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ABSTRACT In this paper, we propose a topological data analysis (TDA) method for the processing of
induction motor stator current data, and apply it to the detection and quantification of eccentricity faults.
Traditionally, physics-based models and involved signal processing techniques are required to identify and
extract the subtle frequency components in current data related to a particular fault. We show that TDA
offers an alternative way to extract fault related features, and effectively distinguish data from different
fault conditions. We will introduce TDA method and the procedure of extracting topological features from
time-domain data, and apply it to induction motor current data measured under different eccentricity fault
conditions. We show that while the raw time-domain data are very challenging to distinguish, the extracted
topological features from these data are distinct and highly associated with eccentricity fault level. With TDA
processed data, we can effectively train machine learning models to predict fault levels with good accuracy,
even for new data from eccentricity levels that are not seen in the training data. The proposed method is
model-free, and only requires a small segment of time-domain data to make prediction. These advantages

make it attractive for a wide range of data-driven fault detection applications.

INDEX TERMS Electric machines, fault detection, machine learning, topological data analysis.

I. INTRODUCTION

Electric machines, especially motors, are broadly used to
drive many sectors in the modern society, such as factories,
data centers, household appliances, robots, electric vehicles
and aircraft, to name a few. The condition monitoring and
fault detection of these machines are increasingly important
to guarantee smooth operation and minimize down time,
which is also made possible with the advancement of sensing
technologies and the growth of internet of things. In particular
for electric motors, different kinds of mechanical faults
and electrical fault can happen, and eccentricity faults are
among the most common, where the rotor and stator are
not concentric anymore during rotation [1]. Specifically,
eccentricity faults can be categorized into three types: static
eccentricity, dynamic eccentricity, and mixed eccentricity.
Static eccentricity occurs when the center of the rotor is
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deviated from the central axis of the stator bore, while the
rotation center is still aligned with the center of the rotor.
Dynamic eccentricity occurs when the rotation center and
the stator bore central axis still align, but the rotor center
is displaced. Mixed eccentricity is a combination of both
static eccentricity and dynamic eccentricity [1]. There are
many reasons that can cause motor eccentricity, and the
air gap eccentricity can in turn damage other parts of the
motor and cause breakdown of the machine if not corrected
in time. During the manufacturing stage, it is not feasible
to produce motors with zero air gap eccentricity. Static
eccentricity may exist due to the imperfect alignment between
stator core assembly and the rotation center, or the deviation
of the stator core from a perfect circle. Similarly, a small
dynamic eccentricity can also exist due to the imperfect
alignment between center of the rotor and the rotation axis,
or imperfect shape of the rotor. In most motors, while a small
level of eccentricity is tolerated during manufacturing and
installation stage, quality control is necessary to ensure the
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deviation is within a few percent. The eccentricity level can
increase throughout the operating lifetime of a motor due to
various reasons, such as the degradation of mechanical parts
including mounting structure assembly and bearings. The air
gap eccentricity induces unbalanced magnetic pull (UMP),
which may cause stator winding faults and rubbing between
stator and rotor with elevated eccentricity level, eventually
leads to failure of the machine. It is therefore essential to
inspect electric motors for eccentricity conditions for quality
control in the production stage, and for safe operation and
asset protection throughout the lifetime of the machines.
Electric machine fault detection has attracted significant
attention in the past a couple decades, and various methods
have been proposed and investigated, with sensing modalities
including noise and acoustic emission [2], vibration and
current [3], [4], [S], [6], [7]. Vibration analysis and motor
current signature analysis (MCSA) are two major methods
for eccentricity fault detection. In general, the UMP caused
by eccentricity fault can cause increased vibration, which can
be measured by accelerometers. Numerous signal processing
techniques, and more recently machine learning and deep
learning models have been developed and applied for
vibration signal based electric machine fault detection and
classification [8]. One problem this method faces is that
many external vibration sources, such as the mechanical
unbalance of the motor installation, can be mixed together
in the measured vibration signal especially on the factory
floor, making the identification of fault related signals more
challenging. Moreover, the sensitivity of vibration analysis
also largely depends on the specific location of sensor
installation. Hence it can be unreliable to identify machine
faults such as eccentricity based solely on vibration signals.
One consequence is that Algorithms that perform well on a
particular dataset often fail to achieve similar performance on
anew dataset, and therefore cannot be generally deployed [8].
Alternatively, MCSA uses stator current as its sensing
modality, and has the potential to address the problems in
vibration based fault detection. Since it only uses stator
current signals and requires no additional sensor, MCSA is
also attractive as a low-cost solution that is easy to implement.
In case of eccentricity fault, the non-uniform air gap creates
additional harmonics in the permeance function and air gap
magnetic flux. Some of these harmonics show up in the
induced voltage or back-EMF in the stator windings, and are
eventually reflected in the stator current spectrum. Thorough
physics-based models have been established to understand
the signatures in stator current signals for each type of
motor faults including eccentricity [9], [10], [11], [12].
However, MCSA based eccentricity fault detection has its
own challenges. While a lot of the spatial harmonics caused
by eccentricity can be reflected in vibration signals, they do
not show up in the time harmonics and are missing from the
stator current spectrum. Moreover, the existence of certain
fault signatures in stator current depends on specific motor
design parameters and is not universal. For example, it has
been proven that under certain stator slot and rotor bar number
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combinations, some signatures at slot harmonic frequencies
due to static eccentricity are more difficult to detect [10], [12].
Additionally, the eccentricity fault signatures in frequency
spectrum of stator current are typically a few orders smaller
than the dominating fundamental component of electric sup-
ply frequency. Many machine learning models that perform
well on vibration signals are not directly applicable to MCSA
as they often fail to distinguish the much similar stator current
signals measured at healthy and faulty conditions. Therefore,
physical models based on domain knowledge typically need
to be first established in order to analyze the signals and
identify fault related signatures, followed by detailed spectral
analysis to extract those features to be used for fault detection.

In this paper, we investigate a mathematical method,
namely topological data analysis (TDA), for MCSA applica-
tions. We show that it is very effective in extracting features
in stator current signals associated with eccentricity fault and
distinguishing data measured at different eccentricity levels.
The extracted topological features can then be used to develop
data-driven models for fault detection and quantification.
Compared with conventional signal processing methods, the
proposed approach is model-free, and requires only a very
short data sequence to effectively extract fault features and
make reasonable predictions. The basic idea and procedure
has been presented in our recent work [13], [14]. We have
since conducted more thorough theoretical and experimental
investigations to understand the capability of the method,
and significant updates have been made to this extended
paper.

In order to make sure the extracted topological features are
indeed associated with eccentricity fault, not due to noises
in the measurement, we have developed a physical model
to generate simulation data under different fault conditions.
We apply the same TDA procedure to the simulation data,
where we are certain the only difference is from the
eccentricity level, and compare the results with those obtained
from the experimental data. Very similar behaviors in the
obtained topological features represented by Betti sequences
are obtained in the simulation case.

Previous work only studied eccentricity fault for a motor
under no-load condition, while the effectiveness of the TDA
based method for motors under different load conditions
was not investigated. In this paper, we perform experiment
and collected data for an induction motor under eccentricity
faults at multiple on-load conditions. When then process the
experiment data with TDA and investigate how the extracted
topological features are related to different load conditions
and different eccentricity levels. We also conduct various
tests using machine learning models for eccentricity fault
level estimation and prediction using time-domain data and
TDA processed data, and show that the method is effective
in extracting fault related features and enabling data-driven
eccentricity fault detection for on-load conditions, including
mixed load conditions. Potential applications of the method
under other faulty conditions are also envisioned and
discussed.
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The rest of the paper is organized as follows. In Section II,
we give an introduction to TDA, persistent homology,
and its calculation process; in Section III we describe the
experiment setup for motor stator current data acquisition
under controlled eccentricity conditions; in Section IV,
we apply the TDA process to the measured data from different
eccentricity levels, and validate that the extracted features
are indeed associated with eccentricity fault with simulation
data; in Section V, we present a data-driven approach
for eccentricity level prediction using the proposed TDA
method and demonstrate its interpolation and extrapolation
capabilities; and finally in Section VI we provide concluding
remarks.

Il. TOPOLOGICAL FEATURE EXTRACTION METHOD

In this section, we introduce the TDA method and the process
of extracting topological features and generating persistence
diagram and Betti sequence from a data space.

TDA offers a numerical procedure to extract shape
information from a given data space, such as connected com-
ponents and holes [15]. Generally, a few advantages make
TDA very attractive for many challenging data analysis tasks:
topological features are invariant under small and continuous
deformations; they are also coordinate-free, and more robust
against noises compared with other geometrical methods.
In fact, in recent years, TDA is an actively pursued research
area, and has been applied to a broad range of scientific
problems, including image analysis [16], time-series data
analysis [17], sensor networks [18], chemistry [19], material
science [20], etc. These developments are largely enabled by
a powerful tool named persistent homology [15], [21], [22].

The homology of a data space describes its topological
features, such as connected components and holes, and per-
sistent homology computes those features that persist across
different scales. Rigorous mathematical formulations and
detailed descriptions can be found in multiple references [15],
[21], [22]. In this paper we aim to give a brief description of
the calculation procedure to obtain the persistent homology
of a data space, which is summarized as the following four
steps:

First, we represent a given data space with a point cloud,
which is formed by a number of data points sampled from the
data space. Different sampling and embedding techniques can
be applied.

Second, we identify the simplicial complex of the point
cloud, which is a collection of topological building blocks
in different dimensions, or simplices, such as points, edges,
triangles, etc. In particular, Rips complex is a commonly used
algorithm to construct a simplicial complex, which assigns
a threshold value or filtration radius r, and only includes
complices with pair-wise Euclidean distance between their
data points no larger than r.

Third, homology H;, which counts the number of topolog-
ical features, is calculated from the constructed simplicial
complex, where the subscript i denotes the dimension. For
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instance, Hy counts the number of connected components,
and H; counts the number of holes.

Lastly, persistent homology is obtained through a filtration
process of Rips complex, which computes the homology
at different filtration radius r, and tracks the ‘“birth” and
“death” of each topological feature at the corresponding r.
The evolution of homology across the whole range of r is
recorded as persistent homology.

Multiple algorithms to perform Rips complexes filtration
and persistent homology calculation have been developed,
validated and implemented. In this work, we use python
library Ripserpy for the computation of persistent homol-
ogy [23]. Once calculated, persistent homology can be
represented in different forms, and persistence diagram is
a popular choice, which is composed of a set of points
(b,d)\b,d € R2 and d > b, where each point corresponds to
the “birth” and “death” of one topological feature. To be
more specific, each point (b, d) denoted a topological feature
being “born’ at radius b and ‘““dead” at radius d.

Persistence diagram can be transformed into other rep-
resentations forms, such as persistence barcode, persistence
landscape, and Betti sequence. In this study, we plan to
use the extracted topological features of different data for
data-driven models, and it is often convenient to have them
represented as vectors of the same length to serve as input
data. Betti sequence, or Betti curve is a representation that
effectively achieves that [24], [25]. Assume D is a persistence
diagram with a finite number of off-diagonal points, with
o = (by, dy) a point in the diagram, and maximum filtration
radius 7y > 0, let {rl-}llw be equally spaced points within
[0, 7max], the Betti sequence of D is a vector of length M
defined as E = (/3[)11” , with the entries 8; count the number of
points in the persistence diagram at filtration radius r;. Define
the function:

1, by <r =<dy,

Ja(r) = [ 0, otherwise,
Then we can obtain the points on a Betti curve through the
summation: B; = >, cp fu(ri).

While most people use TDA to reveal the major shapes
in data spaces in many applications, and either ignore the
smaller topological features or consider them as noises,
we apply TDA in an opposite manner, by filtering out
the main topology of the data space in our stator current
data, and instead focusing on the smaller features. We will
show that the extracted topological features are robust
and quantitatively different between data obtained under
different eccentricity levels. Data-driven models can then
be developed for eccentricity fault prediction based on the
mapping between the extracted topological features and fault
severity level.

IIl. EXPERIMENT SETUP & DATA ACQUISITION

Before applying TDA, we first introduce the experiment
setup and data acquisition system for obtaining stator current
signals of a motor under different eccentricity conditions.
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FIGURE 1. The experiment setup for the study of induction motor
eccentricity.

A 0.75 kW, three-phase, 2-pole-pair squirrel-cage induc-
tion motor is modified and used in our investigation, which
has 36 stator slots and 28 rotor bars, and a nominal air
gap size of 0.28 mm. The line-to-line voltage and frequency
are 200 V and 60 Hz, respectively. As shown in Fig. 1, a few
modifications are made to the motor to create different levels
of static eccentricity (SE) in a controlled manner. The original
bearings of the motor are removed, and the rotor is instead
supported by two custom-made mounting structures (only the
mounting structure on the load side is visible in the photo)
through the extended rotor shaft and a pair of new bearings
installed on the mounting structures. The stator assembly of
the motor is mounted on a linear stage so that its position
is adjustable in the horizontal direction using two pairs of
micrometers. A powder brake is connected to the test motor
via the shaft and serves as load. In addition, two pairs of
displacement sensors have been installed on the stator facing
the air gap, in order to measure the actual air gap size in
both horizontal and vertical directions when the motor is
running [13], [14].

With this setup, different SE levels in the horizontal
direction can be created. In our experiment, a total of
6 SE levels were created when the motor is stand still:
7.1%, 16.5%, 31.1%, 42.5%, 47.5%, and 57.3%, where the
percentage is defined as the ratio of the maximum air gap
deviation and the nominal air gap size. For each eccentricity
setting, the motor is tested under 5 different load conditions:
ON-m, 1.3 N-m, 2.0 N-m, 2.7 N-m, 3.5 N-m. Data from three
phase current sensors and four air gap sensors were recorded
for each eccentricity and load setting at 10 kHz sampling
frequency. From the air gap sensor readings, it was shown that
the actual SE level of the air gap is very close to the original
setting in each case, with variation within 3%. While dynamic
eccentricity (DE) level is not adjusted in the experiment setup,
we do observe a small DE of around 6% for all cases based
on the air gap sensor readings. Since a small eccentricity
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exists even in motors considered healthy due to imperfect
manufacturing and installation process [1], therefore the
measured DE is reasonable. This mixed eccentricity effect
creates side band signals in the stator current spectrum at

1—s

)fs ey
4
and the higher harmonics. The amplitude of side band
signals increases with increasing eccentricity level (see, for
example [3]). Here f; = 60 Hz is the supply frequency, f; is
the rotation frequency, and p = 2 is the pole pair number of
the induction motor. Slip s depends on the load condition, and
increases with higher load.

With 6 different SE conditions, and 5 different load
conditions, data are recorded for a total of 30 test conditions.
Due to this large number of test conditions, in the subsequent
analysis, we will only show data from the most representative
cases.

For a comparison of the obtained stator current sig-
nals under different test conditions, the time-domain and
frequency-domain phase A current signals at the smallest
(7.1%) and largest (57.3%) SE level, under smallest (0 N-m)
and largest (3.5 N-m) load conditions respectively are plotted
in Fig. 2. As shown in Fig. 2(a), current amplitude increases
at on-load compared with no-load condition; however, the
time-domain waveform is dominated by the fundamental
component and it is hard to distinguish the different
eccentricity cases under the same load condition. Detailed
spectral analysis is needed to identify the components related
to eccentricity faults. Fig. 2(b) shows the frequency spectrum
obtained from 60s-long time-domain signal for each case
in order to resolve the fault signals and their harmonics.
Zooming in to the lower side band corresponding to (1),
we can observe from Fig. 2(c) two things: one, the peak
value of the component at higher SE level is higher; two, the
frequency increases from close to 30 Hz to around 30.8 Hz
when the load condition changes from O to 3.5 N-m as the
slip s increases.

fo=fitf= (1 +

IV. TDA ON ECCENTRICITY DATA

In this section, we perform TDA on the experiment data under
eccentricity, show that eccentricity related features can be
obtained with the process. We further present a simulation
model of motor under eccentricity fault built on modified
winding function method, and validate our findings with TDA
using simulation data.

A. EXPERIMENT DATA ANALYSIS
We apply the TDA process described in Section II to the
measured stator current signals.

A point cloud is naturally formed by sampling the recorded
three-phase current data segment and placing them in 3D
Euclidean space. For each case, we take a segment of
1024 consecutive data points from the stator current data.
Since the data is measured at 10 kHz sampling frequency,
the segment of 1024 points corresponds to about 0.1 s
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FIGURE 2. Phase A current signals measured under 4 different test
conditions listed in subfigure (c). (a) a segment of time-domain signals,
(b) frequency spectra obtained from Fourier transform using 60 s of
time-domain data, and (c) zoom-in around lower side-band fs — f;.

measurement in time domain. One data segment is also called
one sample in the subsequent analysis. The point clouds of the
data segment from the four test conditions corresponding to
Fig. 2 are shown in Fig. 3. Since the dominating component
of the signals is a periodic wave of fundamental frequency,
the most significant shape is a large circle in 3D space. For an
ideal sinusoidal signals, the point cloud forms a perfect circle;
when other frequency components exist, the points would
deviate from the perfect circle. Since the fault components are
much smaller in amplitude, it is difficult to tell the different
eccentricity levels from the point cloud shapes alone. For on-
load conditions, the radius of the circle increases, as shown in
Fig. 3(c) and (d). For subsequent TDA process, we normalize
each data segment to its maximum value to account for the
change in current amplitude at different load conditions.
With the point clouds, we can proceed with the homology
computation and obtain persistence diagrams. Fig. 4 shows
the computed Hy and H; persistence diagrams corresponding
to the aforementioned four conditions. The most noticeable
differences lie in the H; features, which correspond to the
small holes formed by neighboring points in the point clouds
during the filtration process. For an ideal sinusoidal wave,
only one large hole is formed by its point cloud. With phase
current data under eccentricity fault, the point cloud deviates
from the ideal circle due to the many frequency components
that exist in the data. When the eccentricity level is small, the
deviation is also small, and only a few features are formed
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FIGURE 3. Point clouds of three-phase stator current data segments
corresponding to the four test conditions: (a) SE 7.1%, no load, (b) SE
57.3%, no load, (c) SE 7.1%, load 3.5 N-m, and (d) SE 57.3%, load 3.5 N-m.

in the H; diagram; when the eccentricity level increases, the
deviation of the points from the ideal circle is larger, and
these points are more likely to form small circles during the
filtration process. Therefore more and more features show
up in the H| diagrams with increasing eccentricity level.
In addition, more features show up at on-load conditions,
as shown in Fig. 4(c) and (d). Many features also tend to be
further away from the diagonal line compared with the no-
load cases, meaning their lifespan is longer. This is due to the
fact that many harmonic components in the current increases
under high load, creating additional topological features in
the data space. For Hy features, which are the connected
components or clusters in a point cloud, the difference is not
as visible as the H diagram, since they all fall on one single
line. The difference in Hy will be more straightforward when
represented in Betti sequences, which will be presented in the
following paragraph.

Persistence diagram is an important visualization tool for
homology, but not quite convenient as input of machine
learning models. Next we convert the diagrams into Betti
sequences of the same lengths: for both Hy and H; sequences,
the length is fixed at 1024 whereas the filtration ranges
are of [0, 0.045] and [0, 0.07] respectively. Fig. 5 show
the computed Betti sequences from the corresponding
persistence diagrams for data at different SE levels at both
no-load and on-load conditions. While we cannot easily tell
the differences of Hy features from the persistence diagrams,
we can observe the trend in the Hy Betti curves. When
the filtration radius is 0, all 1024 data points are separate,
therefore all the Betti curves start at 1024. Upon increasing
filtration radius, more and more neighboring points are
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FIGURE 4. Computed persistence diagrams for both Hy and H, features
from phase current data segments corresponding to the four test
conditions shown in Fig. 2.
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FIGURE 5. (a) Hy and (b) H, Betti curves calculated from measured stator
current data at different SE levels under no-load condition; (c) and (d) are
Hgy and H, Betti curves for data at different SE levels measured at

3.5 N-m load respectively. Legend of each figure indicates corresponding
SE level in percentage.

connected; therefore the number of Hy features starts to
decrease, eventually all points are connected and there is only
one feature left. With higher eccentricity level, the amplitude
of fault components increases, and the data points are further
apart from one another due to their deviation from the large
circle (see Fig. 3); therefore the points are connected at a later
stage and these H( features survive longer, and the area under
Hj Betti curve is monotonically increasing with eccentricity
level.
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FIGURE 6. (a) Hy (a) and (b) H; Betti curves corresponding to five
different data segments from the same test condition with SE level 57.3%
and load 3.5 N-m.

From the H; Betti curves, we can see that the number
of features as a function of filtration radius changes with
eccentricity levels, and the peak position of the curves seems
to correlate with the SE level: peak shifts to higher filtration
radius r at higher SE level. These observations are more
visible at no-load condition as shown in Fig. 5 (a) and (b).
At on-load condition, the change in topological features
embedded in the measured signal is significant compared
with the data from no-load case under the same SE fault,
which is reflected in the line shape of the Betti curves shown
in Fig. 5 (c) and (d). Consequently, the difference between
data from different SE levels is not as distinct as the no-
load cases. However, the same trends are still visible for both
Hy and H; curves.

Another important merit of persistent homology is its
robustness to noises: similar data structures yield similar
persistent homology. To verify, we compare the Betti curves
obtained from multiple data segments measured at the same
test condition. Fig. 6 show the Betti curves of five different
data segments at SE level 57.3% and load 3.5 N-m, and
they are quite consistent. The similarity of these Betti curves
implies that the temporal fluctuations between different
samples of time-domain data are filtered out by the proposed
calculation procedure, and one could stably extract the
fault signature with a relatively short segment of data of
around 0.1 s.

Based on the above analysis, we conclude that the persis-
tent homology and Betti curves can effectively differentiate
data from different test conditions, while reliably providing
similar output for data from the same test condition.

B. VERIFICATION WITH SIMULATION DATA

In order to verify that the differences observed in the Betti
curves are indeed due to the difference in eccentricity,
we have developed a numerical model and generated
simulation data under different eccentricity conditions corre-
sponding to experiment settings, and implemented the same
TDA process to compare with experiment results.

The numerical model takes in parameters including motor
design parameters, supply voltage, load condition and fault
condition, calculates the inductance terms between rotor and
stator windings of the motor for each rotor position, and
updates the dynamic signals during the operation of the
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motor including stator current, speed, and torque. Signal
processing techniques such as FFT can then be applied to the
simulated stator current signal in order to obtain the frequency
spectrum. All signal components related to eccentricity faults
can then be identified.

The motor dynamics are described by coupled circuit
equations. The inductance terms and their derivatives, which
are critical in determining the motor current and torque,
are calculated using modified winding function method
(MWFM) and updated at each rotor position [10], [12], [26].
For winding i and winding j, the inductance is evaluated as

2
Li0) = polr /0 ni(é. M. g~ (. dp, ()

where [ is the free-space permeability, r is motor radius at
the air gap, [ is the stack length, n;(¢, ¢) is the winding turns
function for winding i, and M;(¢, t) is the modified winding
function for winding j. From the equation, we can see that
the air gap function g(¢, t), which describes the spatial and
temporal air gap profile, is especially important in calculating
the motor performance under eccentricity conditions. Under
SE and DE conditions, the air gap function can be written as:

g(@, 1) = goKc — Ssego cos(¢p) — dprgo cos(¢p — w,t). (3)

where g¢ is nominal air gap length, K, is Carter’s coefficient
to quantify the slotting effect, §sg and dpg are the SE and
DE amplitude respectively. Detailed modeling process is
described in [27].

Dynamic simulations can then be conducted to obtain the
motor current signals at each condition. Fig. 7 shows the
simulated time-domain signal and the frequency spectrum
of stator current with SE level of 42.5% and DE level of
6% under no-load condition, together with the corresponding
experiment data. While the simulation does not match exactly
with experiment, due to unavoidable simplifications in the
model, key features of the signal due to eccentricity can be
identified with good accuracy: the time-domain waveform
and amplitude match well with experiment, the low frequency
side-band signals corresponding to (1) show up in the
simulated spectrum with good agreement with experiment.
Therefore the simulation model is sufficient for investigating
motor under different fault conditions that can be difficult
to create experimentally and subject to uncertainties in the
measurements.

By changing the air gap profile in (3) while keeping all
other settings the same, we can simulate current signals
at different eccentricity levels. With the simulated data,
we know for sure that any difference in data obtained under
different settings is due to eccentricity only.

We run simulations at eccentricity conditions correspond-
ing to the experimentally measured values, obtain the stator
current data with the same sampling rate of 10 kHz for each
case, and process the simulated data with the same TDA
procedure as the experiment data , in order to validate our
observations from TDA with experiment data.
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FIGURE 7. The simulated ((a), (c)) and corresponding experiment
measurement ((b), (d)) of phase current signal in time-domain and
frequency-domain with SE level of 42.5% under no-load condition.
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FIGURE 8. (a) Hy and (b) H, Betti curves calculated from simulated stator
current data at different SE levels under no-load condition; (c) and (d) are
Hy and H, Betti curves for data at different SE levels measured at

3.5 N-m load respectively. Legend of each figure indicates corresponding
SE level in percentage.

Fig. 8 shows the converted Betti curves for simulation
data obtained at all SE levels for both no-load and on-
load conditions. Comparing Fig. 8 with Fig. 5, we can see
that, while the line shapes do not match exactly between
simulation and experiment data, the changes in the curves
with increasing eccentricity level have the same trend. For
Hy curves, the data points are generally further apart in
the point cloud at higher fault level, causing the features
to disappear at a larger filtration radius, therefore the area
under Hy curve monotonically increases with increasing
eccentricity level. Similarly for H; curves, very few features
exist at small fault levels throughout the filtration process,
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FIGURE 9. t-SNE plot in 2d for (a) time-domain phase current data, and
(b) Hy and H; sequences combined for different SE levels under no-load
condition.

while more features appear due to the increased fault level.
The peak position of H| curve appears at larger filtration
radius for larger SE level. For on-load conditions, as shown
in (c) and (d) of Fig. 8 and Fig. 5, the topological features
are largely dominated by the load, and the variations due to
different SE fault is not as obvious as no-load conditions.
However the trend for both Hy and H; curves is still visible.

With the comparison between simulation and experiment,
we can conclude that the extracted features through the TDA
process can be a good indication of eccentricity fault. While
noises exist in the experimentally measured data, they do not
hinder the effective extraction of topological features relevant
to the eccentricity fault, as verified by both the robustness of
the experiment data as shown in Fig. 6, and the comparison
with simulation data as shown in Fig. 8.

V. TDA FOR ECCENTRICITY LEVEL PREDICTION

From above analysis, we can see that TDA is effective
in revealing small fault signatures embedded in a large
background signal, and separating signals from different fault
levels. In this section, we present a data-driven approach
of eccentricity fault detection, quantification, and prediction
based on TDA.

First we process and analyze the data. The experiment
data measured at each SE level and each load condition
is segmented into a total of 1170 samples, each of length
1024. Same data segmentation is done for all 30 test
conditions, making the total number of data segments 35100.
As discussed in earlier sections, the time-domain data
are dominated by the fundamental component at supply
frequency, and in sinusoidal waveform for all test cases.
There is no noticeable difference between data from different
SE levels under the same load condition. For data from
different load conditions, the current amplitude will be
different. A few exemplar data segments for phase A current
have been shown in Fig. 2(a). Another example data segment
for three-phase current has been shown in Fig. 7(b). We will
refer the segmented time-domain data as TD dataset.

After data segmentation, we then apply the established
TDA procedure to obtain Betti sequences for all these data
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samples, as detailed in Section IV-A. For each time-domain
data segment, we calculate its Hy and H; sequences. For
convenience, we make the length of each Hy and H; sequence
to be 1024. Corresponding to TD dataset, we refer the
compiled Betti sequences as Hy and H; dataset.

To visualize the differences of data at different eccentricity
levels, in Fig. 9 we show the t-distributed stochastic neighbor
embedding (t-SNE) plot [28], which is a commonly used
tool to represent similarities of high-dimensional data in
low dimension, of both time-domain phase current data and
their corresponding Betti sequences under no-load condition.
With time-domain data, samples from all eccentricity levels
are mixed together with no clear clustering, indicating these
data segments are highly similar. The reason is that they are
dominated by the large 60 Hz signal, as shown in Fig. 2.
For Betti sequences, however, the data samples do cluster
according to their respective eccentricity level. We point out
that the dominant 60 Hz signal only corresponds to the feature
value at very large filtration distance in H; Betti sequences,
due to the large hole in the point clouds shown in Fig. 3,
and has little impact on the profile of the Betti curve. In this
sense, the thresholded Betti curve serves as a “‘nudge filter”
that effectively removes the dominant time-domain signal,
and magnifies the behavior of small signals where the fault
signatures reside.

In this work, we demonstrate that with an effective feature
extraction method, complicated machine learning models and
deep learning models are not needed for data-driven fault
detection and quantification. Only simply regression models
will be used in the following tests.

For practical motor eccentricity fault detection applica-
tions, we can envision two different scenarios, one in the
manufacturing and assembling stage, the other throughout the
operation lifetime of the motor.

A. SCENARIO I: SE LEVEL ESTIMATION

In the manufacturing stage, the main goal is to inspect
the manufactured and assembled motors for quality control,
to ensure the eccentricity level is below a threshold value.
Since a large number of motors of the same model will be
mass produced in the factory, it makes sense to collect data
covering a wide range of eccentricity conditions with a test
motor, and develop a data-driven model to make predictions
on the eccentricity level using new data measured on other
motors of the same type.

To mimic this scenario, we shuffle the data from all
eccentricity levels and split them into training and test sets,
with a split ratio of 80:20. The same shuffling and splitting
process is applied to TD, Hy, and H; datasets. Models will be
trained and tested on each type of data separately, as well as
combined Hy and H; (referred to as Hy+ H1) for comparison.
In addition, we train and test models with data for each
separate load condition, as well as for all load conditions to
evaluate the impact of load to the prediction performance.

While many different models can be developed, we show
the results from simple k-nearest neighbor (k-NN) regression
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TABLE 1. Mean absolute error (MAE) of SE level estimation with k-NN
models trained on time-domain (TD) current data and Betti sequence
data respectively, under different load conditions.

Load(N'm) || TD | Ho | Hi | Ho+H:

0 6.89 | 0.38 | 0.01 0.00
1.3 6.58 | 0.58 | 2.93 0.31
2.0 1045 | 1.40 | 1.31 0.53
2.7 1299 | 233 | 5.79 2.06
3.5 13.89 | 2.78 | 6.13 2.35
All 10.82 | 23 4.6 1.12

models [29] to demonstrate the capability of TDA. For a
given new data sample, the k-NN algorithm simply search for
its nearest neighbors from the training data, and predict the
eccentricity level using the average level of these neighbors.
We implemented the algorithm using scikit-learn [30] library
in Python. Standard Euclidean distance is used in searching
for nearest neighbors. All points in each neighborhood are
weighted equally for prediction. During training, we compare
the prediction of SE level from the model and ground
truth, and find the optimal number of nearest neighbors
to minimize the root-mean-squared-error (RMSE). During
testing, we evaluate each model performance by calculating
the root-mean-squared-error (RMSE) and mean-absolute-
error (MAE) on test data.

The results of calculated MAE for trained models are
summarized in Table 1. For each load condition, as marked
in bold font, the best model performance on estimating the
SE level of test data is from model trained with Hy and H;
Betti sequences combined. In particular, at no-load condition,
the trained model can make perfect prediction with O error.
The MAE error increases slightly at higher load conditions,
which is still well below 3%. When all five load conditions
are considered together, the test MAE error is only slightly
above 1%. On the other hand, the models trained with raw
TD data always perform worst.

We can further visualize the model performance with violin
plot, which shows the distribution of predicted SE values for
data from each SE level. The results for models with data
from all load conditions, which correspond to the last row
in Table 1, are plotted in Fig. 10. For each SE level, the
horizontal marker shows the mean of predicted SE value over
all test data samples, and the probability density is added in
shaded blue to show how the prediction values are distributed.
As we can see, the model performs poorly with TD data, and
the mean for each SE level is far from the true value. With
Hy and H; data alone, the model performance is already much
improved. While the mean is very close to the true value, there
are some outliers as shown in the probability density. When
both Hy and H; data are used, best performance is reached
with minimal error.

B. SCENARIO II: SE LEVEL PREDICTION
On the other hand, during the service of a motor, it is not
possible have measurement data for all possible eccentricity
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FIGURE 10. Violin plot for SE level estimation using k-NN model trained
with data from all SE and load conditions using (a) phase current data,
(b) H, Betti sequences, (c) H; Betti sequences, and (d) both H, and H,
Betti sequences.

levels. Instead, we expect to have measurement data collected
during inspections, when eccentricity level is still low.
A data-driven model can be built based on these earlier
measurements, and used to predict the eccentricity level
during subsequent measurements where the fault is expected
to become more severe over time.

Such extrapolation task to unseen data is challenging for
all machine learning and deep learning models. For this task,
we assign the experiment data from the four smaller SE
levels with nominal SE levels 7.1%, 16.5%, 31.1%, 42.5%
as training dataset. Data from the two higher SE levels,
namely 47.5%, and 57.3% are not used in the training, and are
reserved as test dataset, to check the prediction capability of
the trained models. Again, data from each test condition have
been segmented into 1170 samples of length 1024. Similar to
the previous task, we train models using data under each load
condition, as well as data from all load conditions, in order to
understand the capability of TDA. Again, four types of data,
namely raw TD data, Hy Betti sequence, H; Betti sequence,
and combined Hy + H; sequences, are used to train models
separately and their performances are compared.

To develop an effective regression model, we extract the
features associated with SE fault in the Betti curves identified
in Section IV: for Hy curve, we use the total area under
the curve; for H; curve, we use the peak position of the
curve. For time-domain data, we extract the RMS value of
the phase current. Quadratic regression models are trained
respectively using these features. During training, we find the
coefficients of the quadratic function that best fits the training
dataset. The trained regression models are then tested on the
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TABLE 2. Mean absolute error (MAE) of SE level prediction on unseen
data from new SE conditions with regression models trained on
time-domain (TD) current data and Betti sequence data respectively,
under different load conditions.

Load (Nm) H TD ‘ H() ‘ H1 ‘ H() +H1
0 28.22 | 10.22 | 12.48 10.10
1.3 27.56 391 10.77 3.93
2.0 273 3.81 8.5 3.29
2.7 28.05 2.87 20.94 3.14
3.5 27.36 3.40 21.76 3.43
All 2792 | 16.74 | 21.32 13.6

corresponding test dataset. The MAE for SE level prediction
of each trained model on test data is summarized in Table 2.
For each load condition, models trained with TD data perform
poorly, with MAE over 27% for all cases. With Hy Betti
squence data the model peroformance is much improved for
all the load conditions. While H; feature is not as effective for
the prediction task on new data, it is still better than using raw
TD data; and combining H; with Hy data can achieve similar
result or further improve the result.

Depending on the application, a motor can operates at
constant load conditions, or with mixed load conditions
during the life time. As shown in Table 2, for constant load
conditions, the proposed method generally works better for
eccentricity level prediction. Fig. 11 shows the performance
of regression models trained on data collected at the same
load condition of 2.0 N-m with different input data type.
With TD data, the model essentially cannot distinguish data
from different SE levels. With converted Betti sequence data,
the prediction accuracy is much improved. With combined
Hy and H; Betti curve data, the prediction RMSE is reduced
to about 4% and the MAE is even lower.

Among these tests, the mixed load condition, which
corresponds to the last row in Table 2, is considered to be most
challenging, as the small differences in SE level is largely
masked by the varying load condition. The performance of
the trained models are plotted in Fig. 12. With TD data, the
model cannot distinguish data from different SE levels, and
the mean prediction value is far from the truth. With Betti
sequence data, especially Hyp and combined Hy and H; the
prediction is much closer to the true value.

C. DISCUSSIONS

Compared with MCSA, which requires involved domain
knowledge and physical model to identify fault signatures,
no physical model for the fault is required in the proposed
method. In addition, the good prediction results can be
achieved with only a short segment of time-domain data.
In all the tests, the length of time-domain data is 1024 points,
or about 0.1s. In comparison, traditional spectral analysis
methods with MCSA often require tens of seconds or longer
data in order to accurately identify the fault components,
on top of the domain knowledge required to identify these
fault signatures. Although the paper focused on induction
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FIGURE 11. Violin plot of the prediction of SE level on unseen data from
new SE conditions for regression models trained on data from first four
SE levels at the same load condition of 2.0 N-m using (a) phase current
data, (b) Hy Betti sequences, (c) H; Betti sequences, and (d) both Hy and
H, Betti sequences.
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FIGURE 12. Violin plot of the prediction of SE level on unseen data from
new SE conditions for regression models trained on data from first four
SE levels at different load conditions using (a) phase current data, (b) Hy
Betti sequences, (c) H; Betti sequences, and (d) both Hy and H, Betti
sequences.

motor eccentricity fault level prediction, these advantages of
TDA make it promising to be applied to a broad range of
fault detection tasks. A few applications and future research
directions can be envisioned and are briefly discussed below.
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In practice, a number of faults can occur in induction
motors, such as bearing fault, inter-turn short circuit in
stator windings, broken bar, etc. When multiple faults
exist in a motor, fault classification is a desirable fault
detection solution especially for data-driven approaches.
This task has a lot of similarities to scenario I discussed
in Section V-A. With TDA-processed inputs, data cluster
properly according to the fault level, even the differences
are subtle, as indicated in Fig. 9, suggesting the feasibility
of effective unsupervised learning with TDA processed data
for fault classification. Even under various load conditions,
where the topological features in the measurement data are
largely modified, such clustering effect is still effective,
as shown in subsequent tests shown in Table 1. In addition,
each type of motor fault presents its own characteristics
in stator current signals (see [3], [4] for detailed analysis),
and the differences between different types of faults are
generally more significant than the difference between data
from different severity levels of the same fault condition.
We therefore expect that the TDA process can greatly
facilitate the distinction of data from different fault conditions
and hence fault classification tasks.

Another application is fault quantification when another
fault exists at the same time. For scenario I discussed in
Section V-A, where all conditions can be measured and
used to train a machine learning model, we expect good
results using TDA processed data. We have already added
another variable in load condition as shown in Table 1, and
the fault level estimation remains excellent under various
load conditions. Such strong clustering capability of TDA
processed data remains even when another fault exists. For
scenario II discussed in Section V-B, which predicts fault
level for unseen data, things are more complicated. As can
be seen in Table 2, while the results are excellent for fixed
load conditions with models trained with Betti sequence, the
result of the mixed load condition is much worse. This is
because the effective extrapolation of the regression model
relies on the monotonically increasing features revealed in the
Betti curves, and the varying load condition greatly modifies
the features associated with the curves. The existence of
another fault adds an additional variable, and can reduce the
prediction accuracy. How large the impact of the additional
fault is to the prediction accuracy depends on the fault type
and severity.

As a future research direction, further theoretical and
experimental investigations are desired to validate the effec-
tiveness of TDA under these conditions. In addition, features
extracted with TDA can be used in conjunction with those
extracted by other methods to further improve the prediction
accuracy of fault detection tasks.

VI. CONCLUSION

In this paper, we investigated the method of using topological
data analysis for induction motor eccentricity fault level
prediction under various load conditions. The procedure of
extracting topological features of time-domain phase current
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data and converting them into vectorized Betti sequence was
presented and applied to the analysis of measurement data
from different fault levels. We showed that this model-free
method is effective in extracting small topological features
in a data space and distinguishing data from different
eccentricity conditions that look very similar in the time-
domain. We applied a winding function based model to
generate simulation data at different eccentricity levels to
exclude the impact of potential noises in the experiment
setup, and verified that the extracted topological features are
indeed associated with the eccentricity fault. Experiment data
of different eccentricity levels from various load conditions
were analyzed with the TDA method and applied for
data-driven motor fault detection and quantification tasks.
We showed that the TDA processed data can greatly improve
the accuracy of machine learning models for eccentricity
level prediction with both interpolation and extrapolation
tasks under various load conditions. The proposed method
can be potentially applied to other data-driven fault detection
and classification problems.
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