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ABSTRACT This paper presents a comprehensive analytical study of the average bit error probability
(ABEP) performance of multiple-input multiple output (MIMO) communication systems employing Space
Shift Keying (SSK) modulation operating over a mixture of Rayleigh fading and impulsive noise channels
modelled by the symmetric alpha-stable distribution. By considering three key receiver structures, namely
the genie-aided (GA), minimum distance (MD) and maximum likelihood (ML) type of receivers various
analytical ABEP performance evaluation results are presented. Firstly, a novel analytical approach for
evaluating the ABEP of SSK-MIMO systems, for the ideal benchmark GA receiver which has a-priori
knowledge of both channel and noise coefficients, is introduced. The proposed methodology yields exact
expressions for the ABEP performance of multiple-input single output (MISO) systems with two transmit
antennas. For the general case of MIMO systems which employ an arbitrary number of transmit and/or
receive antennas, accurate approximations and tight upper performance bounds are derived and their ABEP
performance is analyzed. An asymptotic ABEP analysis is also carried out from which the diversity and
the coding gains are derived. Secondly, a general class of minimum distance (MD) receivers, namely the
Lp-norm receivers, is considered. An approximate analytical expression for the ABEP of the special case
of L2-norm (matched filter) receivers, whose performance is optimal for the additive white Gaussian noise
channel (AWGN), is derived. For the general case of Lp-norm receivers, their ABEP performance is evaluated
by means of Monte Carlo simulations, revealing that they significantly outperform the L2-norm receivers.
Thirdly, by considering the maximum-likelihood (ML) receiver, since its implementation complexity turns
out to be prohibitively high, simple, suboptimal receiver configurations structures of the ML receiver are
instead proposed. Analytical evaluation results verified by complementary computer simulations have shown
that their ABEP performance is asymptotically, i.e., at high signal-to-noise ratios (SNR), optimal. For the
GA, suboptimal ML and Lp-norm receiver structures, the impact of spatial correlation on their ABEP
performance has also been analyzed and evaluated. The accuracy of the analytical approaches used in
deriving the proposed receivers has been validated by equivalent numerical ABEP performance evaluation
results accompanied by complementary Monte Carlo simulations.

INDEX TERMS Alpha stable distribution, average bit error probability, space shift keying (SSK) modula-
tion, spatial Poisson process, multiple-input–multiple-output (MIMO) systems, network interference.
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I. INTRODUCTION
Spatial modulation (SM) has emerged as an efficient
and low-complexity transmission scheme for multiple-
input–multiple-output (MIMO) wireless communication
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systems [2], [3], [4]. The working principle of SM is to use
both conventional phase or amplitude modulation techniques,
such as phase shift keying (PSK) and quadrature amplitude
modulation (QAM), as well as a unique antenna index,
selected from the set of transmitting antennas, to convey
information. At every given time slot, only one transmitting
antenna is active for data transmission whereas the remaining
transmitting antennas are kept silent [3]. Furthermore, in [5],
the so-called space shift keying (SSK) modulation, has been
proposed as a low–complexity implementation of SM, so that
the trade–off between receiver complexity and achievable
data rate can be considered.

In the past, the performance of SM systems operating over
fading and additive white Gaussian noise (AWGN) channels
has been addressed in various research works, e.g. see [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]
and references therein. In these works, diversity techniques,
such as maximum ratio combining (MRC), are employed at
the receiver to increase the achievable diversity gain. It is
well known that such schemes yield an optimal performance
in the AWGN channel. However, such optimality is not
valid for communication systems operating over impulsive
noise channels [18], [19]. It is noted that impulsive noise
which has non-Gaussian statistics occurs in various operating
conditions, such as lightning discharges and network interfer-
ence [20], [21].
Several probability distributions have been proposed in the

open technical literature to model impulsive noise. Repre-
sentative examples include the Middleton Class A (MCA)
distribution [18] and the symmetric α-stable (SαS) distribu-
tion [22], [23]. The MCA distribution is a mixture of a large
number of Gaussian random variables (RVs) with different
variances and characterizes the sparsity of high-amplitude
spikes in noise. This distribution has been used extensively in
the past to model impulsive noise in communication systems,
e.g., [19], [24], and [25].

On the other hand, the SαS distribution describes the statis-
tical characteristics of the noise amplitude distribution. This
distribution can accurately model aggregate interference in a
multi-user network in which interfering nodes are spatially
distributed according to a Poisson point process (PPP) [20],
[26] as well as impulsive noise power line communication
(PLC) systems [25], [27]. In recent years, the SαS distri-
bution has emerged as an important alternative to the MCA
distribution because it can more accurately model the heavy
tail characteristics of the impulsive noise and its parameters
can be estimated from the amplitude statistics in a consistent
manner [28].
The performance of wireless systems operating in the pres-

ence of SαS noise has been addressed in several research
works. For example, [21] and [29] have investigated the
performance of diversity receivers and space-time block cod-
ing (STBC) systems, respectively, assuming Rayleigh fading
channels. In [30] analytical expressions for the symbol error
rate ofM -ary modulation schemes of single-antenna systems

operating over generalized fading channels, have been pre-
sented.

Furthermore, the problem of signal detection under SαS
noise has been addressed in [31], [32], [33], [34], [35], and
[36]. For example, in [31], the error performance of four
different classes of receivers, namely the optimum maxi-
mum likelihood (ML), the minimum distance (Gaussian),
the Cauchy and the limiter-plus-integrator, operating in the
presence of SαS noise, has been addressed. In [32], the error
performance of the ML, Gaussian and limiter-plus-integrator
receiver has been analyzed in the presence of mixture Gaus-
sian and stable noise. In [33], a max-min distributed detector
for wireless sensor networks has been proposed. In [34], fur-
ther performance evaluation results for suboptimal receivers,
namely Gaussian, soft limiter, myriad and Cauchy, have been
presented. In [35], the optimality of the myriad filter in the
presence of alpha-stable noise has been investigated. In [36],
a performance analysis of spectrum sensing schemes based
on fractional lower order moments for cognitive radio has
been presented. However, to the best of our knowledge, the
design and performance analysis of SM systems operating in
the presence of both fading and impulsive noise has not yet
been considered in the open technical literature.

On the other hand, in order to analyze the error perfor-
mance of SM systems in the presence of Gaussian noise,
an optimum receiver based on ML detection is usually
assumed, e.g, see [6]. Nevertheless, as it will become evident
later on in our paper, the complexity of such a receiver in
the presence of SαS noise is prohibitively high, as it involves
the numerical computation of infinite integrals of special
functions. In addition, the well known minimum distance
(MD) receiver, which is optimal in the presence of Gaussian
noise, performs poorly in a SαS noise environment.
Motivated by the above, in this paper we analyze in a sys-

tematic manner the performance of SSK systems operating
over Rayleigh fading and SαS noise by considering the fol-
lowing generic receiver structures: i) Genie-aided receivers
(GA) which assume complete a-priori knowledge of both
channel and noise parameters and can be considered as a
benchmark receiver; ii) MD receivers, which as well known
have optimal performance in the AWGN channel; iii) ML
receivers which although theoretically achieve the best per-
formance, are not practical because of their high implemen-
tation complexity and thus, suboptimal reduced-complexity
receiver structures are instead considered.

Within this framework, the main contributions of this paper
can be summarized as follows:

• For the GA receiver structure, we present novel, single-
integral expressions for the analytical evaluation of the
average bit error Probability (ABEP) of SSK-MISO
systems. The resulting analytical expressions are exact
when the transmitter is equipped with two antennas.
Both independent and identically distributed (i.i.d.) fad-
ing as well as correlated fading channels are considered.
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TABLE 1. List of mathematical notations used in this paper.

For SSK-MIMO systems equipped with two transmit
antennas, approximate, yet accurate analytical expres-
sions are further derived in terms of a single integral.
An asymptotic analysis for high values of signal-to-
noise ratio (SNR) is carried out, fromwhich the diversity
and coding gains are obtained. Upper bounds for the
ABEP that become tight for high values of the SNR
are deduced for SSK-MISO and SSK-MIMO systems
equipped with arbitrary number of transmitting anten-
nas. Furthermore, similar analytical expressions for the
performance of SSK-MIMO systems are derived;

• We analyze the performance of SSK-MIMO systems
assuming a generic class of minimum distance (MD)
receiver by considering an alternative receiver structure
that employs an Lp-norm distance metric. This receiver
yields significant performance gains as compared to the
traditional L2-norm (matched filter) receiver;

• We introduce the optimum maximum likelihood (ML)
detector and propose simpler, suboptimal receiver struc-
tures that yield a close-to-the-optimal performance at
high SNR values;

• We analyze and evaluate the impact of spatial correlation
on the ABEP performance of the GA, Lp-norm and
suboptimal ML receiver structures.

The proposed analysis has been validated by numerically
evaluated results and equivalent performance results obtained
by means of Monte Carlo simulations.

The remainder of this paper is organized as follows.
Section II outlines the system and noise models. In Section III
the proposed receiver designs are presented and their ABEP
performance in the presence of both fading and noise is
evaluated. Performance evaluation results are presented in
Section IV, whereas Section V concludes the paper.
Notations: A comprehensive list of all mathematical nota-

tions used in this paper appears in Table 1.

II. SYSTEM MODEL
Consider a Nr ×Nt MIMO SSK system with Nr and Nt being
the number of receiving and transmit antennas, respectively.
Assuming a frequency-flat fading channel model the received
complex signal vector, y ∈ CNr×1, can be expressed as [3]

y =
√

ρHx + n (1)
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where ρ is the average transmitting power at each transmit-
ting antenna; H ∈ CNr×Nt is the complex channel matrix,
x = [x1, x2, . . . , xNt ]

T is theNt×1 transmitting vector whose
ith element, xi, is given as

xi =

{
1 if the ith transmitting antenna is active
0 if the ith transmitting antenna is not active .

and n ∈ CNr×1 is the additive noise vector at the receiver.
The elements of the channel matrix, hij, are complex Gaus-

sian RVs, having zero mean and unit variance, i.e. hij ∼

CN (0, 1). Hereafter and unless otherwise stated, it is assumed
that hij are i.i.d. RVs. It is noted that this fading model has
been used in the past for the channel modeling of practical
multi-antenna systems if a half wavelength-spaced uniform
linear array (ULA) is deployed in an isotropic scattering
environment [37]. However, in practice, antenna correla-
tion is also present and can degrade the performance of
multi-antenna systems [38], [39]. Nevertheless, an exact per-
formance evaluation of the system under consideration when
correlated fading channels are assumed, is difficult - if not
impossible, to be carried out. Therefore, the impact of chan-
nel correlation will be investigated analytically for specific
antenna configurations only, namely for Nr = 1 and Nt = 2.
For the general case of Nr > 1, the performance evaluation
will be carried out by means of Monte Carlo simulations.

The ith element of the noise vector, [n]i, is a complex RV
having SαS distributed real and imaginary parts. Following
[23, p. 117] and [21], here [n]i is assumed to be a complex
isometric RV, i.e. it can be written as

[n]i =

√
Ai
(
GRi + ȷGIi

)
(2)

whereGRi andG
I
i are i.i.d. real valuedGaussian RVswith zero

mean and unit variance and Ai follows an alpha-stable dis-
tribution. In general, a mathematically tractable closed-form
expression for the PDF of Ai, suitable for the performance
evaluation of multi-antenna systems, is not available in
the open technical literature. Recently, generic closed-form
expressions for the PDF ofAi in terms of the Fox’s H-function
have been presented in [30] and [36]. For specific values
of α, these expressions can be further reduced to the PDFs
of well known distributions, such as for α = 1 the Cauchy
and for α = 2 the Gaussian. Therefore, in this paper we
follow a CHF-based approach to transform the resulting aver-
age error-rate integral expressions into the Fourier transform
domain, using the Parseval theorem. This approach is much
more efficient than the conventional PDF-based approach,
because a closed-form expression for the CHF of Ai requiring
only elementary functions is readily available.

Specifically, the CHF of Ai is given in [22] and [23] as

8Ai (t) = exp
[
−|σ t|α/2(1 − ȷ sign(t))ω(t, α)

]
(3)

where α ∈ (0, 2] is the characteristic exponent, σ =

[cos(πα/4)]2/α is the scale parameter and

ω(t, α) =

 tan
(πα

4

)
if α ̸= 2

2
π

| log(t)| if α = 2.
(4)

It is noted that for a SαS RV only the moments of order α

or less exist [23, p. 22].

III. PERFORMANCE ANALYSIS AND RECEIVER DESIGN
In this section, several receiver structures for SSK systems
operating in the presence of stable noise and Rayleigh fading
will be presented. Hereafter, it is assumed that the channel
matrix H is perfectly known at the receiver side. We first
analyze the performance an ideal receiver which assumes
perfect a-priori knowledge of the noise components Ai in (2).
Next, the performance of practical receivers operating with-
out knowledge of Ai will be presented.

A. GENIE AIDED (GA) RECEIVER
This receiver minimizes the probability of an erroneous sym-
bol when the channel matrix H and the noise components Ai
are a-priori known. In order to derive an analytical expression
for the ABEP, the corresponding detection rule should first
be derived. Letting a = [1/

√
A1, 1/

√
A2, . . . , 1/

√
ANr ]

T and
g = [G1,G2, . . . ,GNr ]

T , (1) can be expressed as

y ⊙ a =
√

ρ(Hx) ⊙ a + g. (5)

Since the elements of g are CN (0, 2) RVs, the optimal detec-
tion rule, assuming that the symbol xt has been transmitted,
∀t ∈ {1, 2, . . . ,Nt }, minimizes the following distance metric

x̂t = argmin
t

{
∥ y ⊙ a −

√
ρ(Hxt ) ⊙ a ∥

2
F

}
. (6)

Using (6), the average pairwise error probability (APEP) that
xt was transmitted and xm was received by the GA receiver,
can be expressed as

Pr(xt → xm)

= Ea,H

〈
Q

√ρ ∥ [H (xt − xm)] ⊙ a ∥
2
F

4

〉 . (7)

In what follows, analytical expressions for the APEP will
be derived, assuming three antenna configurations, namely
2 × 1, Nt × 1 and Nt × Nr .

1) MISO 2 × 1 SSK SYSTEMS
By considering a MISO system with Nt = 2 and Nr =

1, there are two possible transmitted symbols, [1, 0]T and
[0, 1]T . Moreover, the vector a becomes a scalar, i.e. a =

1/
√
A, and the channel matrix H = [h1 h2]. Using (7), the

APEP simplifies to

APEP = EA,h1,h2

〈
Q

√ρ|h1 − h2|2

4A

〉 . (8)

This APEP can be evaluated using the following proposition.
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Proposition 1: The APEP of a 2× 1 SSK system employ-
ing a GA receiver operating in the presence of i.i.d. Rayleigh
fading and SαS noise can be expressed in terms of a single
integral as

APEP =
1
2

−
1
2π

∫
∞

0
ℜ {(F1(t) + ȷF2(t))

× exp
[
−(ct)α/2

(
1 + ȷ tan

(πα

4

))]}
dt (9)

where c = [cos (πα/4)]
2
α and F1(t) and F2(t) are given

by (10) and (11), respectively, as shown at the bottom of the
next page.

Proof: Assuming i.i.d. Rayleigh fading, the RV Z =

|h1 − h2|2 follows an exponential distribution with fZ (z) =

0.5 exp(−0.5z) [5], [12], [40]. Thus, an analytical expression
for the conditional APEP, givenA, can be deduced by employ-
ing [41, eq. (14-3-7)] as

Pr(xt → xm|A) =
1
2

−
1
2

(
1 +

4A
ρ

)−1/2

. (12)

A single integral representation for the APEP can be obtained
as

APEP =
1
2

−
1
2

∫
∞

0

(
1 +

4A
ρ

)−1/2

fA(A)dA. (13)

The integral in (13) is very difficult, if not impossible, to be
solved, since a closed form for fA(A) is not available. Nev-
ertheless, by observing that A is a positive RV and using the
Parseval’s theorem, this APEP can be expressed as

APEP =
1
2

−
1
2π

∫
∞

0
ℜ{G(t)8∗

A(t)}dt. (14)

where G(t) = F
{(

1 +
4A
ρ

)−1/2
u(A),A; t

}
, which can be

conveniently expressed as G(t) = F1(t) + ȷF2(t), where

F1(t) =

∫
∞

0

(
1 +

4A
ρ

)−1/2

cos(A t)dA (15a)

F2(t) =

∫
∞

0

(
1 +

4A
ρ

)−1/2

sin(A t)dA. (15b)

By employing [1, 3.751/1] and [1, 3.751/2], (15a) and (15b)
can be solved in closed-form yielding (10) and (11), respec-
tively. Finally, using (3), (9) is readily obtained thus complet-
ing the proof.

In the following analysis, the impact of spatial correlation
on the error probability of 2 × 1 SSK systems will be dis-
cussed. We assume that h1 and h2 are correlated complex
Gaussian RVs with covariance matrix

C =

[
σ 2
1 σ12

σ ∗

12 σ 2
2

]
(16)

Proposition 2: The APEP of a 2× 1 SSK system employ-
ing a GA receiver operating in the presence of correlated
Rayleigh fading and SαS noise can be expressed in terms of
a single integral as

APEP =
1
2

−
1
2π

∫
∞

0
ℜ
{(
F ′

1(t) + ȷF ′

2(t)
)

× exp
[
−(ct)α/2

(
1 + ȷ tan

(πα

4

))]}
dt (17)

where c = [cos (πα/4)]
2
α and F ′

1(t) and F ′

2(t) are given
by (10) and (11), respectively, by replacing ρ with

ρ′
= ρ(σ 2

1 + σ 2
2 − 2ℜ{σ12})/2. (18)

Proof: Assuming correlated Rayleigh fading, the RV
Y = h1−h2 is complex Gaussian having zero mean and vari-
ance σ 2

= E⟨|Y |
2
⟩ = E⟨|h1|2⟩ + E⟨|h2|2⟩ − 2ℜ{E⟨h1h∗

2⟩} =

σ 2
1 + σ 2

2 − 2ℜ{σ12}. Therefore, an analytical expression for
the APEP of 2×1 SSK operating in the presence of correlated
Rayleigh fading can be readily deduced using Proposition 1
by scaling ρ with ρσ 2/2, thus completing the proof.

2) MIMO 2 × Nr SSK SYSTEMS
Let us now consider a MIMO system with Nt = 2 trans-
mitting and Nr receiving antennas, for which, again, the
two possible transmitted symbols are [1, 0]T and [0, 1]T .
Using (7), the APEP can be deduced as

APEP = Ea,H

〈
Q


√√√√ρ

Nr∑
r=1

|h1r − h2r |2

4Ar

〉 . (19)

Since for this case, an exact expression cannot be obtained,
an accurate approximation for the APEPwill be derived using
the following proposition.
Proposition 3: An accurate approximation for the APEP

of a 2 × Nr SSK system employing a GA receiver operating
in the presence of i.i.d. Rayleigh fading and SαS noise can be
deduced as

APEP ≈
1
12

[
F3
(ρ

8

)]Nr
+

1
4

[
F3
(ρ

6

)]Nr
(20)

where F3(s) is given by (21), as shown at the bottom of the
next page, and c = [cos (πα/4)]

2
α .

Proof: It can be observed that an exact analytical
expression for the expectation in (19) is very difficult, if not
impossible, to be obtained. An accurate approximate solution
of (19) can be deduced by employing the tight exponential
approximation for the Q-function proposed in [42, eq. (14)],
i.e., Q(x) ≈

1
12 exp(−x

2/2) +
1
4 exp(−2x2/3). Since the

entries of H and a are i.i.d. and using the definition of the
MGF, (19) can be approximated as

APEP ≈
1
12

[
MZr

(ρ

8

)]Nr
+

1
4

[
MZr

(ρ

6

)]Nr
(22)

where Zr = |h1r − h2r |2/Ar , ∀r ∈ {1, 2, . . . ,Nr }. Condi-
tioning on Ar , Zr follows an exponential distribution with the
following MGF

MZr (s) =
Ar

Ar + 2s
= 1 −

2s
Ar + 2s

. (23)

Thus, an analytical expression for the APEP can be
deduced by averaging MZr (s) over Ar . In doing so, the
evaluation of the following integral is required

F3(s) = 1 −

∫
∞

0

2s
A+ 2s

fAr (A)dA. (24)
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By employing the Parseval’s theorem, F3(s) can be expressed
as

F3(s) = 1 −
1
π

∫
∞

0
H (t)8∗

Ar (t)}dt, (25)

where

H (t) = F
{

2s
A+ 2s

u(A),A; t
}

. (26)

The real and imaginary parts of H (t) can be evaluated,
respectively, as

ℜ{H (t)} =

∫
∞

0

2s cos(A t)
A+ 2s

dA (27a)

ℑ{H (t)} =

∫
∞

0

2s sin(A t)
A+ 2s

dA. (27b)

Using [1, Eq. (3.722/1)], [1, Eq. (3.722/3)] and after per-
forming some algebraic manipulations, (21) is obtained, thus
completing the proof.

Next, we present a simple closed-form expression for the
APEP that becomes asymptotically tight at high SNR values.
Based on this expression the diversity and coding gains of the
GA can be deduced. The following result holds.
Proposition 4: For ρ → ∞, the APEP of 2 × Nr SSK

system employing a GA receiver is given as

APEP

=
1

2
√

π

0
(
Nrα+1

2

)
0
(
Nrα
2 + 1

) [0 (1 +
α

2

)]Nr (ρ

8

)−Nrα/2

+ o
(
ρ−(Nr+1)α/2

)
(28)

Proof: Using the well known Graig’s representation of
the Gauss Q-function [38],

Q(x) =
1
π

∫ π/2

0
exp

(
−

x2

2 sin2(θ )

)
dθ (29)

(19) can be written as

APEP

=
1
π

∫ π/2

0
Ea,H

〈
exp

(
−

ρ

2 sin2(θ )

Nr∑
r=1

|h1r − h2r |2

4Ar

)〉
dθ

(30)

By observing that RVs Ar are i.i.d., each product term in (30)
has the same expected value. Therefore, (30) can be written
as

APEP

=
1
π

∫ π/2

0
EA,H

〈
exp

(
−

ρ

8A sin2(θ )

Nr∑
r=1

|h1r − h2r |2
)〉

dθ

(31)

where A is any of the RVs Ar . Observe that the RVs Wr =

|h1r − h2r |2 follow an exponential distribution with PDF
fWr (w) = 0.5 exp(−0.5w) and MGFMWr (s) = (1 + 2s)−1.
By taking the expectation of (31) with respect toH and using
the definition of the MGF, (31) can be expressed as

APEP =
1
π

∫ π/2

0
EA

〈(
1 +

ρ

4A sin2(θ )

)−Nr
〉
dθ. (32)

The expectation with respect to A can be evaluated as

EA

〈(
1 +

ρ

4A sin2(θ )

)−Nr
〉

=

∫
∞

0

(
1 +

ρ

4A sin2(θ )

)−Nr
fA(A)dA. (33)

For large values of A, an asymptotic analytical expression for
the PDF of A, fA(A), is given as [22]

fA(A) =
α

2π
sin
(πα

2

)
0(α/2)A−α/2−1

+ o(A−1−α) (34)

By substituting (34) into (33) and employing [1, eq.
(3.241/4)] as well as the well-known identities 0(1 + x) =

x0(x) [1, eq. (8.331/1)] and 0(x)0(1 − x) = π/ sin(πx) [1,
eq. (8.334/3)], (33) can be evaluated in closed form as

EA

〈(
1 +

ρ

4A sin2(θ )

)−Nr
〉

=
0(1 + α/2)0(Nr − α/2)

0(Nr )0(1 − α/2)

(
ρ

4 sin2(θ )

)−α/2

. (35)

Finally, by substituting (35) into (33) and using [1, eq.
(3.621/1)], [1, eq. (8.338/1)] and [1, eq. (8.384/1)], (28) is
readily obtained, thus completing the proof.

F1(t) =
1
2

√
πρ

2t

{[
1 − 2C

(√
ρt
2π

)]
cos

(
ρt
4

)
+

[
1 − 2S

(√
ρt
2π

)]
sin
(

ρt
4

)}
(10)

F2(t) =
1
2

√
πρ

2t

{[
1 − 2S

(√
ρt
2π

)]
cos

(
ρt
4

)
+

[
2C

(√
ρt
2π

)
− 1

]
sin
(

ρt
4

)}
(11)

F3(s) = 1 −
1
π

∫
∞

0
ℜ

{ȷ

t
+ 2 s exp (−ȷ2 s t)

(ȷπ

2
− Ci(2 s t) − ȷSi(2 s t)

)
exp

[
−(ct)α/2

(
1 + ȷ tan

(πα

4

))]}
dt (21)
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As it can be observed, the diversity gain of the proposed
system configuration depends on both the number of the
receiving antennas, Nr , as well the parameter α. Moreover,
the resulting coding gain is also a function of Nr and α.
By differentiating the natural logarithm of the coding gain
defined in (10) with respect to α and Nr separately, it can
be seen that the coding gain is a monotonically decreasing
function of both parameters.

3) MIMO Nt × Nr SSK SYSTEMS
It is first noted that for Nt > 2, an exact expression for the
APEP is even more difficult to be obtained. Nevertheless,
by employing the well known union bound technique, a tight
upper bound on the APEP of the considered system can be
deduced as [7], [8]

APEP ≤
N−1
t

log2(Nt )

×

Nt∑
t1=1

Nt∑
t2 ̸=t1=1

Nb(t1, t2)APEP(t1 → t2) (36)

where APEP(t1 → t2) denotes the APEP related to the pair
of transmitting symbols t1 and t2, which can be evaluated
using the results of Propositions I and II, and Nb(t1, t2) is the
Hamming distance between t1 and t2.

B. Lp-NORM RECEIVER
For this generic class of minimum distance (MD) receivers,
the optimal detection rule, assuming that the symbol xt has
been transmitted, ∀t ∈ {1, 2, . . . ,Nt }, minimizes the follow-
ing distance metric [36], [43], [44]

x̂t = argmin
t

{
∥ y −

√
ρHxt ∥

p} . (37)

In (37), we select p < α because only in this case the
moments of the SαS distribution are finite and the so-called
fractional low order statistics (FLOS) are regarded as a useful
signal processing approach for designing detectors operating
over stable noise [36]. For the special case of p = 2, the
well-known matched filter receiver is obtained, i.e.

x̂t = argmin
t

{
∥ y −

√
ρHxt ∥

2
F

}
. (38)

However, the L2-norm receivers, which can be optimized
for the additive white Gaussian noise (AWGN) channel, per-
forms poorly in SαS noise channels [43]. Furthermore, it has
been shown in [21] that, as Nr increases, no diversity gain is
achieved, while there exists a threshold of the α parameter
of the stable distribution below which system performance
degrades. These observations have been also verified by the
performance evaluation results which will be presented later
on in Section IV.
Nevertheless, although the L2-norm receiver is optimal for

only the AWGN channel, it has been widely used in practical
applications because of its maximal ratio combining (MRC)
property and thus, its performance over SαS noise is still of
interest and it will be also considered here.

In the following, approximate analytical expressions for
the APEP of L2-norm receivers will be presented. It is noted
that, since obtaining an analytical APEP expression for the
general Lp-norm receiver it is very difficult, if not impossible,
only computer simulated ABEP performance results will be
presented later on in Section IV.

Using (38), the APEP for the L2-norm receivers can be
deduced as

APEP = E
{Ar }

Nr
r=1,H

〈
Q


√√√√√ρ

(∑Nr
r=1 Zr

)2
4
∑Nr

r=1 ZrAr


〉

, (39)

where Zr = |h1r − h2r |2.
As the expectation in (39) is very difficult, if not impos-

sible, to be evaluated analytically, an accurate analytical
approximation for (39) that is tight over the entire SNR
region, will be proposed. Specifically, the following result
holds.
Proposition 5: The APEP of 2×Nr SSK system employ-

ing an L2-norm receiver can be accurately approximated as

APEP ≈
1
2

−
1
2

Nr−1∑
k=0

k∑
j=0

(−1)k−j(2k)!Skj
22kk!j!(k − j)!

(
ρNr
4

) 1
2+k−j

(40)

where Skj is given by (41), as shown at the bottom of the next
page.

Proof: See Appendix V.
Finally, it is noted that for themore general case of aNt×Nr

MIMO system, an upper bound for the APEP can be obtained
in a straightforward way, by employing (36), (40) and (41).

C. ML RECEIVER
For the ML receiver, its detection rule can be mathematically
expressed as

x̂t = argmax
t

{ Nr∏
r=1

fα(||[y]r −
√

ρ[Hxt ]r ||)

}

= argmax
t

{ Nr∑
r=1

log fα(||[y]r −
√

ρ[Hxt ]r ||)

}
(42)

where fα(||x||) is the PDF of the magnitude r = ||x|| of a N -
dimensional SαS distributed random vector given by [22, eq.
(7.5.5)]

fα(r) =
21−N/2

0(N/2)

∫
∞

0
exp(−σαtα)JN/2−1(rt)N/2dt. (43)

Clearly, the implementation complexity of this ML receiver
is prohibitive, since it involves the numerical evaluation of a
Hankel transform and also depends on the noise parameters
σ and α. Nevertheless, asymptotically optimal receivers with
reduced implementation complexity, as compared to the ML
receivers, can be obtained for high SNR values. Specifically,
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by employing [23, p. 118], the tail PDF of r can simplifies to

fα(r) = α2α
sin
(

πα
2

)
πα/2

0
(

α+2
2

)
0
(

α+N
2

)
0(N/2)

r−α−1

+ o
(
r−2α−1

)
. (44)

Using the dominant term of (44) in (42) and after some
straightforward mathematical simplifications, the detection
rule of the resulting suboptimal receiver can be deduced as

x̂t = argmin
t

{ Nr∑
r=1

log ||[y]r −
√

ρ[Hxt ]r ||

}
. (45)

This receiver performs asymptotically optimal at high SNR
values and its performance does not depend on specific values
of the impulsive noise parameters while its implementation
complexity is significantly lower than that of its ML counter-
part. Furthermore, using the well known relationship

log(z) = 2 tanh−1
(
z− 1
z+ 1

)
, (46)

(45) can be conveniently expressed as

x̂t = argmin
t

{ Nr∑
r=1

tanh−1
(

||[y]r −
√

ρ[Hxt ]r || − 1
||[y]r −

√
ρ[Hxt ]r || + 1

)}
.

(47)

The advantage of (47) over (45), is that the function
tanh−1(z) converges faster than the logarithm around z = 0.
Specifically, it turns out that only 12 odd powers of z are nec-
essary for achieving double precision accuracy. On the other
hand, tanh−1(z) is bounded, while the logarithm function
in (45) is not. Therefore, (47) is more appropriate for numer-
ical evaluation, especially when lookup tables are employed
for the numerical evaluation of tanh−1(z).
Finally, it also interesting to consider the so-called gener-

alized Cauchy (GR) receiver, whose detection rule is given
as [31]

x̂t = argmin
t

{ Nr∑
r=1

log
(
c2 + ||[y]r −

√
ρ[Hxt ]r ||

)}
. (48)

In (48), c is an arbitrary parameter which is chosen to mini-
mize the resulting ABEP. It can be observed that for c = 0,
(48) reduces to (45) whereas for c = 1, (48) yields the opti-
mal ML receiver operating in the presence of Cauchy noise,
namely for α = 1 (see eq.(3)). Note that the implementation
complexity of the GC receiver can be further reduced by
employing (46).

FIGURE 1. ABEP of 2 × 1 SSK systems with GA receiver as a function of
the SNR, ρ, for various values of α.

FIGURE 2. ABEP of 2 × 1 SSK systems with GA receiver operating in the
presence of correlated Rayleigh fading channels, as a function of the SNR,
ρ, for various values of α and correlation coefficient, r .

IV. PERFORMANCE EVALUATION RESULTS AND
DISCUSSION
The performance of the previously presented receiver struc-
tures operating in the presence of impulsive noise will be
assessed by means of numerical evaluation and complemen-
tary computer simulation results. To ensure the accuracy of

Skj =
1
π

∫
∞

0
ℜ

{
exp

[
−Nr (ct)α/2

(
1 + ȷ tan

(πα

4

))
−

ȷρNr t
4

]
0

(
1
2

− k + j, −
ȷρNr t

4

)
(−ȷ t)−

1
2+k−j

}
dt (41)
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FIGURE 3. ABEP of 2 × 2 SSK systems with GA receiver as a function of
the SNR, ρ, for various values of α.

FIGURE 4. ABEP of Nt × 2 SSK systems with GA receiver as a function of
the SNR, ρ, for various values of Nt in the presence of moderately
impulsive noise (α = 1.43).

the ABEP performance evaluation results obtained by means
of computer simulations using Monte Carlo error counting
techniques, at least 5× 106 random samples have been used.

Firstly, using (9)-(11), the ABEP performance of a 2 × 1
SSK system employing a GA receiver has been evaluated and
the results are presented in Fig. 1, for various values of α. As it
can be observed, analytical results are in perfect agreement
with Monte Carlo simulations thus validating the accuracy
of the theoretical analysis. Furthermore, it should be empha-
sized that the main advantage of (9) is that it yields accurate
results with significantly lower implementation complexity

FIGURE 5. ABEP of 2 × 2 SSK systems with various type of receivers in the
presence of severe impulsive noise (α = 0.5).

FIGURE 6. ABEP of 2 × 2 SSK systems with various type of receivers in the
presence of moderately impulsive noise (α = 1.43).

as compared to performing long-running and time consuming
Monte-Carlo simulations.

Fig. 2 illustrates the impact of antenna correlation on the
ABEP performance of a 2 × 1 SSK system employing a GA
receiver for α = 0.75 and α = 1.7. The elements of the
covariance matrix are σ12 ∈ {1/4 exp(ıπ/4), 5/6 exp(ıπ/6)},
σ 2
1 = σ 2

2 = 1. The performance results clearly show that
the presence of antenna correlation significantly degrades
ABEP performance. Specifically, for α = 1.7, there is a 6 dB
performance degradation as the magnitude of the correlation
coefficient increases from 1/4 to 5/6. Similar findings can be
observed for lower values of α, i.e. for α = 0.75.

VOLUME 12, 2024 40577



K. P. Peppas, P. T. Mathiopoulos: SSK Transmission Over Rayleigh Fading Channels

FIGURE 7. ABEP of 2 × 3 SSK systems with various type of receivers in the
presence of severe impulsive noise (α = 0.5).

FIGURE 8. ABEP of 2 × 3 SSK systems with various type of receivers in the
presence of moderately impulsive noise (α = 1.43).

The analytical and asymptotic ABEP performance of 2×2
SSK systems employing GA receivers for various values
of α, i.e. α ∈ {0.5, 0.8, 1.43, 1.8} is illustrated in Fig. 3.
As it can be observed, the asymptotic results, obtained using
Proposition 4 predict well the diversity and coding gains for
all considered values of α.

Fig. 4 depicts the ABEP performance of Nt × 2 SSK
systems employing GA, assuming α = 1.43 and various
values of Nt . Analytical ABEP results have been obtained
by employing the union bound in (36). The exact ABEP
performance of the considered system has been evaluated by
means of Monte Carlo simulations. As it can be observed, the

FIGURE 9. ABEP of 2 × 2 SSK systems with various type of receivers in the
presence of correlated fading channels and moderately impulsive noise
(α = 1.43).

proposed upper bound for the ABEP is quite tight for high
values of ρ, especially for large Nt .
Next, the ABEP performance of 2 × 2 and 2 × 3 SSK

systems employing GA, L2-norm, Lp-norm, suboptimal ML
and GC receivers for severe, i.e., α = 0.5, and moderate,
i.e., α = 1.43 impulsive noise channels will be presented.
For the GA and L2-norm receivers analytical performance
evaluation results have been obtained using (9), (19), (20),
and (39), respectively. On the other hand, for the Lp-norm,
suboptimal ML and GC receivers performance evaluations
results using Monte-Carlo computer simulations have been
obtained using (37), (45) and (48), respectively.

For the severe impulsive noise channel the value α =

0.5 has been chosen because such channel occurs in an inter-
ference environment caused by interfering nodes distributed
according to a PPP on a two-dimensional plane [20]. For
the moderately impulsive noise channel, α = 1.43 has been
selected because it corresponds to the interference caused
by laptop computers [45]. For the GC receiver, a value of
c =

√
α/(2 − α) has been used [21], [35], whereas for the

Lp-norm receiver, p = α/2 was used.
Fig. 5 depicts the ABEP performance of 2 × 2 SSK sys-

tems for all the receiver structures operating over the severe
impulsive noise channel. It is evident that the analytical
ABEP performance evaluation results obtained for the L2-
norm receivers using (39), are very tight over the entire SNR
region. It is also noted that the L2-norm receiver yields the
worst performance, followed by the GC receiver, the subop-
timal ML receiver, the Lp-norm and the GA. Furthermore, the
performance of the GC receiver is almost identical to that
of the suboptimal ML receiver for all SNR values. On the
other hand, the Lp-norm receiver performs slightly better
than the GC and the suboptimal ML receiver at low and
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medium SNR values, i.e. when SNR < 15 dB. Nevertheless,
the Lp-norm, the suboptimal ML and the GC receivers have
similar performances for high SNR values, i.e. when SNR >
25 dB, suffering from a 2 dB degradation as compared to the
performance of the ideal GA receiver.

Fig. 6 depicts the performance of the same 2× 2 SSK sys-
tems operating in the presence of moderately impulsive noise
channels (α = 1.43). These results show that the GC receiver
yields a slightly better performance than the suboptimal ML
receiver for all SNR values. Moreover, it can be observed that
the Lp-norm receiver outperforms the GA receiver for SNR
< 15 dB. Nevertheless the GA yields better performance for
higher SNR values. It is also noted that the suboptimal ML
and theGC receiver outperform the Lp-norm receiver for SNR
> 20 dB. The reason behind the improved performance of
the Lp-norm receiver for this range of SNR values is that the
proposed Lp-norm receiver structure, with p = α/2, closely
resembles the optimal linear Rake receiver for the detection of
binary signals contaminated by SαS noise proposed in [46].
This receiver, has been optimized in [46] for a specific range
of values of α, namely for 1 ≤ α ≤ 2, and has been shown to
yield better performance as compared to traditional diversity
receivers, such as the maximal ratio combining (MRC). This
observation further motivates the design and optimization of
sophisticated Lp-norm receivers to increase the SNR range
for which they outperform receiver configurations such as
those considered in this study. Nevertheless, such an analysis
is beyond the scope of the current work and is left for future
research.

Figs. 7 and 8 depict the performance of 2×3 SSK systems
with all considered receiver types for severe and moderately
impulsive noise channels, respectively. It can be observed that
the relative performance of the receivers under consideration
for the given values of α is almost similar to the case of Nr =

2 receiving antennas. Nevertheless, the performance gap of
all receivers slightly increases as the number of receiving
antennas, Nr , increases from 2 to 3. It is noted that, the
numerical results have shown that the L2-norm receiver does
not provide any diversity gain, as it is expected. In other
words, there are no notable performance enhancements as
Nr increases from 2 to 3 for a constant α. Moreover, for
the severe impulse noise channel, the performance of the Lp-
norm receiver is slightly worse than the performance of the
GA receiver for low-to-medium SNR values. For the case of
moderately impulsive noise channels, the Lp-norm receiver
outperforms the GA receiver for SNR values of up to 15 dB.

Finally, Fig. 9 illustrates the impact of antenna correlation
on a 2×2 SSK system operating in the presence ofmoderately
impulsive noise channels and employing Lp-norm, subopti-
mal ML and GC receivers. The covariance matrix is given by

C =


1 σ12 σ13 σ14

σ ∗

12 1 σ23 σ24
σ ∗

13 σ ∗

23 1 σ34
σ ∗

14 σ ∗

24 σ ∗

34 1

 (49)

with σ12 = 1/2 exp(ȷπ/2), σ13 = 1/3 exp(ȷπ/3), σ14 =

1/4 exp(ȷπ/4), σ23 = 1/3 exp(ȷπ/6), σ24 = 1/4 exp(ȷπ/4)
and σ34 = 1/8 exp(ȷπ/8). As it is evident from the obtained
results, antenna correlation severely degrades the bit error rate
performance for all considered receiver structures. Specifi-
cally, when correlated fading is considered, the performance
loss for the Lp-norm receiver is approximately 15 dB (at
ABEP = 10−3). For the suboptimal ML and GC receivers,
similar performance losses have been observed. Also, when
correlated fading channels are assumed, the ABEP per-
formance of suboptimal ML and GC receivers is almost
identical. The performance of the Lp-norm receiver exhibits
similar behavior as in the uncorrelated fading case, i.e.,
it outperforms the GC and suboptimal ML receivers for SNR
values of up to 35 dB, whereas for larger SNR values the
suboptimal ML and GC receivers slightly outperform the Lp-
norm receiver.

To summarize, for the performance of the GA receiver,
the obtained ABEP results predict well the diversity and
coding gains, derived in Proposition 4.When being compared
to other receiver structures, the L2-norm receiver does not
perform well under highly impulsive noise conditions and
thus, it should not be the preferable choice. The Lp-norm
receiver with p = α/2, provides an improved performance as
compared to the L2-norm receiver and it even outperforms the
GA receiver for moderate impulsive noise and low SNR val-
ues. Nevertheless, the suboptimal ML and the GC receivers
outperform the Lp-norm receivers at high SNR values, as they
achieve a higher diversity gain. Finally, it has been shown that
spatial correlation severely degrades the performance of all
considered receiver types, even under mildly impulsive noise
scenarios.

V. CONCLUSION
In this paper, we have provided an extensive ABEP per-
formance evaluation of MIMO SSK systems operating over
Rayleigh fading channels and SαS noise. Three key receiver
structures have been considered, namely the GA, MD and
ML. For the GA receiver, analytical ABEP expressions for
MISO and MIMO SSK have been obtained in terms of single
integrals that can be efficiently evaluated numerically. The
diversity order of this receiver has also been evaluated. The
performance of a generic class of MD receivers, namely the
Lp-norm distance-based receivers, has also been investigated.
For the special case of the L2 receiver, accurate approximate
analytical ABEP expressions have also been obtained that are
tight in the entire SNR regime. The optimal ML receiver has
also been deduced and its performance has been evaluated.
Because of its high implementation complexity and the fact
that it depends on noise parameters, alternative suboptimal
receiver structures have been investigated, whose perfor-
mance is asymptotically optimal at high SNR values. Future
work includes the extension of our results to more generic
index modulation systems, the performance evaluation in the
presence of generalized fading channels, the derivation of
exact and asymptotic ABEP results for the Lp-norm receiver,
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as well as the investigation of improved receiver structures,
suitable for signal detection in noise channels modelled as a
mixture of Gaussian and alpha-stable noise.

APPENDIX
PROOF OF PROPOSITION 4
In order to provide a mathematically tractable approximation
for (39), the sum S1 =

∑Nr
r=1 ZrAr is first approximated with

another sum S2 = Nr−1∑Nr
r=1 Zr

∑Nr
r=1 Ar . The advantage

of this approach is that, according to the sum Chebyshev
and rearrangement inequalities [47], S2 is bounded (either
upper or lower) by S1. Therefore, the resulting APEP can be
approximated as

APEP ≈ E
{Ar }

Nr
r=1,{Zr }

Nr
r=1

〈
Q


√√√√ρNr

∑Nr
r=1 Zr

4
∑Nr

r=1 Ar

〉 . (A-50)

Using [41, eq. (14-4-15)] along with the binomial theorem
yields

APEP ≈
1
2

−
1
2

Nr−1∑
k=0

k∑
j=0

(
2k
k

)(
k
j

)
(−1)k−j

22k

× E
{Ar }

Nr
r=1

〈
µk−j+ 1

2

〉
, (A-51)

where µ = x/(A+ x), x = ρNr/4 and A =
∑Nr

r=1 Ar .
By employing the Parseval’s theorem, E

{Ar }
Nr
r=1

⟨µq⟩, where

q = k − j+ 1
2 , can be deduced as

E
{Ar }

Nr
r=1

〈
µq〉

=
1
π

∫
∞

0
ℜ {G(t)

× exp
[
−Nr (ct)α/2

(
1 + ȷ tan

(πα

4

))]}
dt (A-52)

where

G(t) =

∫
∞

0

(
x

A+ x

)q
exp(ȷAt)dA. (A-53)

Using [48, eq. (2.1.2/1)] and after performing some straight-
forward algebraic manipulations, (A-53) can be evaluated in
closed-form yielding (21), and thus the proof is completed.
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