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ABSTRACT The different energy resource generation tends to have high-level variation, making the power
supply complex for the end-users. Because of the intermittent nature, the variations occur by time, weather
conditions, and output energy. Hence, this research aims to develop a new ‘‘Renewable Power Generation
Prediction (RPGP)’’ model using Deep Learning (DL) to give the end user a reliable power supply. The data
aggregation process initially accumulated the data in a normalized and structured format. Then, the data
cleaning and scaling are performed to decrease the outliers and varying ranges of values. A higher-order
statistical feature was attained from the cleaned and scaled data. This statistical feature was given to ‘‘Optimal
Weight Computation Ensemble Dilated Deep Network (OWC-EDDNet)’’ to predict generated power. In this
EDDLNet, networks such as ‘‘Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM),
Deep Belief Networks (DBN), and Deep Neural Networks (DNN)’’ are employed to predict the renewable
generated power. Finally, the prediction score attained from all deep networks is multiplied by the optimized
weight to get the final prediction outcome, where the weights are optimally determined with the support
of the Enhanced Artificial Orcas Algorithm (EAOA). The extensive empirical results were analyzed among
traditional algorithms and prediction models to showcase the efficacy of the designed energy generation
prediction scheme.

INDEX TERMS Renewable power generation prediction, enhanced artificial orcas algorithm, higher order
statistical features, optimal weight computation ensemble dilated deep network.

NOMENCLATURE
Abbreviations Descriptions.
RPGP Renewable Power Generation Prediction.
DL Deep Learning.
RNN Recurrent Neural Networks.
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LSTM Long Short-Term Memory.
OWC-EDDNet Optimal Weight Computation Ensemble

Dilated Deep Network.
DNN Deep Neural Networks.
DER Distribution Energy Resources.
MG Micro Grid.
ANN Artificial NeuralNetwork.
DBN Deep Belief Networks.
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ELM Extreme Learning Machine.
BLS Broad Learning System.
CC-RNN Cooperative convolution-based Recurrent

Neural Network.
DGF Double Gaussian Function.
SEA Stacked Ensemble Algorithm.
RBFNN Radial Basis Function Neural Network.
MASE Mean Absolute Scaled Error.
DRNN Deep Recurrent Neural Network.
ReLU Rectified Linear Unity.
DeepMPC Predictive Control.
GDBN Growing Deep Belief Network.
QDRL Quantum-Inspired Deep Reinforcement

Learning.
AI Artificial Intelligence.
ML Machine learning.
SMAPE Symmetric Mean Absolute Percentage Error.
CFO CuttleFish Optimization.
FDA Flow Direction Algorithm.
AOA Artificial Orcas Algorithm.
EGSOA Garter Snake Optimization Algorithm.
MEP Mean Error Percentage.
RMSE Root-Mean-Square Error.
MAE Mean Absolute Error.

Symbols Descriptions.
Pg Collected data.
PAgg Aggregated data.
PFgg Filled data.
PClg Cleaned data.
PPog Pre-processed data.

PSfg Statistical feature.

I. INTRODUCTION
Non-renewable energy resources depend on conventional
electric power systems like coal, gas, and oil, which results in
energy losses and greenhouse gases at the time of transmis-
sion and generation of electricity [1]. In the centralized grid
station, a huge risk occurs when the large-scale energy trans-
mission has some fault in mechanical or electrical areas [2].
The basis of ‘‘Distribution Energy Resources (DER)’’ is pro-
posed to stop these challenges, improve reliable and stable
power transmission to the end-user, and lower environmental
impact. From the above range penetration, to use the energy
storage units [3], The DER devices and sensors are effectively
employed, and the proper local power generation integration
assures the electricity grid based on the concept of ‘‘Micro
Grid (MG)’’ [4]. It is designed to regain the utility system
with contributors through cloud coupling. The MG system
mostly overcomes the challenges in the conventional grid
system, but new issues are created while managing the new
MG settings in electricity [5]. These methods are generally
based on energy harvesting resources, specifically solar and
wind renewable power resources, where these sources are

mostly uncontrollable and unstable to continuous supply [6].
Also, electricity consumption affects consumer character and
weather conditions [7]. In the literature, many advanced
strategies are designed to predict the dispatch balance, elec-
tricity consumption, and supply, providing a consistent power
supply [8].

Various studies offered different methodologies to approx-
imate the dynamic characteristics of renewable resources to
continue high accuracy [9]. In 2022, Kurdkandi et al. [35]
have introduced the effective framework of transformer-
less grid-connected inverters with two power diodes and six
power switches that can produce six voltage stages at the
outcome. In 2021, Marangalu et al. [36] have implemented
a multilevel inverter-aided on flyback converter by utilizing
the DC-DC flyback converter. In 2022, Marangalu et al. [37]
have recommended an advanced switched-capacitor grid-tied
inverter that diminished the leakage current utilizing the gen-
eral groundedmechanism. In 2022, Vankadara et al. [38] have
introduced an effective analytical model for the PV system
under partially shaded conditions. The non-linear mapping
techniques like ‘‘Artificial Neural Network (ANN)’’ are a
better modeling technique for the complex systems. The great
success achieved by the DL-based model is because of their
better learning capability in approximating the dynamical
characteristics of the energy resource. The maximum of the
DL techniques is shallow models without a strong feature-
extracting capacity [10]. The better predictive performance
failed to be achieved when the plats input and output behavior
is difficult. With the improvement of machine intelligence
for the academic community, DL has the spotlight [11]. The
cognitive process of the human brain is mainly based on
knowledge from unsupervised feature extraction [12]. For the
complex behavior of big modeling data, DL plays a better
work than the other available models. Currently, the most
successful DL model is the DBN mainly applied in computer
vision. Specifically, the present years have identified DBN
prospects in identifying, analyzing, and modeling nonlinear
systems compared with another classical algorithm.

The successful prediction of the electric supply is the
main focus of the present literature on the consumption and
resources of renewable energy generation [13]. The state-of-
the-art accuracy achieved by the hybrid model is based on DL
for power consumption and generation prediction [14]. Vari-
ous predictive designing methods are introduced to do these
works, and the present model lacks a normalized method to
achieve both operations at the time. Increasing the forecasting
result is mainly focused by the researchers without consider-
ing the computational complexity of the technique [15]. For
the electricity cost and losses, the great impact of predictive
modeling is the reduction of error rate. The machine learning
technique recently achieved huge progress in predicting and
generating renewable power with other DL methods [16].
They are ‘‘Extreme Learning Machine (ELM), Broad Learn-
ing System (BLS), Cooperative Convolution based Recurrent
Neural Network (CC-RNN), and DBN,’’ which attain good
extraction of features from the modeling features and input
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variables. Specifically, in 2022, Selvaraj et al. [39] have
concentrated on very effective DL mechanisms for diagnos-
ing the faults in solar panels. When comparing it with the
baseline models, there is a lower complexity in the compu-
tational process, and the prediction result was higher for the
designed framework.

The benefaction of the designed framework is detailed as
follows.

• To create the renewable power generation prediction
framework with a DL model that provides the effective
outcome of reliable power supply.

• To get the pre-processed data by applying different oper-
ations, to remove the unwanted data thereby helping
to improve the performance. To acquire the statistical
features by considering the different measures like vari-
ance, kurtosis, skewness, and correlation coefficient,
which represent the most essential features.

• To design the EAOA method that infers the concept of
classical AOA algorithm to enhance the system perfor-
mance and optimize weight to minimize the RMSE and
MAE.

• To develop an OWC-EDDNet model for predicting the
power generation. Here, this network is modelled with
DBN, LSTM, RNN, and DNN in that the final predicted
value is estimated by computing the optimal weights
with the help of the proposed EAOA, thereby assisting
in enhancing the system’s efficiency.

• To examine the effectiveness of the implementedmethod
by employing numerous measures and contrasting it
with diverse existing conventional techniques and opti-
mization systems.

The framework of the suggested framework is given here.
Module II offers the traditional models of the suggested work.
The framework of PGP using DL is presented in Module III.
Module IV explains the data cleaning and higher-order sta-
tistical features. The prediction using an ensemble dilated
DL network is demonstrated in Module V. The solutions
and explanation of the proposed framework are displayed
in Module VI. Finally, module VII concludes the designed
framework.

II. EXISTING WORKS
A. RELATED WORKS
In 2021, Ahmed Khan et al. [17] have designed a PGP
technique based on DL. Here the generation of different
energy resources got a high-level variation, which was more
challenging for the end-user to make a reliable power supply.
Due to the variation of time in weather conditions and energy
output based on the intermittent nature, the variations occur.
The present literature focuses the power consumption predic-
tion and generation of power. This demands a smooth smart
grid present operation with balanced energy consumption
and generation for the connected customers. The effective
and efficient hybrid model was developed for forecasting
consumption and power generation and supported energy

harvest by offering powerful predictions for renewable energy
analysis. The conventional neural network with an echo state
model was used to forecast consumption and energy gener-
ation. The meaningful pattern extracted from the historical
data using a convolution network was then forwarded to tem-
poral feature learning. The resultant spatiotemporal feature
was sent to a fully connected layer for the end prediction.
The sustainability of the recommended model decreased the
forecasting faults using ‘‘MSE, MAE, RMSE and NRMSE
metrics’’ compared to the ‘‘state-of-the-art model between
the consumers and production resources.

In 2021, Khan et al. [18] have initiated automatic power
forecasting in renewable energy resources. For renewable
energy, high-level integration was important to forecast accu-
rate solar energy that controls the electricity grid. In the
unprecedented granularities of the present data, there was
the chance to utilize a data-driven algorithm for developing
solar generation prediction. By using the LSTM and ANN’’
the improved ‘‘Stacked Ensemble Algorithm (SEA)’’ was
produced for the prediction of solar energy. With the highly
gradient boosting algorithm, the base model prediction was
integrated to improve the correctness of the prediction gener-
ation of solar PV. The designed framework estimated 4 solar
generation resources for a detailed estimation. In addition,
it offers a thorough knowledge of the learning strategy by
utilizing the additive explanation framework. The value of
the implemented method was determined by contrasting the
prediction result with single LSTM, Bagging, and ANN.
As a result, the developed DSE-XGB model exhibited better
consistency combination and stability.

In 2019, Hong et al. [19] have introduced the renewable
energy power generation resource based on the DL method.
The fluctuation of wind speed was based on the generation of
wind power associated with uncertainty. The more important
factor for efficient power system tasks was an effective fore-
casting of wind power creation. This hybrid model depends
on the CNN, which cascaded ‘‘Radial Basis Function Neural
Network (RBFNN) with Double Gaussian Function (DGF)’’
as its activation function. The wind power behavior was
extracted using the CNNby the pooling operation, kernel, and
convolution. The DGF incorporated RBFNN with uncertain
behaviors. The wind form measured the realistic wind power
generation used in the simulation. By using the ‘‘Tensor Flow
and Keras Library,’’ the developed method was introduced.
The solution revealed the simulation of the implemented
framework was more accurate than the traditional models.

In 2022, Shabbir et al. [20] have implemented a new
method using energy prediction based onDL in the renewable
energy resource. Due to the number of factors, the stabil-
ity of the wind energy was featured based on the ‘‘season,
climate area, weather and time of the day’’. Further, new chal-
lenges were started from the instability of the wind energy
to the electric power grid like flexibility, power quality, and
Reliability. The transition required advanced techniques for
predicting wind energy for accurate forecasting. DL and
machine learning closely tied the wind energy prediction to
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form the intelligent energymanagement paradigm. The short-
term wind energy prediction issues were attempted in this
article using historical wind energy generation data. Also,
various trending DL algorithms were implemented for the
day-ahead prediction. The elaborated exploratory analysis
was conducted for the selection of system attributes. The
Estonian wind energy real-time creation resource trained all
the models with a frequency of 1 hour for the first time. For
Estonia, fostering an efficient forecasting technique was the
main objective. The result of the comparative analysis showed
the implemented method was more efficient when compared
with the TSO forecasting algorithm. Therefore, the effective
computation and more suited method in DL was the RNN-
LSTM for forecasting wind energy in Estonia.

In 2022, Alshammar et al. [21] have proposed a renewable
energy forecasting resource using DL. Renewable energy
sources remain important substitutes for the standard generat-
ing of undeniable energy. The deployed wind power capacity
presented half the capacity compared to other replenished
power sources. Wind power generation results from the
seasonality and changeability in the ‘‘direction, humidity,
atmospheric pressure, precipitation, and wind speed’’. The
‘‘Deep Recurrent Neural Network (DRNN)’’ was employed
for establishing the prediction of wind speed, hence, applied
the multi-step and single-step DRNN. The ‘‘Mayfly Opti-
mized DRNN (MO_DRNN)’’ regards the activation func-
tions like ‘‘Rectified Linear Unity (ReLU) and Stacked CNN
(SCNN)’’. The proposed MO-DRNN method minimized the
error rate of the FS procedure.

In 2020, Wang et al. [22] have suggested energy predic-
tion based on the DL method. The ‘‘Continuous Stirred-tank
Reactor (CSTR)’’ was largely utilized in wastewater treat-
ment. Due to the high difficulty of attaining accurate system
identification, the industrial process control problem was
challenging. To control the CSTR system, the ‘‘Deep Learn-
ing based Model, Predictive Control (DeepMPC)’’ was
proposed in the work. The developed DeepMPC contained a
‘‘Growing Deep Belief Network (GDBN)’’ and the optimal
controller. At first, the size was determined automatically
by the GDBN to attain maximum performance with trans-
fer learning in the system identification. For the controller
system, it acts as a predictive model. The controller’s
dynamic accurately approximated the model with the regular,
ultimately bounded error. The quadratic optimization was
conducted in the second phase to obtain the optimal con-
troller. Here the convergence and stability of DeepMPC were
determined. In the end, the second-order CSTR system was
controlled and modeled by the DeepMPC. From the result,
the DeepMPC showed better modeling, anti-disturbance, and
tracking performance than another baseline method.

In 2021, Qian et al. [23] have initiated the energy prediction
technique based on a DL model. The reliable power supply
of different energy generations with high-level variation was
significantly hard for the end user. Because of the intermit-
tent characteristic of time-changing weather situations and
energy output, the variation occurs. The recent focus of the

literature was the improvement in forecasting consumption
and power generation, which demands the smooth operation
of the present smart grids with the consumption and gen-
eration of energy for related customers. Motivated by the
load prediction application, suggested the effective and effi-
cient model for predicting the consumption and generation of
power contributing to the energy by offering high forecasting
information to analyze the renewable energy. The echo state
network with CNN was employed to forecast the consump-
tion and creation of the renewable energy. The CNN extracted
the significant features from the previous information, which
were subjected to the echo stage network for learning the
temporal feature. The resultant feature vector was sent to the
fully connected layer for the prediction. After the extensive
experiment, the implemented framework was modeled over
the ‘‘DL and machine learning technique’’. Here the result
showed the suggested framework minimized the prediction
faults by employing various measures.

In 2023, Thejus et al. [24] have introduced a DL-based pat-
tern model for renewable energy power prediction with car-
bon emission. The challenge was attaining carbon neutrality
and real-time distributed management for renewable energy
devices. Here was the ‘‘Quantum-Inspired Deep Reinforce-
ment Learning (QDRL)’’ with a multi-agent approach for
real-time distributed creation control the renewable energy.
Here the DRL approach was compared with nine QDRL
approaches under two RES. The QDRL contained more fre-
quency deviation and minor carbon emission, obtained from
the numeric result under the complex RES. The state of
prosumers matched the quantum state of QDRL. The result
verified that the multi-agent method controlled the real-time
control problem for QDRL exploration and exploitation.

B. RESEARCH GAPS AND CHALLENGES
The wide range changes of in distinct energy creation
resourcesmake a sufficient power supply very difficult for the
end-users. These changes happen because of the intermittent
characteristics of the time-changing weather situations and
the energy outcome. Therefore, a new DL-based renewable
PGP model is introduced to win over the challenges. The
features and challenges of renewable PGP systems are given
in Table 1. CNN [17] can produce high accuracy in prediction
and provides sufficient energy transmission by matching the
consumption and generation of power. Yet, an enormous
amount of labeled data is demanded to train the variables, and
is time-consuming. ANN and LSTM [18] can handle more
than one task simultaneously and provide permanent memory
for storing the data. But, the small variation in the given data
may lead to substantial changes in the forecasting values that
also trouble the model’s reliability. RBFNN [19] tolerates
input noises and can handle high-dimension and non-linear
data. But, slow computation leads to training difficulties
and high adversarial attacks, which leads to misclassification
in DL models. RNN-LSTM [20] can approximate arbitrary
non-linear systems with high precision. But, the model’s
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TABLE 1. Features and challenges of existing deep learning-based renewable power prediction systems.

Reliability, flexibility, and power quality are low, and the
vanishing gradient problem is high in this model. DRNN and
SCNN [21] reduce the overfitting issue, and the issue regard-
ing lower training rates is reduced by using this model. Yet,
the performance is limited and affects the privacy and security
of data. GDBN [22] computation expense is very low because
the layers are linearly connected in the network with a feed-
forward mechanism. Even though the hardware requirements
are so expensive and complex, and huge amount of data is
needed for the computation. CNN with Echo state [23] have
a simple training model and better modeling ability to solve
the overfitting problem in the network. But, it does not apply
to real-world scenarios of collection of data. QDRL [24] is
used for real-time distribution of energy and generation, and

reinforcement learning is used to solve complicated tasks
with less prior information. But, it produces overload in the
network, which affects the accuracy of the result, and the
maintenance cost is also high. Therefore, the issues addressed
in the conventional approaches pave the way to develop a new
DL-based energy consumption prediction model.

C. MOTIVATIONS
The conventional renewable power prediction approaches
didn’t extract the significant features from the original data
that included more outliers. This leads to inaccurate pre-
dictions. Generally, the input data contains lots of noise
and outliers. These are removed by the operation called
pre-processing. However, most of the conventional works
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didn’t pre-process the data during the prediction process. This
reduced the effectiveness of the model. Hence, the developed
model initially, pre-processed the data before predicting the
data. Also, considering the significant features for accurate
power prediction improves the correctness of the outcome.

Hence, the implemented framework utilized the feature
extraction process. A lot of the conventional works failed
to utilize this process. Further, some of the conventional
techniques utilized single techniques to predict the. This
reduced the efficacy of the model. Hence, this presented work
utilized various powerful DL techniques to predict renewable
powerwith low error rates.Moreover, the implementedmodel
highly minimized the power consumption, processing time,
cost, and hardware requirements. Moreover, this model pro-
vides a reliable and robust framework.

III. INTELLIGENT MODEL OF RENEWABLE POWER
GENERATION PREDICTION USING
ENSEMBLE-BASED DEEP
LEARNING MODEL
A. EXPLAINING THE RECOMMENDED METHODOLOGY OF
POWER GENERATION PREDICTION
Due to the growth of the economy and population, there
is a sudden increase in power consumption, which requires
the demand for energy resources. The exceeding demand
depletes conventional fossil resources of electrical energy.
At the same time, renewable source wind energy has
rapidly developed and received global attention. Wind energy
reduces the pressure of energy demand and provides clean
energy, highly reducing environmental pollution. The high-
technology wind PGP affects the power grid, stability, power
quality, and balance between power generation and load
power grid processing. It is the major significant for efficient
operation, stability, and security. Due to the non-linear wind
speed behavior, the correct forecasting of the power creation
is a difficult task, which has a high rate of changes with no
typical patterns and mostly depends on separate atmospheric
temperature and pressure. This non-linear characteristic of
wind speed makes extracting features and accuracy in wind
power creation forecasting difficult. Because of the con-
ventional neural network’s capacity to overcome issues like
higher time in training and minimum convergence, the DL
method is getting high attention among researchers. Because
of the improvement and development in the sector of ‘‘Arti-
ficial Intelligence (AI) based prediction, ‘‘Machine learning
(ML) and DL have successful tools for resource energy
prediction. More forecasting methods to predict power gener-
ation include statistical models, physical methods, ANN, and
hybrid intelligent methods. Other prediction models, such
as the restricted Boltzmann machine, LSTM, auto-encoder,
and CNN, have been used to predict wind power creation.
Because of the unpredictable, irregular, and inconsistent char-
acter of the resource energy data, consumption forecasting
and energy generation remain difficult tasks. In contrast to
the traditional approaches, the DL approach for time series

prediction often lacks interpretability. This is one of the
most challenging issues when applying those approaches in
practice. To overcome such limitations, EAOA is proposed to
predict the wind power forecasting is presented in Figure 1.
The new prediction framework for renewable power gen-

eration is developed according to the DL to provide a
continuous power supply to the end user. At first, the data
accumulated by the data aggregation in the structured and
normalized format. Data scaling and cleaning are performed
to reduce the changes in the value range and outliers. From
this process, a higher-order statistical feature was achieved.
Then the OWC-EDDNet helps to predict the generated power
from the statistical feature. In this network, ‘‘RNN, LSTM,
DBN, and DNN are employed to forecast renewable power
generation. The optimal weight ismultiplied by the prediction
score result from the deep networks to attain the forecasting
result. Here the weights are optimized with the help of devel-
oped EAOA. Among the classical algorithms, the extensive
empirical result was determined and forecast the effectiveness
of the suggested energy generation forecasting method.

B. DATASET DETAILS
The solar power creation and sensor information for two
power plants is utilized from the link:
‘‘https://www.kaggle.com/datasets/anikannal/solar-power
-generation-data: access date: 2023-08-08’’. The two solar
power plant data over 34 days were collected. From the power
generation data, the gathered data is represented by Pg, where
g = 1, 2, · · · ,G and G is the obtained data.

C. DATA AGGREGATION
Data pre-processing is the most important and influential
for generalization performance for the prediction process.
Data aggregation is the first phase of data preprocessing. The
gathered data from the dataset Pg are given as input here.
The significant concept of data aggregation is to group all
the gathered data. Here, the aggregation combines the data
from different sources with various formats into coherent
recompilation, generally into a database. Aggregation takes
place for the same type of data with multiple problems. The
aggregated data from this phase is denoted as PAgg .

IV. DATA CLEANING AND SCALING, HIGHER ORDER
STATISTICAL FEATURES, AND IMPROVED HEURISTIC
ALGORITHM FOR PREDICTION
A. DATA CLEANING AND SCALING
The data aggregate output from the previous phase is input
to data filling. The missed value and characters in the data
decreased the model’s effectiveness. Here the output data PAgg
from the data aggregation is given as input. Here the original
data is reformed by filling in the missed character and data
values. The output obtained from the data filling is denoted
as PFgg .

Data Cleaning is the third phase of data pre-processing.
Here the output from the data filling PFgg is introduced as
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FIGURE 1. Diagrammatic view of power generation prediction model using developed EAOA.

input. In this method, the data were organized and corrected,
free from inaccuracy, messy, and poorly formatted data. The
cleaned data is obtained from the data cleaning process and
denoted as PClg .
The final phase of data preprocessing is the outlier removal.

Here the cleaned data output PClg is given as input. In this
phase, the problematic outliers from the collected data are
eliminated, which causes poor sampling, measurement error,
and processing errors. The output from the outlier removal is
the pre-processed data, represented as PPog .

B. HIGHER ORDER STATISTICAL FEATURES
In order to extract the feature from the pre-processed data,
higher-order statistical measurements are employed. In this
phase, the pre-processed data PPog fed into statistical feature
extraction. Here ‘‘variance, kurtosis, skewness, and correla-
tion coefficient, ’’ are utilized in this process.

1) VARIANCE
The average square variation between the whole data point
and the center of the distribution measured by the average is
shown in Eq. (1)

Var =

1
n

∑n
i=1 (P

po
g − ḡ)2

−
(
1
n

∑n

i=1
(Ppog − ḡ)2)2∑n

i=1
(Ppog − ḡ) (1)

2) KURTOSIS
It explains the peak relative sharpness to a normal distribution
in a frequency distribution curve shown in Eq. (2)

Kur =

1
n

∑n
i=1 (P

po
g − ḡ)4[

1
n

∑n
i=1 (P

po
g − ḡ)2

]2 (2)

3) SKEWNESS
This method determines the symmetry measures. The
dataset is symmetrical when the right and left sides of
the central point are similar. The skewness is defined in
Eq. (3)

Ske =

1
n

∑n
i=1 (P

po
g − ḡ)3[

1
n

∑n
i=1 (P

po
g − ḡ)2

]3/2 (3)

4) CORRELATION COEFFICIENT
It is the calculation of the relationship between twomeasures.
It describes each other’s by utilizing the measures equated in
Eq. (4)

Cor =

1
n

∑n
i=1 (P

po
g − g)(hi − h̄)√

1
n

∑n
i=1 (P

po
g − ḡ)(hi − h̄)

2 (4)
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5) SPECTRAL CENTROID
It is the frequency spectrum average amplitude weight which
related to the brightness or human perception of the instru-
ment. The Spectral centroid is formulated in Eq. (5)

Spc =

∑n
i=1 |Ppog (gi, gi)|gi∑n
i=1 |Ppog (gi, gi)|

(5)

6) SPECTRAL FLUX
It is the calculation of total spectral changes. This is
determined by the difference between successive frames of
normalized magnitude spectra and given in Eq. (6).

Spf =

(∑n

i=1
|Ppog (gi, gi) − Ppog (gi−1, gi−1)|

)
(6)

Here the initial statistical data is PPog which is obtained from
the preprocessed data. ḡ is themain probability attained value,
n is the count of the value. hi is the value present in the given
data. gi frequency related to every magnitude element. In the
final, the statistical data is extracted as a feature and termed
as PSfg .

C. PARAMETER TUNING USING EAOA
Here the suggested algorithm, EAOA, is employed for param-
eter optimization to enhance the prediction outcome. The
optimization is designed based on traditional AOA. The mer-
its of using AOA can solve the hard problem and yield the
best success rate. Also, to improve the efficiency of AOA,
an implementation of a random factor r in Eq. (17) for the
recommended EAOA is expressed in Eq. (7).

r =
(bestfit ∗ currentfit)
(worstfit ∗ currentfit)

× 2/3 (7)

AOA [25]: It is based on the resident orca’s manner of
living and their characteristics. To attain the prey, the orcas
use unique, diverse techniques. By using their collective
intelligence, they move to catch the easy prey. Orcas use
echolocation for the tough once before hunting. This charac-
teristic of the hunting method and echolocation mechanism is
simulated in the AOA in the exploitation phase. The female
orcas, independent after the descent, simulate the explo-
ration phase. The mechanical formation of the algorithm is
explained below.
Modeling collective motion: The orcas avoid collision by

moving in such a way with the neighboring flock mates. This
is to order the velocity of the nearest flock mates and be
in the center of the flock. The motion of the orca is based
on the present speed of the nearby pod performance of the
clan of their own. The algorithm simulates this behavior for
searching for the optimal outcome in the large search place.
At the given time, the orca is simulated by each solution,
which evolves to the optimal solution. It is separated by the
velocity that evaluates the fitness function, directs its motion,
and measures the performance with an optimal solution. The
group of artificial orcas initializes the process, aiming to find
the best solution. It renews various iterations in the search
space until the end of seeking the optimal solution with the

best quality. The entire orca upgrades its speed at all iterations
and the place is based on its clan mates to find the congeners
in the swarm. The updating of the orcas is expressed in Eq. (8)

wti = xiw
t−1
i + xQi ∗ e(y∗Qi, y

t−1
i ) + xdi ∗ e(y

∗
di, y

t−1
i ) (8)

Here y∗Qi is the best position, y
∗
di is the best solution by the orca

in the clan di. w
t−1
i is considered as the velocity of the orca at

the period t − 1. xpi is the social skill of the orca that belongs
to the pod Qi. The significance of the orca simulates the
pod, and the determination is given in Eq. (9). Eq. (10) also
calculates the orca skill, which belongs to the contribution of
the separate clan.

xQi =
g(yt−1

i )∑
j∈Qi g(y

t−1
j )

(9)

xdi =
g(yt−1

i )∑
j∈di g(y

t−1
j )

(10)

Here the factor xdi is the orca’s social skill g(y) is the fitness
function of the solution y. The term yti is the orca position at
the time t , expressed in Eq. (11)

yti = wti + yt−1
i (11)

Themotion of the water wave to take the single will take wave
forward, which is determined in Eq. (12)

yti = γ ∗(sin
2π
M
yti −

2π
M
t) (12)

Here γ is the wave amplitude with the empirical parameter.
The factor M is the wavelength and T is the period. Thus,
T = 1 and M = s ∗ T = s. The term s is the sound speed
and t is the time for a wave during all iterations. If this stage
does not end with the optimal solution, then the echolocation
stage occurs.

Modeling Echolocation: Orcas generally use echo location
that has a strong sound impulse emission and allows the
surrounding object perception. The vibration in the sound
crosses the water and brings the prey information. The orca
uses high speed and is designed according to the behavior of
the echolocation mechanism. In the first phase, every individ-
ual in the population returned with frequency and loudness.
The variation of frequency between the parameters is gmin and
gmax which described in Eq. (13)

gti = gmin + (gmax − gmin)β (13)

Here, β is the random factor in the limit [0, 1]. The orca’s
loudness is highly strong at the start of echolocation; it
reduces when it is near the prey. It changes from positive to
minimum value formulated in Eq. (14)

Bti = δBt−1
i (14)

Here δ is the empirical parameter, which reduces in all itera-
tions. The velocity of the same loudness expressed in Eq. (15)
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and Eq. (16) determines the iteration to improve the matriarch
position.

wti =
1
gti
Bti (15)

yti = wti + yt−1
i (16)

The Narrowing Enriching Mechanism: Here, at all iterations,
orcas reduce the size of the circle and shrink to separate
distance from prey. Here the term r is the random factor which
is modified in the proposed EAOA from Eq. (7) to improve
the efficiency of the implemented method. The first position
of orcas is modified in Eq. (17), and the reduced circle for
iteration is shown in Eq. (18)

yti =

{
yt−1
i + e(yt−1

i , y∗) − s ife(yt−1
i , y∗) > r

yt−1
i + s− e(yt−1

i , y∗) otherwise
(17)

yti = yt−1
i + r − b (18)

For the Archimedes spiral motion, the orcas place themselves
at a similar distance, and the simulation is expressed in
Eq. (19)

yti = yt−1
i − 2πm (19)

Between the enriching narrow mechanism, the probability α

is chosen, and the spiral design upgrades the place of orcas in
Eq. (20)

yti =

{
yt−1
i + r − b ifq < α

yt−1
i − 2πm otherwise

(20)

Exploration Stage: With the characteristic of the female resi-
dent orcas leaving the family, the exploration phase brings out
the arbitrary matriarch from the clan. Based on the capacity,
it creates a different new population from the old one. It helps
to prevent premature convergence. The new position is for-
mulated in Eq. (21)

y∗new = y∗ +MaxDis tan ce(y∗) (21)

Here y∗ is the selected matriarch, y∗new is the new position,
MaxDis tan ce(y∗) and is the matriarch distance according to
the capacity.

The pseudocode for developed EAOA is presented in
Algorithm 1.
The flowchart for the implemented IKOA technique is

represented in Figure 2.

V. PREDICTION USING ENSEMBLE DILATED DEEP
LEARNING NETWORK USING OPTIMAL WEIGHT
COMPUTATION
A. NETWORKS USED IN ENSEMBLE
EDDNet contains a multilayer neural network that progres-
sively extracts the feature from the input data and produces
predicted output based on the features. The feature extracted
data from the higher order statistical feature PSfg is given as
input to every below network for the predicted outcome.

Algorithm 1 EAOA
Initialize the parameter of EAOA.
Calculate the population and highest iteration value
Consider the arbitrary factor as r
While the iteration commences

If r =
(bestfit∗currentfit)
(worstfit∗currentfit) × 2/3

EAOA is processed
Upgrade the best outcome
Calculate the fitness value of all individuals.
Generate the population for a new place in Eq. (21)

End if
End

FIGURE 2. Flow chart for proposed EAOA.

DRNN [31]: The variants of RNN are used classically for
different sequential learning problems. The gradient prob-
lem of temporal dependencies inhibits their learning range
and has minimum computational efficiency. The feature PSfg
is given as input to DRNN, which is the cell-independent,
multilayer variant of RNN, which overcomes the challenges
of computational efficiency and flexibility according to the
RNN block of the neural network. Here, the single-layer and
parallel skip connections minimize the sequence length. And
also increases the computational cost when compared with
traditional RNN. The information flow connection among
the layers skips by the dilation by avoiding specific timestep
equated in Eq. (22)

d (m)u = g(y(m)u , d (m)
u−t (m)

) (22)

Here d (m)u is the cell in a layer m at the time u. t (m) is the
skip length and g() is the RNN operation. Here, the earlier
cell state depends on regular skip connection is deleted for
effective dependence on a skipped cell stage. This effectively
handled the existing gradient problem. The dilation of themth
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layer t (m) determined in Eq. (23)

t (m) = Nm−1 (23)

By using the mean recurrent length, the efficiency of DRNN
qualified and measured the average dilations.
DLSTM [32]: LSTM is a modern kind of RNN with the

learning capability of long-term dependencies in sequential
data. The general LSTM block contains a memory cell, which
maintains the nonlinear regulator called gates. It helps the
flow of data controls in the block. In the LSTM block, there
are hidden states and cell states. The date from the historical
time sequences is in the cell stage. The gate helps to ignore
or add data to the cell stage. The gates are input, output,
and forget gate. Each time step uses the previous state of the
network. Here the input PSfg helps to determine the output and
update the cell stage. The hidden stage controls all the gates
and the input. The dilated expression of the mathematical
LSTM block with the time step is in Eq. (24).

dmt = gmt ⊗ dmt−1 + jmt ⊗ hmt (24)

Here t is the time step, ⊗ is the element-wise product that
refers to the first layer of the DLSTMmodel with the standard
LSTM block. The timestep with the hidden state is expressed
in Eq. (25)

imt = pmt ⊗ σd (dmt ) (25)

Here, σc is the state activation function, which is referred to
as a hyperbolic tangent function. The determination of gates
is shown in the below Equations.

gmt = σh(Xmg yt +Wm
g i

m
t−1 + cmg ) (26)

jmt = σh(Xmj yt +Wm
j i

m
t−1 + cmj ) (27)

hmt = σd (Xmh yt +Wm
h i

m
t−1 + cmh ) (28)

pmt = σh(Xmp yt +Wm
p i

m
t−1 + cmp ) (29)

Here X , W and c are the input weight, recurrent weight, and
biases σh are the sigmoid gate activation function. A DLSTM
block receives the input gate but not the previous one dt−1
and it−1 but the old state dt−e and it−e where e > 1 is a
dilation. The hierarchical dilation is stacked with multiple
dilated layers to construct the system to increase the ability
to learn long-term dependence from different domains. For
some seasonal time series, the DLSTM is useful where the
series element has a cyclic character. This character model is
incorporated by dilation related to seasonality.
DDBN: DBN [33] in machine learning is more famous

based on the semi-supervised learning method. It contains
two state learning processes supervised learning followed the
unsupervised learning. The weight and biases were evalu-
ated using the unsupervised stacked ‘‘Restricted Boltzmann
Machines (RBM)’’ between the visible and hidden layers.
Two adjacent layers, which are hidden layers stacked in the
RBM layer. RBM connection with adjacent nodes, which is
an energy-based function. The fine-tuning supervision fol-
lowed the pre-training with the biases and weighted neurons
to increase the parameters.

The specialized model of DBM has a hidden layer of DL.
More dilation and descriptive features are held in the upper
layer to find the solution. DBNhas the advantage of achieving
high performance with a minimum number of training sets
compared with other classical neural networks. Using fine-
tuning, the weights and biases are updated to enrich the
model’s correctness. The probabilistic of DBNwith input PSfg
determined in Eq. (30)

Q(y, i1, . . . , im) =

(∐m−2

l=0
Q(il |i1+1)

)
Q(im−1, im) (30)

Here Q(im−1, im) is the conditional distribution between the
nearby layers and i0 is the input vector. The energy function
for (il−1, il) expressed in Eq. (31)

F(il−1, il; θ) = −

∑El−1

u=1

∑El

t=1
x lut i

l−1
u ilt

−

∑El−1

u=1
cuil−1

u −

∑El−1

t=1
ct it (31)

Here θ = (xut , c, d) are the parameters of DBN xut is the
weight among uth neurons in the layer il−1 and t th neurons
in il layer. The distribution energy function is expressed in
Eq. (32)

Q(il−1
; θ ) =

∑
il exp(−F(i

l−1, il; θ))∑
il−1

∑
il exp(−F(il−1, il; θ ))

(32)

The weight is refined using supervised learning on gradient
descent. This fine-tuning process has obtained a higher clas-
sification performance. The DDBNmodel is formed by using
the dilated on traditional DBN. The dilated [40] convolution
is incorporated into the traditional DBN network. It increases
the effectiveness of the DBN network. Moreover, DDBN
has demonstrated the prediction task to improve accuracy.
It acquiresmore information by a large receptive field, and the
output includes a wide amount of feature data. The dilation
expands the receptive field to capture more information.
DDNN: The DNN [34] consists of an input variable, output

variable, and weights. The amount of processing units made
the layers in the DNN. The feature PSfg is fed into the first
layer. Depending on the structure second layer is the hidden
layer. And then the final layer is the output layer which
depends on the activity of the hidden layer. The process
of trial and error specifies the neurons and layers. In every
iteration, the DNN training phase is updated according to
Eq. (33)

xkj = xkj + ηδkykj (33)

Here ykj is the input unit, xkj is the jth input weight, η is the
learning rate. The output layer δ is upgraded utilizing Eq. (34)
and the hidden layer δ is upgraded utilizing Eq. (35).

δl + pl(1 − pl)(ul − pl) (34)

δi + pi(1 − pi)
∑

l∈output

xliδl (35)

Here Pl and Pi is the generated output with the hidden unit. ul
is the target output between the number of hidden layers. The
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FIGURE 3. Structural view of developed OWC-EDDNet.

DNN modifies itself to use the filter parameters in various
ways to form aDDNN.Here also, the dilated convolution [40]
is utilized to construct the DDNN network. The DDNN
applies the same filter at various ranges for different dilation
factors. The proper implementation of the dilated operator
does not include the dilated filter construction. It increases
the receptive field and learns the significant features for
producing more effective solutions.

B. OWC-EDDNET
In EDDNet, each of the adapted networks is constructed
by different layers to predict the fundamental data from the

given input. One advantage of using EDDNet is that DRNN
provides better performance with exponentially increased
dilation for the prediction model. DLSTM provides high
accuracy in forecasting and the most precise prediction.
DDBN model also achieves maximum accuracy rate and
is used to classify features. At the same time, the models
also have the drawbacks such as network skip connection,
flexibility, andweight balance issues. To solve the limitations,
the OWC-EDDNet is proposed, with the weight optimized
by using developed EAOA. The output from each network
is multiplied with weight to determine the average from all
prediction scores and evaluate the final predicted outcome.
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The final prediction with the optimal weight was determined
using Eq. (36).

Finalprediction

= w1 ∗ ps1 + w2 ∗ ps2 + w3 ∗ ps3 + w4 ∗ ps4 (36)

Here w1, w2, w3 and w4 is the multiple predicted scores
fromRNN, LSTM,DBN, andDNNwith weights. The weight
ranges from [0.01−0.99]. ps1, ps2, ps3 and ps4 is the predic-
tion score for RNN, LSTM, DBN, and DNN. The objective
function of the developed OWC-EDDNetis explained in
Eq. (37)

ObjFn = argmin
{w1,w2,w3,w4}

[RMSE +MAE] (37)

RMSE is the Root-Mean-Square error, MAE is the Mean
Absolute Error respectively.
RMSE: It is the quadratic scoring rule, which measures the

average magnitude error. The squared difference between the
actual and prediction observation is shown in Eq. (38)

RMSE =

√√√√√ e∑
i=1

(ni − mi)2

p
(38)

MAE: It measures the average magnitude error in the pre-
diction set. The Individual variations have equal weight as
measured in Eq. (39)

MAE =

e∑
i=1

(ni − mi)

p
(39)

Here n and m is the observed and predicted value, pand e
overall dimension, and fitted point. The average from all
the prediction scores is determined, and the final predicted
outcome is evaluated. The diagrammatic view of the proposed
OWC-EDDNet is explained in Figure 3.

VI. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
The developed renewable power generation and consump-
tion prediction framework was executed by employing the
Python Paradigm, where the experimental estimation was
done to show the proposed model’s effectiveness. The pro-
posed model has 10 populations and included 4 chromosome
lengths. Moreover, it has 50 highest iterations. The tradi-
tional models such as ‘‘CuttleFish Optimization (CFO)’’
[26], ‘‘Flow Direction Algorithm (FDA)’’ [27], ‘‘Garter
Snake Optimization Algorithm (EGSOA) [28]’’ and ‘‘Arti-
ficial Orcas Algorithm (AOA) [25]’’ were utilized. Also the,
classifiers like ‘‘RNN [20]’’, ‘‘LSTM [18]’’, ‘‘DBN [29]’’ and
‘‘EDDLNet [30]’’ were adopted.

B. PERFORMANCE MEASURES
MEP: ‘‘Mean error percentage’’ is to estimate the error by the
variation of estimated and actual value is defined in Eq. (40)

MEP =
100%
p

e∑
i=1

(
mi − ni
mi

)
(40)

FIGURE 4. Cost function analysis of implemented power generation
prediction model with optimized methods.

SMAPE: ‘‘Symmetric Mean Absolute Percentage Error’’ is
to measure the accuracy according to the relative fault in
Eq. (41)

SMAPE =
100%
p

e∑
i=1

(
ni − mi
ni + mi

/
2

)
(41)

MASE: ‘‘Mean Absolute Scaled Error’’ is to measure the
average forecast correctness id formulated in Eq. (42)

MASE =
1
p

e∑
i=1

(
mi − ni
mi

)
(42)

One-Norm: It is the calculation of the total vector magnitude
is shown in Eq. (43)

ON =

∑
i

(Ki) (43)

Two-Norm: It describes the optimal distance from one area to
another computed in Eq. (44)

TN =

(
e∑
i=1

K 2
i

)1/2
(44)

Infinity-Norm: It is to calculate the vector length by using
Eq. (45)

IN = max
1≤i≤e

(Ki) (45)

Here ‘K’ is the matrix value.

C. PERFORMANCE MEASURES
MEP: ‘‘Mean error percentage’’ is to estimate the error by the
variation of estimated and actual value is defined in Eq. (46)

MEP =
100%
p

e∑
i=1

(
mi − ni
mi

)
(46)

SMAPE: ‘‘Symmetric Mean Absolute Percentage Error’’ is
to measure the accuracy according to the relative fault in
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FIGURE 5. Performance evaluation of implemented power generation prediction model contrast with multiple existing algorithms regarding
‘‘(a) MEP, (b) SMAPE, (c) MASE, (d) MAE, (e) RMSE and (f) ONE-NORM.’’.

Eq. (47)

SMAPE =
100%
p

e∑
i=1

(
ni − mi
ni + mi

/
2

)
(47)

MASE: ‘‘Mean Absolute Scaled Error’’ is to measure the
average forecast correctness id formulated in Eq. (48)

MASE =
1
p

e∑
i=1

(
mi − ni
mi

)
(48)

One-Norm: It is the calculation of the total vector magnitude

is shown in Eq. (49)

ON =

∑
i

(Ki) (49)

Two-Norm: It describes the optimal distance from one area to
another computed in Eq. (50)

TN =

(
e∑
i=1

K 2
i

)1/2
(50)
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FIGURE 6. Performance evaluation of implemented power generation prediction model contrast with multiple classifiers regarding ‘‘(a) MEP,
(b) SMAPE, (c) MASE, (d) MAE, (e)RMSE and (f) ONE-NORM.’’

Infinity-Norm: It is to calculate the vector length by using
Eq. (51)

IN = max
1≤i≤e

(Ki) (51)

Here ‘K’ is the matrix value.

D. COST FUNCTION EVALUATION OF THE SUGGESTED
FRAMEWORK OVER DIFFERENT OPTIMIZATION
TECHNIQUES
The convergence determination of the designed method is
accomplished, depicted in Figure 4. The cost function anal-
ysis estimates the PGP device. Various optimization models
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TABLE 2. Comparative analysis of the developed power generation prediction model over distinct algorithms.

TABLE 3. Comparative analysis of the implemented power generation prediction framework over distinct classifiers.

TABLE 4. Statistical evaluation of the developed power generation prediction model over distinct algorithm.

differentiate the proposed system. In this, the cost function
is varied with the amount of iterations. The iteration value
starts from 0 to 50, whereas the measure of the cost function
commences from 1.4 to 2.8. The cost factor of the sug-
gested model is decreased by 82 % of CFO-OWC-EDDNet,
83.5 % of FDA-OWC-EDDNet, 84.2 % of EGSOA-OWC-
EDDNet and 85 % of AOA-OWC-EDDNet appropriately
for the 10th iteration. Thus, the findings explained that the
designed framework has better management for cost.

E. PERFORMANCE ANALYSIS OF THE RECOMMENDED
MODEL OVER DIFFERENT OPTIMIZATION MODELS
The performance estimation of the developed model over
different optimization models is shown in Figure 5. Here, the
functionality measures of the developed model are estimated
with the activation function. The variable of the activation
function varies as linear, ReLU, leaky ReLU, tanH and
sigmoid. From Figure 5 (a), the MEP of the implemented
model decreased by 5.3 % of CFO-OWC-EDDNet [26],
5.9 % of FDA-OWC-EDDNet [27], 3.8 % of EGSOA-
OWC-EDDNet [28] and 4.5 % of AOA-OWC-EDDNet [25]
respectively, when considering the activation function as
ReLU. This confirms the suggested model has better perfor-
mance than other models.

F. PERFORMANCE EVALUATION OF THE RECOMMENDED
MODEL OVER DIFFERENT CLASSIFIERS METHODS
The performance analysis of the suggested method over dif-
ferent classifiers is shown in Figure 6. Here, the functionality

measures of the proposed method are calculated with the
activation function. From Figure 6 (e) the RMSE of the
recommendedmodel is minimized by 24% of RNN [4], 25%
of LSTM [2], 19 % of DBN [29] and 23% of EDDLNet [30],
respectively, when considering the activation function as
linear. This confirms the suggested model has better perfor-
mance than other models.

G. PERFORMANCE EVALUATION OF THE RECOMMENDED
MODEL OVER DIFFERENT CLASSIFIERS METHODS
The performance analysis of the suggested method over dif-
ferent classifiers is shown in Figure 6. Here, the functionality
measures of the proposed method are calculated with the
activation function. From Figure 6 (e) the RMSE of the
recommendedmodel is minimized by 24% of RNN [4], 25%
of LSTM [2], 19 % of DBN [29] and 23% of EDDLNet [30],
respectively, when considering the activation function as
linear. This confirms the suggested model has better perfor-
mance than other models.

H. COMPARATIVE ANALYSIS OF THE RECOMMENDED
MODEL OVER VARIOUS OPTIMIZATION MODELS AND
CLASSIFIERS.
Table 2 and Table 3 shows the comparative analysis of the
implemented model over various optimization models and
classifiers accordingly. From Table 2, the MAE of the devel-
oped model reduced by 85 % of CFO-OWC-EDDNet, 96
% of FDA-OWC-EDDNet, 23 % of EGSOA-OWC-EDDNet
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and 42% of AOA-OWC-EDDNet respectively. This confirms
the suggested model has better efficiency than other models.

I. STATISTICAL ANALYSIS OF THE RECOMMENDED
MODEL OVER VARIOUS OPTIMIZATION MODEL
The statistical evaluation of the recommended model is esti-
mated over different optimization models shown in Table 4.
The designed model raised by 9.4 % of CFO-OWC-EDDNet,
15.1 % of FDA-OWC-EDDNet, 11.4 % of EGSOA-OWC-
EDDNet And 11.9% of AOA-OWC-EDDNet by taking the
best measures. Hence the outcome shows the suggested
model outperformed better than other existing models. 11.9%
of AOA-OWC-EDDNet by taking the best measures. Hence
the outcome shows the suggested model outperformed better
than other existing models.

VII. CONCLUSION
The framework of renewable power generation forecasting
with the developed EAOA model was implemented. At first,
the power plant data were collected and then the data was
pre-processed by data aggregation and scaling process. From
the pre-processed data the features were extracted by higher-
order statistical features. The output feature was given to
OWC-EDDNet, where each network predicted the generated
power and the weight-optimized by the developed EAOA
for better prediction. Finally, the average of the prediction
score was evaluated. The efficacy of the designed framework
was analyzed by various performance factors and exist-
ing techniques. The MAE of the implemented model was
decreased by 10.5 % of CFO-OWC-EDDNet, 11.5 % of
FDA-OWC-EDDNet, 7 % of EGSOA-OWC-EDDNet and
9 % of AOA-OWC-EDDNet appropriately when considering
the ReLU activation function. Thus the finding revealed the
implemented system had higher efficiency than other tradi-
tional models.
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