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ABSTRACT The mission of blind image quality evaluation is currently a challenging computer vision
problem. Due to the shortage of reference images, it is hard for blind image quality evaluation methods to
achieve the same performance as full reference image quality evaluationmethods. In addition, current quality
evaluation methods are difficult to effectively forecast the quality scores of synthesized distorted images as
well as real distorted images. To address such issues, this study proposed a cyclic generative adversarial
network composed of a quality perception network and a quality regression network on the grounds of
generative adversarial networks. For further enhancing the predictive performance of quality aware networks,
this study proposed using attention blocks for adaptively fusing high-level semantic features and low-level
semantic features. It extracted content and distortion information from images through an image quality
evaluation method on the grounds of content perception and distortion inference. And according to the
different properties of the extracted features, adaptive fusion blocks were used for adaptively fusing content
features and distortion features. Experiments showcased that the Spearman order correlation coefficient and
Pearson linear correlation coefficient obtained by the proposed method on multiple datasets were higher
than other similar methods. At the same time, the proposed method has achieved good prediction results on
various types of distorted images, and has surpassed other methods. The prediction accuracy of the proposed
method on five types of distortion was 0.971, 0.963, 0.984, 0.971, and 0.926, respectively. The proposed
method achieved the highest predictive accuracy on all distortion types in the LIVE dataset, with predicted
accuracy values of 0.973, 0.965, 0.984, 0.963, and 0.944, respectively. In summary, the proposed method
not only achieved good prediction accuracy, but also had strong generalization performance in cross dataset
testing. This provides a scientific and effective research direction for blind image quality evaluation.

INDEX TERMS Blind images, deep learning, attention block, quality score, evaluation.

I. INTRODUCTION
The image quality assessment aims to make the predicted
score as reflective of human visual perception as possible.
The human vision system is an excellent image process-
ing system, which is good at object recognition and quality
judgment, and provides simulated targets for machine vision
algorithms to enhance their accuracy [1], [2]. When people
perceive images, the visual system is combined with the
Internal Generative Mechanism (IGM) to work together [3].
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Current blind image quality assessment techniques use end-
to-end deep learning models to identify image distortion and
predict quality scores. However, when faced with the diverse
types of distortion in images, a single model often struggles
to adapt to this complexity. In contrast, the human brain IGM
can deduce the main content of the image when processing
chaotic distorted images, demonstrating its high efficiency of
human brain in image analysis [4]. When reasoning about
the content of an image becomes more difficult, it usually
means that the image has a higher degree of distortion. On the
other hand, if the reasoning is simpler, the distortion degree
is lower. Driven by deep learning technology, remarkable
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progress has been made in the field of image quality eval-
uation. The main advantage of deep learning is its ability
to build end-to-end models that automatically extract and
generalize the features of training samples to form effective
quality prediction models. This allows for deeper mining
and exploitation of complex patterns in image data, effec-
tively simulating how the human visual perception system
works [5]. In order to deal with the limitations of a single
model in dealing with complex image distortion, this paper
adopts deep learning technology, combines the quality per-
ception network and quality regression network of Generative
Adversarial Network (GAN), and innovatively simulates the
process of image quality degradation. This method not only
focuses on synthetic distorted images, but also can predict the
quality of real distorted images. This paper proposes an image
quality evaluation method based on content perception and
distortion inference. The method imitates the perception pro-
cess of the human visual system to accurately evaluate image
quality. The proposedmethod is innovative in that it integrates
a deep understanding of image content with accurate recogni-
tion of distortion types. By optimizing antagonism and cyclic
consistency loss, it generates evaluation results that are more
consistent with human visual perception.

The proposed method simulates the whole process of
image quality degradation and breaks through the limita-
tion of dealing with various image distortions. The proposed
method takes into account the complexity of images and the
diversity of distortions, so that the multi-dimensional quality
characteristics of images can be understood more deeply.
This achievement represents significant progress in the field
of image quality evaluation. In addition, it is proposed that
attention blocks come from adaptive fusion of higher seman-
tic features and lower semantic features. On this basis, the
hierarchical recovery features of quality perception network
are extracted as the basis of quality prediction. In the data set
of the pre-trained quality perception network, the perception
ability and prediction accuracy of the real distortion type are
improved by adding the real distortion image. This study is
to further enhance the predictive accuracy of Image Quality
Evaluation (IQE) methods by integrating human visual sys-
tem and DL technology.

The research mainly includes five parts, and in the first
part of the article, the background and significance of IQE
are mainly introduced. The content of Part 2 provides a com-
prehensive overview of IQE. The third part is the proposed
method, mainly divided into two sections. In section III-A,
a model of image quality degradation process on the grounds
of cyclic GANs was studied and constructed. In section III-B,
a blind IQE improvement model integrating content percep-
tion and distortion inference was constructed. The fourth part
is about verifying the effectiveness of the proposed model.
The fifth part is a summary of the proposed methods and
an analysis of the experimental results. At the same time,
the shortcomings of proposed methods and future research
directions are proposed.

II. RELATED WORK
Currently, multimedia digital images, as carriers of infor-
mation transmission, are possessing an essential influence
on people’s lives. Domestic and foreign researchers have
also made many studies on IQE. Researchers are attempting
to further enhance the quality evaluation through the pow-
erful extraction of Convolutional Neural Network (CNN).
To reduce the size of image files while ensuring image
quality, Ma D et al. proposed a CNN-based image partition-
ing quality evaluation method. This study shows that this
method has strong advantages in image compression time
and compression efficiency [6]. Yang X et al. proposed a
novel reference-free image quality evaluation method using
transfer learning technology. In this method, a network called
TTL is introduced, which focuses on the transmission of
semantic features, so as to optimize the feature sharing pro-
cess. Experiments on multiple datasets show that the method
exhibits excellent generalization ability, indicating that it
works effectively on different types of image data [7].Wu J
et al. presented a lightweight quality evaluation method to
extract hierarchical features of images. This study indicates
that this method greatly reduces the parameter complexity
of the network while ensuring prediction accuracy [8]. Fei L
et al. proposed a CNN-basednon-reference IQE algorithm to
address the issues of non universality in high dynamic range
IQE and excessive reliance on original reference images.
This method uses the Salience Detection By Self assembly
(SDSR) algorithm to extract salient regions of the image. This
study indicates that this method has high consistency with the
subjective perception of the human body [9].

Lu Y et al. proposed an image quality evaluation algorithm
that integrates multi-scale and dual-domain features. The
algorithm uses two branches to process the original image
and its phase consistency graph. It also employs feature
pyramid and Attention Mechanisms (AM) to extract multi-
level features. Bilinear pooling technology is used to integrate
spatial and frequency domain features, and support different
scale image input to extract deep quality features. The results
show that the algorithm is both robust to different types
and cross-databases and sensitive to scale [10].To address
the instability and stability of GAN in the relevant process,
Tang Y et al. proposed a gradient penalty based single image
super-resolution acquisition method on the grounds of GAN.
This study indicates that this method outperforms traditional
methods in terms of accuracy in image resolution acquisition
and perceptual quality [11]. JinT et al. proposed a GAN based
method for establishing a composite crack image dataset with
pixel level annotations. The results indicate that this method
provides a new approach for traditional data augmentation
methods [12]. Zhang L et al. proposed a fusion particle swarm
optimization algorithm to solve the instability and pattern
collapse problems of GAN algorithm training. This is to
improve the stability of training. This study indicates that it
can enhance the facial image generation and has excellent
robustness [13].
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In summary, existing IQE methods are difficult to accu-
rately predict the process of image quality degradation.
Therefore, it is difficult to effectively extract content and
distortion information from images. Therefore, to improve
the predictive accuracy of IQE methods, this study proposes
to study IQEmethods on the grounds of cyclic GANs and IQE
methods on the grounds of content perception and distortion
inference.

III. PROPOSED METHOD
CycleGAN is a deep learning model for image-to-image con-
version. Based on CycleGAN, the research introduces deep
learning techniques and innovatively combines a Quality
Prediction Network (QPN) and a Quality Recovery Network
(QRN). It simulates the whole process of image quality
degradation and breaks through the limitations of dealing
with various image distortions. In addition, an image quality
evaluation method based on content perception and distortion
inference is proposed. The image’s complexity and distortion
diversity are taken into account to extract content and distor-
tion information. This leads to a deeper understanding of the
image’s multidimensional quality characteristics.

A. RESEARCH ON THE CONSTRUCTION OF IMAGE
QUALITY DEGRADATION PROCESS MODEL ON THE
GROUNDS OF RECURRENT GANS
GANs can better model data distribution and theoretically
train any generator network. And GANs is not necessary
for utilizing the Markov chain for repeated sampling and
inference during the learning. It avoids the difficulty of
approximate calculation of probabilities without a complex
variational lower bound [14]. GANs are composed of two
important parts, namely generators and discriminators. The
generator network produces more realistic data samples by
learning the distribution of real sample data in the training
set [15]. The discriminator network will make endeavor to
distinguish in the generated data and the real data samples.
The structure of the GAN is shown in Figure 1.

FIGURE 1. Workflow of GAN.

In Figure 1, the generator and discriminator form a
dynamic game process. The entire network will continu-
ously update the network parameters of both over time,
and optimization will stop at the minimum value relative

to the generator and the maximum value relative to the
discriminator. The training goal of GANs is to achieve
Nash Equilibrium, and its objective function is shown in
equation (1) [16].

minmaxL (D,G) = Ex∼Pdata(x)
[
logD (x)

]
+ EZ∼Pz(z)

[
log (1 − D (G (z)))

]
(1)

In equation (1), G () ,D () represent the generator network
and discriminator network. x serves as input noise, and
z serves as real data. Pdata,Pz serve as the distribution
of real data and input noise. The generator network min-
imizes the value of log (1 − D (G (z))) and deceives the
discriminator by generating more ‘‘real’’ samples. The dis-
criminator network assigns the correct labels to the real data
and the generated data through training iterations. How-
ever, during the trainingof GANs, unstable situations such
as gradient disappearance and pattern collapse may occur.
To stabilize the training process of the network, scholars
such as Arjovsky proposed using Earth Mover to measure
the closeness between the generated data distribution as well
as the real data distribution [17]. Traditional GANs using
Multi-Layer Perception (MLP) are difficult to perform satis-
factorily when faced with image samples containing complex
information. To effectively address this issue, GANs use
CNNs to replace traditional multi-layer perceptron struc-
tures to process image samples. Although the use of CNNs
for image quality assessment has achieved good accuracy,
the following challenges still exist. Firstly, distorted images
can suffer from various types of distortion. Secondly, due
to the lack of reference information, blind IQE methods
find it difficult to achieve predictive accuracy comparable
to full reference IQE methods. To address these two issues,
a cyclic GAN was established to perceive the process of
image quality degradation. To train the QPN, the reference
image Ir is first fed into the generator network of the loss
recovery module to obtain a false loss image I ′d . Then,
it is fed into the lossless restoration module generator net-
work for learning how to remove distortion information and
obtain image I ′d again. In the loss recovery module and
lossless recovery module, the function of the discrimina-
tor network is to distinguish the generated images, thereby
generating more realistic distorted images as well as refer-
ence images. Figure 2 shows the network structure of the
discriminator.

In Figure 2, the VGG-16 network uses two 3 ∗ 3 Convo-
lutional Layers (CL) instead of the 5 ∗ 5 CL, and replaces
the 7 ∗ 7 CL with three 3 ∗ 3 CL. Its purpose is for decreas-
ing the number of network parameters while ensuring that
the perception domain remains unchanged. Because of the
superiority of U-Net network in image processing tasks, its
unique encoder decoder structure combines low-level and
advanced semantic information, improving the network’s
feature extraction ability. Therefore, to enhance the feature
extraction of the overall network, this structure is studied as
the backbone network of the generator network in the loss
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FIGURE 2. VGG-16 network structure of discriminator.

FIGURE 3. Network structure of attention blocks.

recovery module and the lossless recovery module. After
giving an image, first extract low-level features using a 3 ∗

3 CL. Then, an encoder model composed of 5 residual blocks
and 4 maximum pooling layers extracts features of different
scales. In the U-Net network, the encoder and decoder con-
tain low-level semantic information and advanced semantic
information, respectively. For fully and effectively utilizing
different types of features, this study proposes using attention
blocks to fuse the most useful features while suppressing
invalid features. Figure 3 shows the network structure of
attention blocks.

In Figure 3, the attention block includes a channel Atten-
tion Module (AM) and a spatial AM. The purpose of the
channel AM is to learnwhich type of feature ismore essential,
while the focus of the spatial AM is to learn where important
regions are. The channel AM aims to calculate the weight
values between channels by learning two one-dimensional
channel attention maps. Firstly, it performs Global Aver-
age Pooling Layer (GAPL) processing on the features in
the image, and then performs stitching. Finally, two fully
connected layers with 2C, 16, and C nodes are utilized for
calculating the weight score of the input features. Finally,
a one-dimensional channel attentionmap is produced through
the Sigmoid activation function. For effectively generating
spatial attention maps, the spatial AM uses CL for learning
the spatial relationships of features. The relevant expression

of this module is showcased in equation (2).
f ′
M = f ′

l ⊗ f ′
h

W ′

1 = σ
(
Conv1

(
f ′
M

))
W ′

2 = σ
(
Conv2

(
f ′
M

))
f ′
o =

(
f ′
l ×W ′

1
)
⊗

(
f ′
h ×W ′

2
) (2)

In equation (2), both f ′
l , f

′
h represent the input features.

Conv1 () ,Conv2 () represent two separate 3 ∗ 3 CL. σ ()
represents the sigmoid activation function. ⊗ represents con-
catenation operations, respectively. In the pre-training stage
of the quality aware network, the generators and discrimina-
tors of the loss recovery module and the lossless recovery
module optimize the overall network through a maximum
minimum game. In the game, the relevant network parameters
the loss recovery module are updated by minimizing adver-
sarial losses. The process is shown in equation (3).

LR2D = E
[
logDR2D (Id )

]
+ E

[
log (1 − DR2D (GR2DIr ))

]
(3)

In equation (3), Id , Ir represent distorted images and refer-
ence images, respectively.DR2D,GR2D represent the discrim-
inator and generator networks of the loss recovery module,
respectively. In the stage of learning lossless image restora-
tion in the lossless restoration module, the relevant network
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FIGURE 4. Network structure of multi-scale blocks.

parameters are updated byminimizing adversarial losses. The
process is shown in equation (4).

LD2R = E
[
logDD2R (Ir )

]
+ E

[
log

(
1 − DD2R

(
GD2RI ′d

))]
(4)

In equation (4), I ′d represents the false distorted image gen-
erated by the loss recovery module. DD2R,GD2R represent
discriminator and generator networks for lossless restoration
modules. The adversarial loss of the overall network is shown
in equation (5).

Ladv = LD2R + LR2D (5)

To further ensure that the generated image and the target
image are the same image content, the study also adopted
cyclic consistency loss [18]. The purpose is to convert the
generated outcomes back into the source domain again. The
calculation of cyclic consistency loss is shown in equation (6).

Lmcycle =
∥∥GD2R (

I ′d
)
− Ir

∥∥2 (6)

To further ensure that the generated images contain rich
details and texture information, the study also adopted
a perceptual loss function. The calculation is shown in
equation (7) [19].

Lpcycle =
1

HnWn

Hn∑
h=1

Wn∑
w=1

∥∥φn (
GD2R

(
I ′d

))
− φn (Ir )

∥∥ (7)

In equation (7), Hn,Wn represent the height and width of
the input feature image. It represents the φn ()-th layer of the
VGG-19 network. The calculation expression of the compre-
hensive cycle consistency loss is shown in equation (8) [20].

Lcycle = Lmcycle + Lpcycle (8)

The objective loss function for optimizing quality aware net-
works is shown in equation (9).

L = Ladv + Lcycle (9)

For markedly establishing the relation in the extracted hierar-
chical features and the predicted quality score, the QRN uses
four multi-scale blocks for feature extraction. The multi-scale
blocks used are shown in Figure 4 [21].

In Figure 4, this method utilizes three CL to improve the
expression ability of multi-scale features. The operation of
multi-scale blocks is showcased in equation (10).

f1 = Conv (fi)
f2 = Conv (f1)
f3 = Conv (f2)
fm = f1 ⊗ f2 ⊗ f3
fo = δ (fm)

(10)

In equation (10), δ () represents the batch normalization oper-
ation and the correction linear unit operation. Finally, the
output features of each multi-scale block are regressed into
quality scores through fully connected layers with 480, 512,
and 512 nodes.

B. RESEARCH ON AN IMPROVED MODEL FOR BLIND IQE
INTEGRATING CONTENT PERCEPTION AND DISTORTION
REASONING
The proposed QPN models the process of introducing dis-
torted information into images. However, distorted images
contain both rich content and distorted information. The
overall network lacks a focus on extracting content features,
which to some extent limits the improvement of network
prediction accuracy. The prediction results of IQE algorithms
should be as consistent as possible with human ratings.
To effectively predict the quality score of distorted images,
this study starts from three aspects: the content change of
distorted images, the distortion change of distorted images,
and the fusion of content features and distorted features. For
achieving a universal blind IQE method, a method for IQE
on the grounds of content perception and distortion inference
was proposed. It is used to predict and evaluate the quality
scores of synthesized distorted images and real distorted
images. The network structure is shown in Figure 5.
In Figure 5, the network framework contains four parts,

the content Feature Extractor (CFE) and Distortion Feature
Extractor (DFE) are for extracting content and distortion
features in the image. The Fusion Feature Block (FFB)is
for adaptively fusing extracted content features and distorted
features. The quality prediction block is used for mapping
the fused features into predicted quality scores. Firstly, the
distorted image is input into the CFE for perceiving features at
multiple scales. Secondly, to compensate for the insensitivity
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FIGURE 5. Quality evaluation network framework on the grounds of content perception and distortion
reasoning.

of the network to distorted information, the distorted image
is input into the distorted feature extractor and the distorted
perceptual features are extracted at multiple scales. The pro-
cess of extracting Content Features and Distortion Features
(CFDF) is shown in equation (11).{

Ci = GC (Id )
Di = GD (Id )

(11)

In equation (11), Ci,Di represent multi-scale CFDF, respec-
tively, where i ∈ {1, 2, 3, 4}. GC () ,GD () represent extrac-
tors for CFDF, respectively. The function of attention based
fusion blocks is for calculating the weights of Ci,Di [22].
Among them, pooling operations will implement average
pooling and maximum pooling operations along the chan-
nel [23]. 1 ∗ 1 CL could markedly extract non sparse global
features. Therefore, to effectively compress feature dimen-
sions and retain most relevant features, this study used 8 of 1
∗ 1 CL to extract more valuable features [24]. The process is
shown in equation (12).{

C ′
i = fs (Ci)

D′
i = fs (Dd )

(12)

In equation (12), fs () represents a 1 ∗ 1 convolution operation.
Due to the differences between the CFDF after convolu-
tion processing, directly fusing these features will diminish
the learning capability. Consequently, the study proposes
for adaptively fusingvarious features through feature fusion,
as shown in equation (13).{

F im = C ′
i ⊗ D′

i

F ′
i = GF

(
C ′
i ,D

′
i,F

′
m
) (13)

In equation (13), F im,F
′
i respectively represent the concate-

nated features and the output features of the fused feature
blocks. GF () represents fused feature blocks. Finally, the
quality prediction block will regress the fused features into
quality scores. The expression for calculating the predicted
mass fraction is shown in equation (14).

yd = GR
(
F ′

1,F
′

2,F
′

3,F
′

4
)

(14)

In equation (14), GR () represents the quality prediction
block. Although content extractors can obtain content infor-
mation from images, they lack the ability to extract synthetic
distortion information. Therefore, the study proposes the use
of distorted feature extractors to solve the problem of image
distortion information diversity [25]. To enhance its sensitiv-
ity to distorted information, it was studied to pre-train it on a
large synthetic distorted dataset LSQA to learn rich distorted
features [26]. The pre-training process is shown in Figure 6.
In Figure 6, the DFE consists of three parts, namely

ResNet-50 backbone network module, quality perception
module, and Quality Regression Module (QRM). The back-
bone network module extracts hierarchical features from
distorted images, ranging from low-level to high-level. The
process of extracting multi-level features from ResNet-50 is
shown in equation (15) [27].

fi = FD (Id ) (15)

In equation (15), FD () serves as the ResNet-50 backbone
network module. The quality perception module will extract
corresponding feature information from multi-level features.
For obtaining the predicted quality score, the QRM will
regress the fused features to the quality score. The process
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FIGURE 6. Pre-training of DFE.

of quality prediction is shown in equation (16).{
Mf = M1 ⊗M2 ⊗M3 ⊗M4

q = FR
(
Mf

) (16)

In equation (16), Mf , q represent the quality scores of fused
features and predictions, respectively. FR () represents the
QRM. For learning the relation in distortion features and
quality scores, research is conducted to enhance prediction
performance byminimizing the loss function. The calculation
is showcased in equation (17).

ld =
1
N

∥∥GD (ID; θ)− yg
∥∥ (17)

In equation (17), yg represents the label value of the distorted
image. After completing the pre-training of the DFE, only
the backbone network module will be retained for extracting
distortion features. The CFE could markedly derive content
perception features, while the DFE could markedly derive
rich distortion features. Directly integrating such content
features with various characteristics and distortion features
would decrease the learning capability. To address this issue,
an adaptive fusion block is proposed, which adaptively fuses
the extracted content features with distorted features through
weight values. It contains four attention based fusion blocks.
This fusion block can adaptively fuse and extract content
and distorted features on the grounds of the contributions of
different features. And it can make the network concentrate
on important features. The network structure is shown in
Figure 7.

In Figure 7, the input of the attention based fusion block
has three types of features, namely content features, distortion
features, and fusion features. The purpose is to calculate the

weight score of fused features through multi-scale spatial
attention blocks, as shown in equation (18).

F im = C ′
i ⊗ D′

i

W d
1 = ψ1

(
F im

)
W c

2 = ψ2
(
F ′
i
)

F ′
i =

(
W d

1 × D′
i

)
⊗

(
W c

2 × C ′
i
) (18)

In equation (18), W d
1 ,W

c
2 represent the weight scores

of CFDF, respectively. F im,F
′
i represent the concatenated

features and the adaptive fused features, respectively.
ψ1 () , ψ2 () represent two independent multi-scale spatial
AMs, respectively. To solve the problem of the lack of CL for
extracting features of different sizes in a single receptive field,
this study proposes the use of multi-scale spatial attention
blocks with various receptive fields. This is for calculating the
weight scores of CFDF. Firstly, the maximum pooling layer
and the average pooling layer are utilized for compressing the
feature map with a size of C × H ×W into a spatial feature
map with a size of 2×H ×W . The features after splicing are
shown in equation (19).

f ′
i = MaxPool (fi)⊗ AvgPool (fi) (19)

In equation (19), AvgPool () represents the average pooling
layer. Then, a set of CL with different sizes of receptive
fields is used for extracting multi-scale features from f ′

i . For
reducing computational complexity and achieving the same
receptive field, this study used two 3 ∗ 3 CL instead of a 5 ∗

5 CL, and three 3 ∗ 3 CL instead of a 7 ∗ 7 CL. Secondly, the
output features of various receptive fields are fused through
splicing operations. It then performs channel compression on
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FIGURE 7. Attention-based Fusion block structure diagram.

it through a 1 ∗ 1 convolution operation. Finally, the Sigmoid
function is utilizedfor generating a 2D attention map [28].
Themulti-scale calculation process is shown in equation (20).

f3×3 = α1
(
f ′
i
)

f5×5 = α1 (f3×3)

f7×7 = α1 (f5×5)

fo = Sig (α2 (f3×3 ⊗ f5×5 ⊗ f7×7))

(20)

In equation (20), f3×3, f5×5, f7×7 represent the features after 3
∗ 3 CL. fo represents the generated attention map. α1 () , α2 ()
represent convolution operations of 3 ∗ 3 and 1 ∗ 1, respec-
tively. After getting multi-scale CFDF adjusted by adaptive
fusion blocks, the mapping relation in extracted features and
quality scores is learned through quality prediction blocks.
It performs quality regression through fully connected layers.
It assumes that the fused feature map is

{
F ′

1,F
′

2,F
′

3,F
′

4

}
, and

first applies the GAPL to such feature maps for getting the
channel feature map {l1, l2, l3, l4}. The process is shown in
equation (21). {

li = GAP
(
F ′
i
)

lconcate = l1 ⊗ l2 ⊗ l3 ⊗ l4
(21)

In equation (21), li represents the feature map processed by
the GAPL. lconcate represents the feature map after stitch-
ing.Finally, the subsequent feature map is mapped to the
quality score by a fully connected layer. The study used
three fully connected layers with 1920, 512, and 512 nodes,
respectively.For growing the nonlinear relation of the network
layer, the first two fully connected layers in the network struc-
ture are followed by ReLU operations. In addition, the study
introduces the dropout operation into the proposed network.
However, excessive dropouts will grow the convergence time
of the network, so this operation is only utilized after the first
fully connected layer [29], [30]. To compare the predictive

accuracy of IQE methods from an objective perspective, the
commonly used evaluation indicators currently include Pear-
son Linear Correlation Coefficient (PLCC) and Spearman
Order Correlation Coefficient (SROCC) [31], [32]. PLCC is
utilized for evaluating the linear correlation in image label
values and predicted values, and its calculation expression is
shown in equation (22) [33].

PLCC =

∑N
i=1

(
yil − yl

) (
yip − yp

)
√∑N

i=1
(
yii − yl

)2 ∑N
i=1

(
yip − yp

)2 (22)

In equation (22), N represents the number of test images.
yil, y

i
p represent the label value and predicted value of the

i-th image. yl, yp serve as the average of the label values
and predicted values of the image, respectively. SROCC is
utilized for evaluating the monotonic relation in image label
values and predicted values, and its calculation expression is
shown in equation (23) [34].

SROCC = 1 −

6
∑N

i=1

(
rank

(
yil

)
− rank

(
yip

))2
N

(
N 2 − 1

) (23)

In equation (23), rank
(
yil

)
, rank

(
yip

)
are the positions of

the i-th image arranged in order of size, respectively. The
absolute value range of these two types of evaluation indices
is 0-1, and the closer their values are to 1, the more excellent
the prediction accuracy.

IV. RESULT AND DISCUSSION
In the experiment, the experimental setup and its exper-
imental results on the standard quality evaluation dataset
will be introduced. The experimental setup includes exper-
imental environment construction, network training, dataset
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selection, and evaluation indicators. The experimental pro-
cess includes single dataset performance evaluation, single
distortion type performance evaluation, cross dataset perfor-
mance evaluation, and ablation experiments.The proposed
algorithm is implemented using TensorFlow framework.All
experimentsare completed under Windows 11 and 64 bit
operating systems. It uses Adam optimization algorithm and
back-propagation algorithm to train parameters in the net-
work.

A. EXPERIMENTAL ANALYSIS OF THE EFFECTIVENESS OF
IMAGE QUALITY DEGRADATION PROCESS MODEL
To verify the effectiveness of the image quality degradation
process model on the grounds of cyclic GANs studied, six
representative IQE methods were selected for comparison in
this experiment. These six quality evaluation methods are
HOSA, CNN, TS-CNN, DeepIQA, CaHDC, and RAN4IQA,
respectively. For evaluating the predictive accuracy, 7 pub-
lic IQE datasets were selected for comparison. 80% of the
reference images and corresponding distorted images were
randomly selected as the training set, while the rest were
selected as the test set.

Among them, the distorted images are obtained by adding
distortion information to the reference images in the corre-
sponding data set. The distorted image type is the format of
the distorted image, such as JPEG, JP2K, etc.The number
of image distortion types depends on the respective data
set.Table 1 showcases the specific information.

To eliminate sample bias caused by the dataset, it is divided
into 10 repetitions. The SROCC and PLCC results obtained
by each method on five datasets are shown in Figure 8.

Figure 8 showcases that the SROCC value and PLCC value
of the proposed method in the 5 data sets of LIVE, CSIQ,
TID2013, LIVEMD and LIVEC are higher, both exceeding
0.8. The SROCC outcomesgotten by the proposed method on
the five datasets of LIVE, CSIQ, TID2013, LIVEMD, and
LIVEC are 0.972, 0.928, 0.835, 0.938, and 0.886, respec-
tively. The PLCC results obtained on five datasets are 0.973,
0.930, 0.841, 0.952, and 0.806, respectively. For verifying the
predictive accuracy in this section under different distortion
types, three synthesized distortion data LIVE and CSIQ are
selected for single distortion type testing in this experiment.
The results are shown in Figure 9.

Figure 9 (a) demonstrates thatthe proposed method has a
slightly lower prediction accuracy for FF image distortion
types on the LIVE dataset than HOSA. The accuracy of
the proposed method for JPEG, JP2K, WN and GB image
distortion is higher than that of CNN, DeepIQA, TS-CNN
and RAN4IQA. The predictive accuracy of the proposed
method for JPEG, JP2K, WN and GB image distortion types
are 0.970, 0.961, 0.982 and 0.970, respectively.Figure 9
(b) demonstrates that on the CSIQ data set, the detection
SROCC results of the proposedmethod for JPEG, JP2K,WN,
GB and PN of five distortion types reach 0.925, 0.938, 0.947,
0.928 and 0.931, respectively. The results of this method are
better than other methods for the detection of these five image

TABLE 1. Details of the data set.

types. To verify the generalization of the proposed method,
CSIQ, LIVE, TID2013, and LIVEC are selected for cross
dataset training testing in this experiment.Each data set is
divided into a training set and a test set. The training set
consists of 80% of the reference images and their corre-
sponding distorted images, randomly selected. The test set
consists of the remaining 20% of the reference images and
their corresponding distorted images. All models are trained
on a single data set and then tested on the remaining three
data sets.The results are shown in Figure 10.

Figure 10 shows that the proposed method achieves the
highest prediction accuracy in 12 cross tests of 4 × 3 across
4 datasets. In Figure 10(a), the proposed method has higher
SROCC values on the three datasets than other methods.
Similarly, in Figure 10(b), (c), and (d), the proposed method
continues to have higher SROCC values than other methods
on the same dataset. When training and testing on synthetic
distorted datasets, most methods have achieved good gen-
eralization. As trained on LIVE and tested on CSIQ and
TID2013, the proposed methods exceeded the sub-optimal
methods by 15.21% and 11.33%, respectively. As trained on
CSIQ and tested on LIVE and TID2013, the proposedmethod
exceeded the sub-optimal method by approximately 0.90%
and 1.23%, respectively. As trained on TID2013 and tested
on LIVE and CSIQ, the method in this section exceeded
the sub-optimal method by approximately 0.73% and 3.54%,
respectively. As trained on synthetic distorted datasets and
tested on real distorted datasets, the generalization perfor-
mance of most methods significantly decreases. However, the
proposed method still exhibits the best generalization per-
formance among many methods.The base-line model (BL)
uses a lossless restoration module and VGG-16 as a quality
regression network for image restoration and quality assess-
ment. BL models are pre-trained with adversarial losses only.
The BL+CCL model is formed by adding the loss recovery
module and pre-training the adversarial loss and cyclic con-
sistency loss. Finally, VGG-16 is replaced by a new mass
regression network to get the BL+CCL+QRN model.The
results of ablation experiments conducted on 5 datasets are
shown in Figure 11.
Figure 11(a) shows that the extraction of multi-level fea-

tures using the BL+CCL+QRN model used in the study
can improve the SROCC by approximately 1.12%, 1.01%,
1.35%, and 2.59%. This verifies that the extraction of layered
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FIGURE 8. SROCC versus PLCC results on a single dataset.

FIGURE 9. SROCC results for a single distortion type on LIVE and CSIQ.

features is superior to using only output predicted images as
scoring criteria.Figure 11(b) demonstrates that after combin-
ing EF and DEF, SROCC scores on LIVE, CSIQ, TID2013
and LIVEC data sets reached 0.969, 0.927, 0.831 and 0.849,
respectively, showing an overall improvement. After the addi-
tion of the AM, the SROCC on the four data sets were
0.973, 0.938, 0.846 and 0.879, respectively, indicating that
the AM can effectively extract key features and improve the
performance by 0.22% ∼ 3.66%.

B. EXPERIMENTAL ANALYSIS OF THE EFFECTIVENESS OF
AN IMPROVED MODEL FOR BLIND IQE
For verifying the improvedmodel for blind IQE, the input dis-
torted image was randomly cropped into 5 image blocks with

a size of 224 ∗ 224 pixels. It sets the learning rate to 10^-5
and multiplies it by a coefficient of 0.9 for every fifty training
sessions. The DFE undergoes a total of 500 iterative training
sessions until the loss function converges and the training is
completed. To verify the predictive accuracy of different IQE
methods on a single dataset, six common IQE datasets were
chosen for validation in the experiment. Figure 12 showcases
the SROCC and PLCC results on a single dataset.

Figure 12(a) demonstrates thatexcept that the SROCC
value of the proposed method on the dataset CSIQ is slightly
lower than that of DB-CNN, while the SROCC value of
the proposed method on the other 5 datasets is higher than
that of other methods. The SROCC values of the proposed
method on the LIVE, TID2013, LIVEC, KonIQ-10k and
SPAQ data sets are 0.971, 0.835, 0.862, 0.912 and 0.919,
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FIGURE 10. Cross-data set SROCC results.

FIGURE 11. Results of ablation experiments on LIVE, CSIQ, TID2013, LIVE MD and
LIVEC.

respectively. Figure 12(b) shows that the proposed method
has a slightly lower PLCC value on dataset CSIQ compared to
DB-CNN, but higher PLCC values on all other datasets com-
pared to other methods. The PLCC values of the proposed
method on LIVE, TID2013, LIVEC, KonIQ-10k and SPAQ
are 0.975, 0.848, 0.871, 0.921 and 0.924, respectively.In sum-
mary, the prediction accuracy of proposed methods on all
datasets is far superior to similar methods. For verifying the

predictive accuracy for various distortion types, experiments
were implemented ontwosynthetic distortion datasets LIVE
and CSIQ in this section. The results are shown in Figure 13.
Figure 13 (a) shows that in the LIVE dataset, the proposed

method has higher prediction accuracy for all distortion types
than other methods. For JPEG, JP2K, WN, GB and FF, the
SROCC results are 0.947, 0.965, 0.984, 0.963 and 0.944,
respectively. Figure 13 (b) shows that the performance of
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FIGURE 12. SROCC and PLCC results on a single dataset.

FIGURE 13. SROCC results for a single distortion type on LIVE and CSIQ.

FIGURE 14. Cross-data set SROCC results.

the proposed method is about 0.19%, 0.62%, 0.14% and
1.20% higher than DB-CNN in JPEG, WN, GB and PN,
respectively. And the prediction accuracy is higher than that

of other methods for JPEG, JP2K, WN, GB, FF five kinds
of distorted image types.In summary, the DFE proposed by
the research institute can learn more abundant distortion
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TABLE 2. Comparison of image quality evaluation methods.

information, strengthening the network’s capability of deriv-
ing various types of distortion. To verify the generalization
performance of the proposed method, cross-experiments are
carried out between the research model and other models
on four datasets: LIVE, CSIQ, TID2013 and LIVEC. That
is, all models are trained on one dataset and then tested for
SROCC evaluation on the other three datasets. The average
SROCC results are analyzed statistically. The SROCC results
as shown in Figure 14.

Figure 14(a) demonstrates that in the data set LIVE, the
SROCC results of the proposedmethod in the three cross-data
sets are all higher than other algorithms, and their values
on CSIQ, TID2013 and LIVEC are 0.788, 0.611 and 0.657,
respectively.Figure 14(b) demonstrates that on the data set
CSIQ, the SROCC results of the proposed method in the
three cross-data sets are all higher than other algorithms,
and their values on LIVE, TID2013 and LIVEC are 0.933,
0.569 and 0.473, respectively. Figure14(b) and (d) demon-
strate that the SROCC results of the proposed method on
several other cross-data sets are still higher than those of
other algorithms.The proposed method achieved a total of
8 good prediction results. As trained on synthetic distorted
datasets and tested on real distorted datasets, the proposed
method can easily exceed 0.45. It achieved an SROCC result
of 0.661 when trained on LIVE, 0.474 when trained on CSIQ,
and 0.442 when trained on TID2013. When training and
testing on synthetic distorted datasets, the proposed method
largely outperforms other methods. The proposed method is
compared with the image quality evaluation methods pro-
posed in literatures [6], [7], [8], [9], [10]. The tests were
performed on the KonIQ-10K dataset. The accuracy of image
quality evaluation, root mean square error and F1 score pre-
diction results of each method are shown in Table 2.
Table 2 shows that in terms of image quality evaluation

accuracy, the proposed method has a higher evaluation accu-
racy than other advanced methods, and its accuracy reaches
93.2%. In the root-mean-square error of image quality eval-
uation, the RMSE of the proposed method is smaller than
that of other methods, which is 0.314. In the prediction of
F1 score, the F1 value of the proposed method is higher than
that of other methods, which is 92.4. In summary, compared
with other advanced methods, the proposed method has a
significant improvement in the accuracy of image quality
evaluation.

V. CONCLUSION
The blind IQE method is hard for achieving the performance
equivalent to the full reference IQE method, and it is hard for

accurately predicting the image quality score through a single
model. A quality perception method on the grounds of GANs
was proposed to model the process of image quality degrada-
tion. And a special IQE method was used for extracting con-
tent information and distortion information from the image.
The experiment showed that on the five single datasets of
LIVE, CSIQ, TID2013, LIVEMD, and LIVEC, the SROCC
results and PLCC prediction accuracy results obtained by the
proposed method were higher than those of the other five
methods. The prediction accuracy of the proposed method for
distortion types in JPEG, JP2K, WN, GB, and FF was 0.971,
0.963, 0.984, 0.971, and 0.926, respectively. The SROCC
results and PLCC prediction accuracy results obtained by the
proposed methods on six datasets: LIVE, CSIQ, TID2013,
LIVEC, KonIQ-10k, and SPAQ were higher than those of
the other four methods. The proposed method achieved the
highest predictive accuracy on all distortion types in the LIVE
dataset, with SROCC results of 0.973, 0.965, 0.984, 0.963,
and 0.944, respectively. As trained on synthetic distorted
datasets and tested on real distorted datasets, the SROCC
results of the proposed method can easily surpass those of
other methods. In summary, the improved model for blind
IQE studied achieved optimal generalization performance.
Although research has achieved good results, its main extrac-
tion ability relied on the pre-trained ResNet-50 network,
making it difficult to reduce most of the overall network com-
plexity. Therefore, in the future, it is necessary to consider
using lighter networks as CFEs and DFEs. It ensures accurate
prediction while also reducing computational complexity.
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