not exist). This could be solved by treating source code
for analysis and models as datasets by hosting them in a
repository and providing a DOI and metadata. For example,
the F-UJI automated tool provides a DOI associated with a
Zenodo record containing a version of the automated tool
(DOI 10.5281/zenodo.4063720) [40].

D. DATA COLLECTION PROTOCOL
The Table 6 shows which datasets include the recording
protocol in their description or files. Of the 30 datasets
included in this review, 16 of them did not have a data
collection protocol within their files or description. Most
of them have the protocol explained on the associated
publication, and not all of those had a direct citation or
link to the publication — e.g., it was necessary to search
the publication databases with author names and general
keywords. In some cases, the publication was hard to
find, or not found. The protocol details the assumptions,
EEG recording task description and method, and other
particularities of the methodology used.

In the case of sleep related datasets, there is a standard-
ization of the recording protocol, e.g., the polysomnography
study protocol is generally the same across datasets, there-
fore, the comparison of recordings from different datasets
is possible. The same might not be the case for other tasks.
Even for tasks observing the same phenomena (for example,
visually evoked potentials) the recording protocols might be
different, which makes it harder to compare different datasets
and their results.

Also, without the protocol, data analysis is either very hard
or impossible, as the assumptions made when collecting the
data are not clear, and therefore the data analyst can ‘‘go
fishing’’ for significant results (also called p-hacking) [104].

A number of datasets in this review, however, have
included the code used to generate the stimuli used in
the recordings. This enables researchers to use the same
recording protocol, down to the same stimuli, which makes
the comparison between different recordings more reliable.

E. DATASETS FILE TYPE AND STANDARDS
Although there is not an enforced standard on the type of file
for EEG recordings, recent advancements have been made
with the publishing of the BIDS standard by Gorgolewski
and colleagues [81], and the further extension for EEG by
Pernet and colleagues [82]. The BIDS aims to standardize
the file format, organization, metadata, and distribution of
neuroimaging data. This makes it easier for researchers to
access and reuse data. Added to that, the BIDS standard
allows analysis, software packages, and processes to be
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TABLE 6. Dataset reusability: does it have a description? Is a README file included? Is there a document or text that indicates the file organization /
structure of the dataset? Are the filenames descriptive? Where is the protocol located? Is the code used for recording and data analysis available?

interoperable with any dataset that follows the standard. This
negates the need to develop analysis and software for each
dataset, reducing possible errors as well.

For example, datasets that distribute the files in .mat format
require specific software (Matlab) to open the files, while
the BIDS files are an open standard that can be opened by
any software framework or tool that can deal with EEG data.
This allows a greater flexibility and accessibility to the data.
Nine of the 30 datasets are published using BIDS due to the
requirement enforced by the repository PhysioNet where they
are hosted.

Other than the modalities listed in Section III, no other
physiological data collection was found in the datasets
included in this review. More physiological data would be
beneficial in multiple studies; for example, in the case of
Parkinson’s Disease, an activity tracker (actigraphy) placed
in the wrist could help measure the intensity of tremors [105].

F. FAIR GUIDING PRINCIPLES AND DATASET REUSABILITY
The FAIR assessment for the datasets indicates that they are
easily findable, as the F score was high in general. However,
this may be due to survivor bias, as the inclusion criteria
for this review required a DOI. This then enforces that the
datasets score at least 70% on Findable. The only exceptions
to this high value are two datasets [67], [68] for which the
DOI correspond to an article describing the dataset and not
linked to where the dataset is hosted.

The Accessible criteria analyses the metadata related to
level of access, and if the data can be accessed using standard
networking protocols (such as HTTP, HTTPS, FTP, etc).
Since most of the datasets are hosted in repositories which
provide the infrastructure for data access, the A score is
generally high.

The datasets hosted on data repositories such as Figshare,
Mendley Data, and PhysioNet, have a high score on the
Interoperable principle. The metrics in this principle measure
how easy it is for machines to access and read the metadata of
the dataset. Most of the data repositories provide by default
the metadata since they are built for this purpose. The datasets
that score low in this principle are those hosted on different
places (other types of repositories, custom servers, etc) or for
which the DOI refers to a published article.

Finally, the Reusable principle metrics assess if the dataset
provides a license, if there is any information about data
provenance, and if the dataset follows a metadata standard
and provides the files in this standard. Most of the datasets
in this review scored 50% or lower, which reflects the lack of
information about data provenance and the fact that most of
the datasets do not provide files in a standard format.

However, the FAIRsFAIR data object assessment metrics
has limitations in the assessment of reusability, which is
also highlighted by the metrics authors [43]. Specifically,
the metric FsF-R1-01MD related to the Reusability principle
requiring rich metadata can only verify if the repository of the
dataset contains information described in general metadata
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standards. For the case of observational clinical and/or
behavioural data, the ‘relevant attributes’ should contain the
data collection protocol, as that directly affects how the data
is analysed and interpreted. However, there is no way of
automatically or programmatically check this using the F-UJI
tool. Added to that, the metric FsF-R1.3-01M, which verifies
if the dataset follows the standard recommended by the target
research community, does not correctly identify the BIDS
format. Therefore, a low score on the Reusability category
on Table 5 does not necessarily represent a true negative score
on reusability for EEG datasets, as the tool cannot identify the
community standard BIDS format. Dataset publishers should
aim for total compliance with the FAIRsFAIR metrics, but
the metrics and the automated tool also need to reflect the
requirements and standards of the EEG research community.

The F-UJI tool is capable of checking repository-
level information, i.e., the metadata available such as
author names, identifiers, keywords, description, and
machine-readable information (file names, formats, file
structure, dates, and identifiers). However, it is unable to
check if the dataset contains documentation such as file
description, variable description and codification (if any),
data collection protocol, and other information needed for
analysis and reuse.

For the assessment of documentation level, we created a
scale of 0 to 3 points to represent how well the context of the
data provided is explained. We looked specifically for data
collection protocols, descriptions of the dataset and its file
contents, and software or code used for analysis.

The review by Roy et al. [19], which looks at published
deep learning models and results, has identified that 53% of
the articles used public data (i.e., data shared) and 42% use
private data that is not shared, which means that these models
are not reproducible. The review also highlights that 21% of
the studies mention that more public data is needed to support
the research of deep learning models of EEG data. The other
problem raised by the review is that there is a lack of labelled
clinical data, and labelling requires time and expertise. As for
the source code for the models, Roy et al. found that only
13% of the studies included in their review provided the code,
which means that just 12 out of 154 studies are reproducible
(with code and data shared) [19].
Added to that, it is hard to combine multiple datasets

together for a deep learning model due to the different record-
ing protocols and electrode montages (electrode placement
and references). As Yao et al. [106] and Hu et al. [107] the
reference method (mono-polar or bipolar) creates systematic
changes in the distribution of the signal frequency power.

G. SUMMARY AND FINAL CONSIDERATIONS
EEG is widely used in clinical and research settings. In recent
years, EEG data has been used pervasively in Machine
Learning algorithms developed to diagnose and further study
different health conditions. However, DL models require
more data for training and validation. To identify what
open datasets have been published with EEG data related to

healthcare, and to ascertain how reusable these datasets are,
a scoping review was carried out.

A large number of potential datasets were found, but only
30 datasets of the 140 records retrieved and assessed actually
fulfilled the inclusion criteria. The main reasons for rejection
were: not pointing to a dataset, not related to healthcare or
a diagnosis, or had no disclosure of ethics approval for the
data collection. Of the 30 included datasets, 7 were related to
sleep – which was expected as EEG is widely used in clinical
settings during a polysomnographic assessment of sleep.
The other diagnosis or conditions covered by the datasets
found were either psychiatric or neurological related, such
as Parkinson’s Disease, Depression, Schizophrenia, Brain
Injury, and so on. We found a lack of datasets for some
prevalent conditions in the general population. For example,
migraine is a neurological condition that afflicts 15% of the
population, but we found only one dataset for migraine.

The majority of the datasets found were open access, while
the others required either a credential (by registering into the
dataset repository) or a request to the dataset publishers.
In general, the datasets were licensed as entirely placed in the
public domain, or as requiring only attribution to the dataset
authors.

The biggest challenge found was that more than half of the
datasets in this review did not have any description of its data
collection protocol in the dataset. Of these, the majority had
the protocol detailed in a different publication – generally a
study published analysing the dataset – that in some cases
were not linked to in the dataset page. In those cases, to find
the protocol we had to search the dataset authors’ publications
and try to identify which one was based on that dataset. This
makes it harder for other researchers to reuse the dataset.
However, some datasets had not only the data collection
protocol, but also the code used to process and analyse the
data by the authors, which provides great documentation
and resources for other researchers. By providing the data
and the code, researchers make their results more easily
reproduceable and verifiable, and also provide resources for
the research community in general.

Added to this, the FAIR principles are important guide-
lines created by the research community to improve data
sharing and reuse. They specify requirements for Findability
(e.g., DOI registration, metadata, registered in an index),
Accessibility (metadata has to be accessible and retrievable
using standard protocols), Interoperability (metadata follows
a certain standard, easily readable by machines and humans),
and Reusability (data provenance, attributes, and other
aspects relevant to the domain are clear and detailed).
The FAIRsFAIR Project created an automated method of
scoring datasets by the FAIR principles [42]. However, the
Reusability criteria does not easily translate into scoring
criteria that can be verified programmatically. The automated
method does not assess if data collection protocols and data
explanations are included in the datasets. We created a scale
to measure reusability in terms of documentation level of the
dataset.
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In general, there is a need to: (i) share more data, as there
are no datasets for certain health conditions; and (ii) better
document the data shared, which makes it easier for other
researchers to verify and use the data.

H. RECOMMENDATIONS FOR DATASET PUBLICATIONS
In line with the discussed above, and the reusability metrics
created for the dataset assessment in Table 6, we recommend
that authors, when publishing research data, follow the
guidelines:

• Publish the data in data repositories that assigns a
permanent identifier (DOI) to it. Some examples of
free data repositories are: Zenodo (https://zenodo.org/)
and Figshare (https://figshare.com/) for general data;
and OpenNeuro (https://openneuro.org/) and PhysioNet
(https://physionet.org/) for EEG and physiological data.

• Include a data availability statement with the link to data
repository (or DOI) when publishing analyses of the
dataset. Also include a link/reference to the published
article in the dataset.

• Explicitly assign a license to the dataset —if the dataset
is open to be reused by other researchers, good licenses
are CC0 (‘‘No Rights Reserved’’) or CC-BY 4.0 (attribu-
tion required); see https://creativecommons.org/share-
your-work/cclicenses/ formore options and information.

• Populate the metadata to make it easier to be discovered,
by giving it a meaningful name, adding relevant
keywords, and linking to and from the published article.

• Make sure the description clearly identifies the study
objectives, the participants, devices and recording pro-
tocols used, and any other relevant information. This
should be treated as the ‘‘abstract’’ for the dataset.

• Include a README file with:

– The authors or persons responsible for collecting
data, including email addresses and affiliations.

– Dates of data collections.
– Geographic information of where the data was

collected.
– Ethics approval information.
– Licensing or other restrictions placed on the data.
– Links to publications that cite or use the data.
– Data collection protocol: which devices where

used, how many electrodes (and specific montage
used), what tasks were performed during the EEG
recording. This should have enough information
so that another researcher could replicate the data
collection protocol.

– Has any preprocessing been done to the data? If so,
make clear what has been done.

– Describe the file organization / structure of the
dataset. Are the recordings separated into folders by
participant or by task? Are raw and preprocessed
data separated into folders? Where is located the
participants data (such as age, gender, which group
the participant belongs to, etc.)?

• If possible, include a separate file with the detailed
data collection protocol. The code (or a link to its
repository) used for stimuli generation, if any, should
also be included.

• The filenames should be descriptive. Include the partici-
pant ID and the task done in the recording, and any other
relevant information (e.g., ‘‘HC1Rest’’ for the recording
of Healthy Control ID 1 during rest).

• Make sure the dataset follows a standard format. In the
case of EEG recordings, the standard format is BIDS
[81], [82].

• Any code used for analysis should also be shared.
It can be included with the dataset or hosted in another
repository such as GitHub (https://github.com/).

V. CONCLUSION
EEG data holds immense potential for advancing healthcare
through machine learning and deep learning. While our
scoping review identified numerous datasets on this topic, it is
apparent that there is room for improvement in terms of data
sharing and documentation. Many datasets lacked essential
data collection protocols and explanations, hindering their
reusability and the replication of results. As we move
forward, the research community must prioritize sharing
data for health conditions currently underrepresented and
focus on comprehensive documentation by adhering to the
FAIR principles with the ultimate goal to enhance dataset
transparency.
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