
Received 14 January 2024, accepted 7 March 2024, date of publication 11 March 2024, date of current version 20 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376237

Arabic Speech Recognition: Advancement
and Challenges
ASHIFUR RAHMAN 1, MD. MOHSIN KABIR 2,3, M. F. MRIDHA 4, (Senior Member, IEEE),
MOHAMMED ALATIYYAH 5, HAIFA F. ALHASSON 6, (Member, IEEE),
AND SHUAA S. ALHARBI 6, (Member, IEEE)
1RIoT Research Center, Independent University, Dhaka 1229, Bangladesh
2Superior Polytechnic School, University of Girona, 17004 Girona, Spain
3Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary
4Department of Computer Science and Engineering, American International University-Bangladesh, Dhaka 1229, Bangladesh
5Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
6Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia

Corresponding author: M. F. Mridha (firoz.mridha@aiub.edu)

This work was supported by Prince Sattam bin Abdulaziz University under Project PSAU/2023/R/1445.

ABSTRACT Speech recognition is a captivating process that revolutionizes human-computer interactions,
allowing us to interact and control machines through spoken commands. The foundation of speech
recognition lies in understanding a given language’s linguistic and textual characteristics. Although
automatic speech recognition (ASR) systems flawlessly convert speech into text for various international
languages, their implementation for Arabic remains inadequate. In this research, we diligently explore
the current state of Arabic ASR systems and unveil the challenges encountered during their development.
We categorize these challenges into two groups: those specific to theArabic language and thosemore general.
We propose strategies to overcome these obstacles and emphasize the need for ASR architectures tailored to
the Arabic language’s unique grammatical and phonetic structure. In addition, we provide a comprehensive
and explicit description of various feature extraction methods, languagemodels, and acoustic models utilized
in the Arabic ASR system.

INDEX TERMS Arabic speech recognition, speech recognition, Arabic speech-to-text, ASR technology,
voice recognition.

I. INTRODUCTION
Without a doubt, speech is the most captivating and effective
communication between individuals. Furthermore, it has
proven to be an exceptional tool for interacting with
machines. As a result, the study of speech recognition
has transitioned from controlled laboratory experiments to
practical and real-world applications. Consequently, speech
recognition systems are now commonly encountered and
embraced in our everyday use of various applications [1].
In today’s world, our reliance on ASR (Automatic Speech
Recognition) systems is ever-present, making it essential
for these systems to deliver the utmost accuracy. Users
expect a seamless experience using voice search features or
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automated calling functions based onASR. Any inaccuracies,
such as jumbled or incorrect words, can lead to frustrating
interruptions. Therefore, creating a reliable ASR system
necessitates thoroughly examining speech-to-text translation
mechanisms, encompassing aspects like grammar and word-
level comprehension.

Language dependency poses a significant challenge for
speech recognition systems, which must be tailored to
a particular language. This means a design optimized
for recognizing English speech might not perform as
accurately when processing other languages with different
linguistic properties. The complexity of this issue is evi-
dent in languages like Arabic, which exhibit even more
diverse structural and grammatical variations than English.
Surprisingly, despite its importance, language dependency
has not received extensive attention from researchers.
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Most existing literature on Automatic Speech Recognition
(ASR) focuses on aspects like algorithm selection, handling
speech variation challenges, and exploring architectural
improvements rather than delving into the intricacies of
language dependency. Table 1 comprehensively compares
various recent analyses carried out in ASR. In light of
this, our research thoroughly examines the grammatical
elements involved in speech recognition. We also explore
the challenges faced by algorithms concerning grammar and
phonetics.

This paper examines obstacles and possibilities inherent
in developing an Arabic ASR system. The main focus of
this research lies in its fundamental contributions, which
encompass:

• We have thoroughly examined various Arabic Auto-
matic Speech Recognition (ASR) systems, encompass-
ing speech datasets and architectural approaches. As far
as we know, no extensive survey has been conducted
to explore the architectural and grammatical aspects of
Arabic ASR systems.

• We analyze the difficulties while developing Arabic
Automatic Speech Recognition (ASR) systems. Addi-
tionally, we delve into the intricacies of these challenges.

• We also provide a comprehensive and explicit descrip-
tion of various feature extraction methods, language
models, and acoustic models for the Arabic ASR system.

• In conclusion, we outline potential future avenues to
consider when designing architectures. Additionally,
we suggest an ideal framework that holds promise in
tackling the difficulties encountered by Arabic ASR
systems.

The following parts of this document are structured in the
following manner: In Section II, we familiarize ourselves
with the existing generic architectures explored in the domain
of Arabic ASR. Moving on to Section III, we discuss some
commonly used dataset and their preprocessing methods
for Arabic ASR systems. In Section IV, we investigate
the Feature Extraction method, unraveling the process of
transforming raw audio data into informative representations.
Section V navigates through LanguageModeling, elucidating
the construction of models capturing spoken language pat-
terns. In Section VI, we explore cutting-edge methodologies
within the ASR domain. Moving to Section VII, Decoding
and Recognition algorithms are dissected. Section VIII
briefly describes the evaluation matrix for the Arabic ASR
system. In Section IX, a comprehensive analysis of the
challenges the Arabic ASR system poses is presented.
Section X concisely summarizes the potential research scope
and suggested guidelines for future developments in Arabic
automated speech recognition systems. Finally, Section XI
concludes the paper.

II. RELATED WORKS
A. PREVIOUS ARABIC ASR
The exploration of Arabic ASR systems initiation can be
traced back to the latter part of the 2000s [2]. Numerous

collaborative studies have been carried out to explore
this area. The methods employed in previous research
mainly revolved around machine learning or deep learning
approaches. Within this segment, we will delve into the
current state of Arabic ASR systems, examining their
advancements and features.

1) MACHINE LEARNING METHODS FOR ARABIC ASR
Over the past few years, there has been a notable interaction
between machine learning (ML) and automatic speech
recognition (ASR) circles, as evident from the inclusion
of dedicated workshops and speech-processing sessions in
ML-centric conferences.

Over the years, various machine-learning techniques have
been utilized in creating ASR systems, particularly for Arabic
speech recognition. ASR is a pivotal driver behind histori-
cally prevalent machine learning (ML) methods, including
hidden Markov models, discriminative learning, structured
sequential learning, adaptive learning, and Bayesian learning.
Furthermore, machine learning in ASR enables large-scale
practical testing of various techniques. It facilitates the
exploration of new challenges arising due to speech’s
sequential and ever-changing characteristics. Consequently,
there is a need to develop a robust machine capable of
accurately distinguishing everyday human speech from other
speakers.

The most commonly used toolkits for developing the
Arabic ASR system were the Hidden Markov Model (HMM)
toolkit, also known as HTK [10], and the Kaldi toolkit. The
study highlighted the algorithms and techniques employed to
model the acoustic-phonetic patterns of Arabic speech using
HMMs and Kaldi toolkit [11]. In a correlated investigation
conducted by Alotaibi and Hussain [12], they designed an
ASR system focused on Arabic vowels using HMM. The
ASR system was segmented into three distinct modules, each
assigned specific functions. The initial training module was
designed to create insights into speech and language, forming
a foundational resource for the system’s operation. The
second module, the HMM model bank, stored and organized
the knowledge acquired in the previous module. Lastly,
the recognizer module was responsible for interpreting the
meaning of voice inputs during the testing phase, utilizing
the aforementionedHMMmodels. TheHMMToolkit (HTK),
developed in 2002 [13], is a portable and versatile toolkit
designed to create and influence HMM models. Its primary
application is in speech recognition, but it can also be
utilized for various other research tasks related to ASR.
HTK offers extensive tools that facilitate HMM training,
manipulation, and working with pronunciation dictionaries,
n-gram models, finite-state language models, and speech
recording and transcription [12]. This comprehensive toolkit
is valuable for creating, experimenting, and deploying ASR
systems and associated research pursuits.

In their study, EL-Mashad et al. [14] explored the
recognition of Arabic speech speakers using SVM models.
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TABLE 1. Some of the previous review papers on automated speech recognition system.

Specifically, they focused on recognizing connected Arabic
digits (numbers) by leveraging neural networks. The numbers
utilized in the recognition phase formed the input for the
neural networks. To create a comprehensive dataset, they
compiled a corpus of 1000 values, encompassing 10000 num-
bers uttered by 20 speakers with diverse characteristics,
such as different genders, ages, and physical conditions, and
recorded in a noisy environment. Every recorded measure-
ment was converted into 10 unique numerical representations.
The features of these numerical representations were then
extracted using the Mel-Frequency Cepstral Coefficients
(MFCC) technique. By utilizing the SVM approach, the

system achieved a performance level of 94%. Taleb et al. [15]
was inspired by the recognition that the existing standards
impose limitations on the potential advancements achievable
through HMMs in speech recognition. Researchers have
been investigating novel modeling approaches that explic-
itly incorporate temporal dynamics to enhance resilience,
especially in noisy environments. The EUIST FP6 HIWIRE
research project partly supported this study. Initially, dynamic
linear models (DLM), which capture spatial similarities, were
proposed for their application in speech recognition.

Ali et al. [11] first introduce a comprehensive recipe
and resources for training Arabic ASR systems using the
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TABLE 2. Research efforts in Arabic ASR with machine learning are presented in the table. The ‘‘matching scheme’’ refers to how patterns are matched by
comparing speech to words or speech to phonemes. The ‘‘features’’ column specifies the proposed architecture’s method of extracting features. The
‘‘Model’’ column explains the type of architecture employed. The ‘dataset’ column showcases the training data employed for model training, while the
‘accuracy’ column displays the corresponding test accuracy results. The notation (-) means the author did not mention it in the paper.

KALDI toolkit. It details developing a prototype news
system, incorporating phoneme-based models and a QCRI
lexicon for improved performance and reproducibility. The
paper [23] conducts a comparative study on GMM-HMM
and DNN-HMM architectures for Arabic ASR in noisy
environments. Evaluating performance using hybrid models,
researchers employ the CMU Sphinx and KALDI toolkit,
emphasizing noise-resilient training and testing on the Arabic
speech corpus. Alsayadi et al. [24] investigate the effec-
tiveness of end-to-end deep learning for diacritical Arabic
ASR, utilizing Mel-Frequency Cepstral Coefficients and log
Mel-Scale Filter Bank energies. It surpasses traditional ASR
by introducing novel methods such as CTC-based ASR,
CNN-LSTM, and attention-based approaches, demonstrating
notable enhancements in word error rates. The adoption of
state-of-the-art frameworks, ESPnet [25] and Espresso [26],
further elevates performance, particularly showcasing the
superior efficacy of CNN-LSTMwith an attention framework
in Arabic speech recognition. The study also underscores
recent advancements in conventional ASR through the Kaldi
toolkit.

In a study by Elmahdy et al. [16], a dialectal Arabic speech
recognition system was developed utilizing an innovative
multilingual approach. This approach incorporates multiple
acoustic models based on HMM. The training and testing
stages incorporated a speech corpus from news broadcasts,
encompassing modern standard Arabic and colloquial Egyp-
tian Arabic. Notably, the system attained an impressive
accuracy level of 99.34%. The paper [17], explores instances
of offensive and hateful language on social media platforms
within the Arab region. They devise a multi-task learning
approach to enhance the precision of identifying such
content. The model’s performance surpasses existing models
documented in the literature for three datasets. Hyassat and
Zitar [18] present the inaugural Arabic ASR system using
SPHINX-IV and offer an automated toolkit for generating a
Pronunciation Dictionary for both the Holy Qur’an and the
standard Arabic language. In this study, three distinct sets
of data are created: the Holly Qura’an Corpus (HQC-1), the
command and control corpus (CAC-1), and the Arabic digits
corpus (ADC). The research tackles the limited exploration of

the Arabic ASR system and the difficulties arising from the
absence of diacritic Arabic text and PronunciationDictionary.

2) DEEP LEARNING METHODS FOR ARABIC ASR
Deep learning, a sub-field of machine learning, draws
inspiration from the information-processing capabilities of
the human brain [27]. It employs multiple layers of com-
plex structures or non-linear transformations to effectively
learn from unstructured or unlabeled data [28]. DL has
significantly advanced in various domains, such as speech
recognition, machine translation, and natural language pro-
cessing (NLP). In recent years, it has rapidly evolved in
NLP, image recognition, handwriting recognition, computer
vision, and ASR technology [29]. Notably, recent progress
in DL has played a vital role in enhancing the precision and
effectiveness of ASR systems.

Deep learning has become a robust approach for effectively
classifying data, particularly in ASR, following significant
advancements in computational and machine learning algo-
rithms [30]. Wazir and Chuah [31] researched applying deep
learning to speech recognition. The study utilized a dataset
containing 1040 samples of Arabic, with 840 and 200 samples
for training and testing, respectively. Feature extraction
involved using MFCC and LSTM techniques. Remarkably,
the study achieved an impressive accuracy rate of 94%.
According to AbdAlmisreb et al. [32], the performance
of Deep Neural Networks (DNN) utilizing the Maxout
activation function and the MFCC for feature extraction was
examined. The researchers proposed a dropout function to
enhance the efficiency of the DNNduring training, and exper-
imental results demonstrated significant performance gains
compared to the sigmoid and ReLU activation functions.
Significantly, the deep architecture using Maxout activation
showed remarkable results, showcasing the lowest error rate
compared to other deep neural networks. These encompassed
the RBM, DBN, CNN, TFNN, and CAE.

Emami and Mangu [33] conducted an extensive investi-
gation on the utilization of neural networks for the Arabic
ASR system, employing dispersed word representation. The
neural network model demonstrated robust generalization
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capabilities, effectively addressing the challenge of data
sparseness. The study encompassed diverse configurations
of neural probabilistic models, experimentation with n-gram
order parameters, output vocabulary, normalization methods,
model size, and other relevant parameters. The experimental
evaluation focused on Arabic news broadcasts and conver-
sational broadcasts. The optimized neural network model
showcased notable improvements compared to the 4-gram
baseline model, achieving absolute reductions of up to 0.8%
and relative word error rate (WER) reductions of 3.8%.
However, it was noted that changing these parameters had
little effect on the model’s overall performance. In 2019,
Zerari et al. [34] proposed a framework for Arabic ASR
utilizing a neural network with LSTM. Mel Frequency (MF)
and Filter Banks (FB) coefficients were used to extract fea-
tures. These coefficients were encoded as vectors of specific
sizes. Subsequently, an MLP was employed to process these
vectors. The study incorporated deep architectures such as
GRU and recurrent LSTM for classification tasks. Two dis-
tinct datasets were used: spoken digit recognition and spoken
TV commands. The experiments were conducted on both
datasets, achieving an accuracy of 95%. Furthermore, the
use of delta features resulted in an accuracy exceeding 96%.
Algihab et al. [5] employed small Recurrent Neural Networks
(RNNs) to develop a limited vocabulary speech recognizer.
The recognizer focused on isolated words such as ‘‘hirra’’
(cur), ‘‘manzel’’ (house), ‘‘tariq’’ (road), ‘‘chajara’’ (tree),
‘‘zeina’’ (zeina), and ‘‘ghinaa’’ (singing). Each word was
individually detected using a dedicated RNN. The training
process consisted of two phases: consistent training and
discriminative training. During consistent training, various
utterances of the specific word were used for training.
During discriminative training, various utterances containing
different words were incorporated, not just limited to the
specific designated word. The training dataset comprised
recordings from four female speakers in an environment
devoid of background noise. A male and a female speaker
were employed during testing, with each individual in a
pristine environment.

Zada and Ullah [35] proposed a method in 2020 for
Arabic language recognition by isolating digits using Con-
volutional Neural Networks (CNNs). They constructed a
dataset comprising 50 utterances ranging from 0 to 9 for
each digit. MFCC was employed for feature extraction,
facilitating the digit isolation process. The CNN architecture
consisted of four convolutional layers, ReLU activation,
and max-pooling layers. The system underwent training and
evaluation, achieving a benchmarked accuracy of 84.17%.
TensorFlow [36] is a prominent framework widely utilized
by developers, offering robust deep-learning capabilities.
When integrated with other models, this library proves
highly effective in speech recognition tasks. Notably,
Alghamdi et al. [37] leveraged the power of TensorFlow to
enhance the efficiency of the Forward-backward algorithm,
specifically in English speech recognition. Deep learning
implementation frameworks currently leverage the power of

DNNs. Choubassi et al. [38] proposed a novel methodol-
ogy for developing an Arabic-isolated ASR system using
modular recurrent Elman neural networks (MRENN). The
researchers reported promising findings, indicating that this
innovative neural network approach exhibits competitiveness
comparable to traditional HMM-based speech recognition
methods. The study included a tabular representation of
the achieved results, encompassing six speakers, with some
recordings conducted in noisy backgrounds while others
in clean environments. Notably, the accuracy of speaker
recognition varied from around 85% to a perfect 100% for
different individuals.

In this paper, Messaoudi et al. [39] propose a methodology
for developing an end-to-end Tunisian dialect speech system
based on deep learning. The ‘‘TunSpeech’’ dataset contains
paired text-speech data for the Tunisian dialect. During
the study, existing Modern Standard Arabic (MSA) speech
data was combined with dialectal Tunisian data, which
reduced Out-of-Vocabulary rates and improved perplexities.
The Word Error Rate increased when synthetic dialectal data
was extracted from text-to-speech.

Recently, Ameen et al. [40] to identify documented signals
from the Servox Digital EL Electro-Larynx developed an
autoencoder that combines LSTM and GRU models. There
were three steps in the proposed framework: denoising,
feature extraction, and Arabic speech recognition. The
best autoencoder was constructed by combining LSTMs
and GRUs. Using LSTM & GRU models, Mahmoudi
and Bouami [41] proposes two classes of Arabic speech
commands based on the Arabic Speech Commands Dataset.
The model’s training utilized a GPU with NVIDIA’s CUDA
to expedite the training process. Throughout the training
phase, multiple experiments were carried out to assess the
influence of different factors on the system’s performance
and identify the optimal parameters for the model. The
outcomes of these experiments indicated that the proposed
method achieved satisfactory levels of accuracy in training,
validation, and testing.

A new transcribed corpus of Yamani Arabic, Jordanian
Arabic, and multi-dialectal Arabic is presented in [42].
Several baseline sequence-to-sequence DNN models were
also designed for end-to-end recognition of Arabic dialects.
Additionally, Mozilla’s DeepSpeech2 model was trained
from scratch using our corpora. With a 59%WER and a 51%
CER, the Bidirectional LSTM (Bi-LSTM) with Attention
model performed inspiring results on the Yamani speech
corpus. On the Jordanian speech corpus, the Bi-LSTM with
attention performed 83% WER and 70% CER concerning
the Jordanian speech corpus. Comparatively, the model
was able to produce 53% WER and 39% CER on the
multi-dialectal Yem-Jod-Arab speech corpus. In the Yamani
corpus, DeepSpeech2 has achieved 31% better WER and
24% better CER than the baseline model; in the Jordanian
corpus, 68 WER and 40 CER have been achieved. Finally,
DeepSpeech2 provided better results, with 30% WER and
20% CER, when applied to a multi-dialect Arabic corpus.
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As a versatile machine-learning paradigm, deep learning
leverages the principle of compositionality to represent
the surrounding world efficiently. It encompasses utilizing
DNNs, which undergo proper training to uncover intricate
representations, starting from simpler ones progressively.
The application of this principle extends to various practical
challenges, such as the recognition of human speech [43].
The current implementation of the deep learning approach
involves the use of DNNs. These networks, belonging to
the broader category of Artificial Neural Networks (ANNs),
consist of multiple concealed layers between the input and
output layers. Each of these layers captures more complex
attributes, which are then refined by the following layers
in the network [44]. A comprehensive benchmarking of
transformer speech recognition (ASR), modular HMM-DNN
speech recognition (ASR), and human speech recognition
(HSR) is performed on Arabic languages and their dialects
in [45]. Our investigation evaluates how linguists and native
speakers without linguistic expertise perform on a recently
gathered dataset integral to our research. The implementa-
tion of end-to-end Automatic Speech Recognition (ASR)
has yielded new performance benchmarks, with WER of
12.5%, 27.5%, and 33.8% for MGB2, MGB3, and MGB5,
respectively. The outcomes of our study suggest that human
proficiency in the Arabic language remains significantly
superior to machine performance, demonstrating an average
absolute WER gap of 3.5%.

B. RECENT ADVANCES IN ASR TECHNOLOGIES
The world witnessed the advent of the speech recogni-
tion system in 1920, which represented a groundbreaking
achievement as the first-ever machine capable of under-
standing and deciphering spoken language [47]. Subse-
quently, advancements in speech recognition technology
were propelled forward through the dedicated efforts of
researchers worldwide. These individuals, intrigued by the
potential of speech recognition systems, brought forth and
embraced numerous cutting-edge techniques, continuously
enhancing the accuracy of such systems. Among these
techniques were pattern-matching strategies, including brute-
force methods, phonetic segmentation, and hybrid systems,
which found their initial applications in speech recognition.
Nevertheless, significant advancements were observed after
the introduction of HMM [48] in the late 1970s. HMM has
gained widespread popularity in ASR systems due to its
enhanced capabilities in analyzing complex patterns across
extensive vocabularies [49], [50], making it a practical and
viable choice for implementation [51].

Recently, advancements in Artificial Neural Network
(ANN) architectures have led to notable enhancements
in speech recognition systems based on neural networks.
Prominent DNN architectures like CNNs [52] and Residual
Networks [53] are being successfully integrated into Auto-
matic Speech Recognition (ASR) systems, demonstrating

their efficacy and superior performance. DNN-based
structures have demonstrated superior effectiveness to
alternative architectures employed in the Arabic ASR
system [53]. Various well-known techniques such as
Principal Component Analysis (PCA) [54], Independent
Component Analysis (ICA) [55], Wavelet Analysis [56],
and Linear Discriminant Analysis (LDA) [57] have been
employed for deriving speech characteristics from acoustic
waveform. Among these methods, PCA is commonly used
to find patterns in input data. However, a limitation of PCA
is its ability to recognize only linear relationships within the
data. In contrast, a DL-based approach called AutoEncoder
can capture the non-linear characteristics of the data. As a
result, AutoEncoders have gained popularity for embedding
the non-linear aspects of the data in current applications.
In speaker recognition tasks, probabilistic LDA (PLDA) is
commonly applied to identify characteristics from speech
embeddings. Both LDA and PLDA have been extensively
investigated for their effectiveness in this context [58],
[59]. Various dedicated feature extraction systems, such
as MFCC [60], [61], Cepstral Mean Subtraction [62], and
RASTA filtering [63], [64], have been utilized for extracting
features from the waveform. Among these, MFCC has been
extensively studied in speech and speaker recognition.MFCC
is combined with various CNN architectures, improving
speech recognition framework accuracy. The key to its
success lies in the mel-scales of the MFCC, as a low-
scale version filters out unwanted features and dramatically
emphasizes the speech’s phonetic components [65].
An ASR system typically employs two main process-

ing approaches commonly found in practice: a) Feature
Extraction and b) Pattern Matching. Feature extraction
involves analyzing the acoustic waveform of speech to extract
relevant speech parameters with acoustic correlations [66].
On the other hand, pattern matching entails comparing
the extracted speech features with the appropriate patterns
stored in the system’s database to determine the correct
output [67]. We have two types of pattern matching in this
context: speech-to-phoneme matching [68] and speech-to-
word matching [69]. However, we have devised a hybrid
approach capable of performing both tasks. In ASR archi-
tectures, the term ‘hybrid’ typically refers to systems that
blend the HMM and MLP methods [70], [71]. This research
establishes the notion of ‘hybrid’ as integrating speech-to-
phoneme and speech-to-text methodologies. By skillfully
combining and adjusting these two key approaches (feature
extraction and pattern matching), we can notably enhance
the system’s performance. Additionally, supplementary ele-
ments, like word segmentation,phoneme-to-word conversion,
and noise reduction, are commonly incorporated into ASR
systems to optimize their usability and resilience further.
Figure 1 illustrates the complete sequence of operations
within an ASR system. Additionally, Figure 2 presents an
overview of the processes carried out in a hybrid ASR
system.
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TABLE 3. Research efforts in Arabic ASR with DL are presented in the table. The ‘‘matching scheme’’ refers to how patterns are matched by comparing
speech to words or speech to phonemes. The ‘‘features’’ column specifies the proposed architecture’s method of extracting features. The ‘‘Model’’ column
explains the type of architecture employed. The ‘dataset’ column showcases the training data employed for model training, while the ‘accuracy’ column
displays the corresponding test accuracy results. The notation (-) means the author did not mention it in the paper.

FIGURE 1. The diagram depicts the typical structure of hybrid ASR
systems. Within the diagram, the red-dashed box symbolizes phoneme
matching, while the black-dashed box represents word matching. These
two crucial pattern-matching or classification methods are commonly
employed in speech recognition models.

FIGURE 2. The diagram depicts the typical structure of hybrid ASR
systems. Within the diagram, the red-dashed box symbolizes phoneme
matching, while the black-dashed box represents word matching. These
two crucial pattern-matching or classification methods are commonly
employed in ASR architectures. The ultimate textual result is generated by
assessing the confidence of the word-matching process.

In addition to conventional speech recognition approaches
recent advancements in recurrent neural networks (RNN)
have paved the way for a novel strategy known as end-to-end
ASR [72]. An RNN-based architecture can simultaneously
perform feature extraction and match speech to patterns
holistically. The benefit of this approach lies in using a single
loss function to train the complete network. The commonly
employed loss function in such frameworks is Connectionist
Temporal Classification (CTC) loss. However, a drawback
of these methods is that they require a significant volume of
data to attain precise outcomes [73]. Additionally, acquiring
the best possible characteristics from the input flow also
requires a significant investment of time. Figure 3 provides
a graphical depiction of the fundamental structure of an end-
to-end framework.

FIGURE 3. The provided diagram depicts a comprehensive end-to-end
configuration for ASR systems. In this configuration, the neural network
generates embeddings from input features, subsequently fed into a
sequence of recurrent layers. These recurrent layers examine patterns by
considering past and current input features, resulting in a conclusive
output. The network is trained using the CTC loss function, effectively
utilizing the backpropagation technique.

Specific adaptations of end-to-end architectures have
demonstrated exceptional effectiveness in handling contin-
uous speech and textual analysis. Notably, sequence-to-
sequence (seq2seq) and attention-driven models have gained
significant recognition. Seq2seq architectures involve an
encoder and a decoder, consisting of numerous tiers of
RNNs. The encoder generates valuable embeddings from the
input information, guiding the decoder for precise prediction
generation. Figure 4 demonstrates a typical situation within
the seq2seq framework. In contrast, attention-based archi-
tectures [74] exhibit comparable performance to a seq2seq
model [75]. More precisely, the attention mechanism is
integrated with a seq2seq model, enabling it to leverage
information from previous inputs and outputs, leading to a
more advanced understanding of the network.

Extensive research has been devoted to exploring the
integration of RNNs within end-to-end architectures. Conse-
quently, two advanced techniques LSTM [76] and GRU [77]
have emerged as a result of these investigations. Standard
RNN-based models often suffer from the vanishing gradient
problem, but LSTM and GRU networks overcome these
issues. LSTM andGRU possess memory capabilities, making
them more popular than general RNNs. GRU stands out for
its efficiency as it requires fewer parameters than LSTM.
However, LSTM has demonstrated superior performance
in language modelling and speech recognition tasks [78].
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FIGURE 4. The diagram illustrates a typical speech recognition Seq2seq
model. In this model, the encoder, which comprises a series of recurrent
neural networks (RNNs), generates embedding vectors. These vectors are
then passed to the decoder, another RNN, which produces the outcomes.
Notably, the RNN in the decoder has access to previous predictions,
potentially allowing subsequent predictions to be more precise.

Researchers in the ASR (Automatic Speech Recognition)
field remain intrigued by recurrent architectures as they excel
at deciphering intricate speech sequences.

III. DATA COLLECTION AND PREPROCESSING
A. DATABASES FOR ARABIC SPEECH RECOGNITION
Some progress has been made in developing Arabic speech
recognition systems; however, there are still ample oppor-
tunities for further exploration. The main challenge lies in
the scattered nature of the works, as the availability of
suitable datasets for Arabic ASR is limited. Due to this
scarcity, individual researchers have had to create their
speech corpora, but unfortunately, these datasets have not
been publicly shared. Consequently, it has been difficult to
compare and verify the validity and standards of different
databases and research efforts. As of now, our knowledge
indicates the existence of nine available corpora for Arabic
ASR systems. This comprises a speech dataset with real-
number values, another dataset containing voice commands,
and the remaining sets are composed of complete Arabic
speech datasets. Table 4 provides an in-depth examination of
these speech datasets.

To address the limited availability of Arabic speech
datasets, a crucial step is the creation of extensive, openly
accessible datasets of high quality. Such a dataset would serve
diverse applications like speech-to-text processing, text-
to-speech processing, speaker recognition, far-field speech
recognition, and more [89]. When developing an Arabic
speech dataset, careful attention should be given to the
following scenarios:

• At present, speech datasets are designed to cater
to particular scenarios, such as clean environments,
telephony environments, broadcast settings (televi-
sion/radio), meetings, distant surroundings, and real-
world situations. Telephony, far-field, and in-the-wild
environments are the most difficult among these.
Consequently, cutting-edge speech recognition systems
primarily focus on these challenging datasets.

FIGURE 5. The picture demonstrates the overall process of creating a
speech dataset for the Arabic language.

• An Arabic ASR dataset must include precise tran-
scriptions of the spoken content. Additionally, it can
incorporate supplementary details such as speaker char-
acteristics (gender/emotion) and environmental context.

• To create a challenging and realistic speech dataset, it is
essential to incorporate a wide range of features. These
diverse aspects may include variations in input devices,
dialects, age groups, environments, noise levels, and
even speech disabilities.

• Many renowned datasets are organized into distinct
clean and noisy subsets [90]. This segregation proves
beneficial for researchers as it enables them to develop
Arabic speech recognition prototypes tailored to specific
scenarios.

• An Arabic speech dataset needs to focus on captur-
ing Arabic-specific characteristics, including collecting
speech samples from various dialects, gathering speech
data for crucial and similar words, and giving special
attention to addressing letter and utterance similarities.

• A comprehensive Arabic speech dataset should encom-
pass an extensive vocabulary and effectively capture the
diverse variations and statistics within the dataset.

Developing an Arabic speech dataset tailored for deep
learning models poses significant challenges due to the
extensive data required for training such architectures.
Figure 5 outlines the critical stages involved in the data
collection process. Gathering speech datasets could involve
crowd-sourcing techniques or targeting specific populations
for selection. Large datasets are frequently obtained through
crowd-sourcing. When dealing with an Arabic speech
dataset, performing additional statistical analysis to ensure
a balanced representation across various domains is crucial.
Pruning and carefully selecting data may also be necessary.
Preprocessing the speech dataset is essential, involving
tasks like optional noise cancellation, sound normalization,
and reducing silent intervals. Additionally, creating speaker
diarization and speech transcription requires a manual or
semi-automated approach. Finally, the entire process needs
thorough validation to produce a high-quality Arabic speech
dataset.

B. DATA CLEANING AND ANNOTATION
Data cleaning and annotation are vital steps in preparing
the collected speech data for the training and evalua-
tion of the Arabic ASR system [91]. These processes
involve ensuring data quality, removing noise, and providing
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TABLE 4. The table provides valuable information about the currently accessible dataset suitable for Arabic speech recognition.

accurate transcriptions to create a reliable and effective ASR
dataset [92]. The following point outlines the procedures and
methodologies for data cleaning and annotation:

• Data Preprocessing: The collected speech data will
undergo thorough preprocessing to enhance its quality
and prepare it for further analysis. Preprocessing steps
may include noise removal, background normalization,
and audio segmentation to isolate individual utterances.

• Noise Removal: Noise interference in the audio record-
ings can negatively impact ASR performance. Various
methods for reducing noise, like spectral subtraction
or Wiener filtering, will be implemented to minimise
background noise and improve the clarity of the speech
signal.

• Audio Segmentation: The audio recordings will be
segmented into individual utterances, ensuring that each
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segment contains only one complete speech instance.
Properly segmenting the data is crucial for accurate
alignment with corresponding transcriptions during
training.

• Speaker Identification: To keep track of individ-
ual speakers’ contributions, speaker identification will
allow the ASR system to handle multi-speaker scenarios
and variations in speech patterns.

• Data Annotation: Each segmented utterance will be
accurately transcribed to create the ground truth text for
the ASR system. The annotation process involves asso-
ciating the text transcriptions with the corresponding
audio segments, forming a labeled dataset for supervised
training.

By meticulously cleaning and annotating the collected data,
this study aims to produce a high-quality dataset that serves
as the foundation for training and evaluating the ASR system.
The accuracy and reliability of the dataset will significantly
influence the ASR system’s performance, making data
cleaning and annotation critical steps in achieving accurate
and efficient Arabic speech recognition.

IV. ACOUSTIC FEATURE EXTRACTION
Acoustic feature extraction is a vital step in Arabic ASR
systems, as it involves converting the raw speech signal into
a set of relevant and compact features that can effectively
represent the linguistic content of the speech [66], [93].
Various acoustic feature extraction methods have been
explored for Arabic ASR, and some of the frequently
employed methods include:

A. MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)
MFCC is a widely used acoustic feature extraction technique
in ASR systems [94]. It captures the essential characteristics
of speech signals by representing them in the cepstral domain,
effectively transforming the raw audio data into a compact
feature space [95]. The MFCC computation involves several
steps:

1) PRE-EMPHASIS
The initial action involves employing a pre-emphasis filter
to accentuate the higher frequencies within the speech
signal, thereby equalizing spectral energy distribution. The
pre-emphasis filter is defined as follows:

y[n] = x[n] − α · x[n− 1] (1)

Here, y[n] is the pre-emphasized speech signal at time
index n. x[n] is the original speech signal at time index n and
α is the pre-emphasis coefficient (usually set to 0.97), which
controls the amount of emphasis.

2) FRAME BLOCKING
The speech signal that has undergone pre-emphasis is
segmented into short frames, usually lasting around 20-30
milliseconds, with overlapping. Each frame is chosen to be

an appropriate size to capture the stationary characteristics of
speech within a short time window.

3) WINDOWING
Each frame undergoes a process where a window function,
like the Hamming window, is employed. This helps minimize
the spreading of spectral information at the edges of the frame
and maintains a smooth progression. The windowed frame is
given by:

w[n] = 0.54 − 0.46 · cos
(

2πn
N − 1

)
(2)

Here, w[n] is the windowed frame and N is the number of
samples in the frame.

4) FAST FOURIER TRANSFORM (FFT)
The DFT (Discrete Fourier Transform) calculates individual
windowed frames to transform the signal from the time
domain to the frequency domain. The DFT is commonly
computed efficiently using the FFT algorithm. The equation
for the FFT is,

X [k] =

N−1∑
n=0

x[n] · e−j2πkn/N (3)

Here, X [k] is the frequency-domain representation of the
sequence at frequency bin k . x[n] is the time-domain sample
at index n. j is the imaginary unit (j2 = −1) and N is the total
number of samples in the sequence.

5) MEL FILTERBANK
The output of the FFT is run through a set ofMel filters. These
filters are triangular-shaped and spaced evenly on the Mel
scale, a perceptually relevant frequency scale. The output of
each filter is the sum of the magnitudes of the FFT spectrum
weighted by the filter’s triangular shape. The equation for the
Mel Filterbank is as follows:

For each filter k in the Mel Filterbank:
• Define the center frequency fk of the k-th triangular filter
in the Mel scale:

fk =
700 · (mk + 1)

fmax
(4)

Here, mk is the index of the Mel filter, with mk =

0, 1, 2, . . . , k − 1. k is the number of filters in the
filterbank and fmax is the maximum frequency of the
spectrum, typically half of the sampling rate.

• Compute the frequencies at which the filter starts and
ends:

fstart,k = fk−1 (5)

fend,k = fk+1 (6)
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• Transform the start and end frequencies back to the
linear scale:

fstart,k =
fstart,k · fmax

700
(7)

fend,k =
fend,k · fmax

700
(8)

• Set the values of the triangular filter as follows:

Hk (n) =



0, if fn < fstart,k ,
fn − fstart,k
fk − fstart,k

, if fstart,k ≤ fn < fk ,

fend,k − fn
fend,k − fk

, if fk ≤ fn < fend,k ,

0, if fn ≥ fend,k

(9)

Here, fn is the frequency corresponding to the n-th bin
of the FFT spectrum.

6) LOGARITHM
The filterbank outputs are subjected to a logarithmic
transformation, which converts their magnitudes into a
scale that closely mirrors how humans perceive loudness.
In mathematical notation, it is defined as:

y = logb(x) (10)

7) DISCRETE COSINE TRANSFORM (DCT)
Finally, the DCT is applied to the logarithmically scaled
filterbank outputs to obtain the MFCC coefficients. The DCT
decorates the filterbank outputs and decreases the dimension-
ality of the feature vector. The equation for the DCT is as
follows:

c[k] =

√
2
N

N−1∑
n=0

x[n] · cos
(

πk
N

(
n+

1
2

))
for k = 0, 1, . . . ,N − 1 (11)

Here, c[k] is the k-th DCT coefficient. x[n] is the n-th
Mel filterbank output and N is the number of Mel filterbank
outputs.

The resulting MFCC coefficients illustrate the distinctive
features of the speech signal in a compact representation,
making them suitable for ASR systems. These coefficients
are commonly used as input features for various ASRmodels,
including HMMs, DNNs, and Transformer-based models.

Adding voiced formants and pitch features with MFCC,
we can effectively address the expressive nature of Arabic.
The work referenced in [96] demonstrates the significance
of this combination in Arabic ASR, enhancing the system’s
ability to capture emotional content and nuances in speech.
By incorporating pitch features, we capture variations
indicating emphasis, excitement, or stress in spoken words,
essential for accurate transcription in emotionally expressive
languages like Arabic. This hybrid approach enriches the
feature set, contributing to improved performance and
recognizing the subtleties inherent in the language.

B. PERCEPTUAL LINEAR PREDICTION (PLP)
PLP is one of the most used acoustic feature extraction
methods in speech processing, known for its ability to capture
the perceptually significant aspects of the speech signal [97],
[98]. It aims to model the human auditory system’s charac-
teristics to improve ASR system performance, particularly
in noisy environments. The PLP feature extraction process
involves several steps, as described below:

1) PRE-EMPHASIS
The first step is pre-emphasis, which emphasizes the higher
frequencies in the speech signal to balance the spectral
components. It helps to counteract the attenuation of
high-frequency components during the speech production
process. The pre-emphasis operation is represented in the
equation 1.

2) FRAMING AND WINDOWING
After applying pre-emphasis to the speech signal, it is
segmented into frames of a consistent duration, usually
around 20-30 milliseconds, and with some degree of overlap.
Before conducting Fourier analysis, a windowing function
such as Hamming or Hanning window is applied to each
frame. This helps reduce spectral leakage for more accurate
results. The equation of windowing is given in equation 2.

3) POWER SPECTRUM ESTIMATION
Next, the power distribution across frequency components
in each segmented portion is computed using the FFT. The
magnitude squared of the FFT coefficients provides the power
spectral density (PSD) of the signal, denoted as P(k) for the
k th frequency bin. The Power Spectrum Estimation equation
is given by:

P(k) =
1
N

∣∣∣∣∣
N−1∑
n=0

x[n] · e−j2πkn/N
∣∣∣∣∣
2

(12)

Here, P(k) is the estimated power spectral density at
frequency index k . N is the length of the signal (number of
samples). x[n] is the signal sample at time index n. e−j2πkn/N

is the complex exponential term used in the DFT/FFT
computation and |·| denotes the absolute value, and the square
of the absolute value represents the power.

4) MEL-FREQUENCY WRAPPING
The power spectrum P(k) is then transformed into the
Mel-frequency domain, mimicking the non-linear human
perception of speech frequencies. This is achieved using
triangular Mel filters, represented as Hm(k), where m refers
to the mth Mel filter. The Mel-frequency wrapping equation
can be expressed as follows:

M (f ) = 2595 · log10

(
1 +

f
700

)
(13)

In this equation, M (f ) represents the Mel-frequency corre-
sponding to the linear frequency f .
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5) NON-LINEAR COMPRESSION
A logarithmic operation is performed on the Mel-filtered
power spectrum to account for the logarithmic nature of
human perception. The logarithmic compression function is
represented as Lm(k), emphasizes smaller spectral details and
attenuates large ones. The non-linear compression function is
represented as:

Lm(k) = log
(
1 + β · |Hm(k)|2

)
(14)

Here, Lm(k) is the compressed value of the K -th Mel-
filtered energy in the m-th filter. Hm(k) represents the mag-
nitude of the K -th frequency component in the Mel-filtered
power spectrum, and β is a compression parameter that
controls the strength of compression. Higher values of β lead
to stronger compression.

6) CEPSTRAL COEFFICIENTS
The DCT is applied to the logarithmic compressed
Mel-filtered energies to obtain the PLP cepstral coefficients,
also known as PLP features. The DCT operation can be
represented as:

Cp(m) =

N∑
k=1

log(Lm(k)) · cos
[
πm
N

(k −
1
2
)
]

(15)

Here, Cp(m) represents the m-th Cepstral Coefficient.
Lm(k) is the compressed value of the K -th Mel-filtered
energy in the m-th filter, as obtained from the non-linear
compression.N is the total number ofMel filters and k ranges
from 1 to N .

C. FILTER BANK ENERGIES (FBANK)
Filter Bank Energies (FBANK) is a commonly used
technique for extracting acoustic features in Automated
Speech Recognition (ASR) systems [99]. The process entails
breaking down the speech signal into various frequency
ranges and measuring the energy within each range to capture
the essence of the speech content. The process of calculating
FBANK features can be outlined as follows:

1) PRE-EMPHASIS
A pre-emphasis filter is applied to the raw speech signal
to enhance higher-frequency components and reduce low-
frequency noise. The pre-emphasis operation is defined in
equation 1:

2) FRAMING
The speech signal that has undergone pre-emphasis is
segmented into short frames, usually lasting around
20-30 milliseconds, with overlapping. Overlapping frames
are often used to better capture temporal information. Let’s
denote the frame length as N samples.

3) WINDOWING
All frames are multiplied with a window function, such as the
Hamming or Hanning window, to decrease spectral leakage

and minimize artifacts at the frame boundaries. Windowing
is represented in equation 2.

4) DISCRETE FOURIER TRANSFORM (DFT)
Next, the DFT transforms the signal from the time domain to
the frequency domain. The magnitude spectrum X [k] of the
DFT is calculated as:

X [k] =

N−1∑
n=0

x[n] · e−j
2πkn
N · w[n] (16)

Here, X [k] is the magnitude spectrum at frequency index k .
x[n] is the time-domain signal at time index n. j is the
imaginary unit and N is the frame length in samples

5) MEL FILTER BANK
FBANK features are obtained by passing the magnitude
spectrumX [k] through a set ofMel filters. TheMel filter bank
is designed to approximate the non-linear human perception
of pitch. The filter bank typically consists of triangular filters,
and the filter outputs are computed as follows:

Hm[k] =

fh∑
f=fl

Mm(f ) · X [f ] (17)

Here, Hm[k] is the output of themth Mel filter at frequency
index k . Mm[f ] is the Value of mth triangular Mel filter
centered at frequency f . fl is the Lower frequency bound of
the filter and fh is the Upper frequency bound of the filter

6) LOGARITHMIC COMPRESSION
To mimic the logarithmic nature of human hearing, the
filter bank energies are usually subjected to logarithmic
compression:

FBANK[m] = log(Hm[k]), (18)

Here, FBANK[m] is the FBANK coefficient for the
mth filter.
The resulting FBANK feature vector, composed of the

filter bank energies, is then used as input to the ASR system
for further processing and recognition.

D. GAMMATONE FREQUENCY CEPSTRAL COEFFICIENTS
(GFCC)
The GFCC is a set of acoustic features commonly used in
ASR systems [100], particularly for analyzing speech signals
in the frequency domain. The GFCC aims to mimic the
human auditory system’s processing mechanism, which is
sensitive to the various frequency bands in sound signals.

1) GAMMATONE FILTERBANK
The Gammatone filterbank emulates the filtering traits of
the human cochlea, breaking down speech signals into
multiple frequency segments. For each filter, the output is
obtained by convolving the input speech signal x(t) with the
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corresponding Gammatone filter gi(t):

gi(t) =

K∑
k=1

ak · tk−1
· cos(2π fct) · exp(−2πbt), (19)

Here, gi(t) is the output of the ith Gammatone filter, ak and
b are parameters determining the filter shape, fc is the center
frequency of the filter, and K is the order of the Gammatone
filter.

2) SHORT-TIME FOURIER TRANSFORM (STFT)
After passing the speech signal through the Gammatone filter
bank, the STFT is applied to represent the filtered signal in
the time-frequency domain. The STFT magnitude spectrum
is denoted as Xi(k, ω), where k represents the time frame
index and ω represents the frequency index. The equation for
computing the STFT can be expressed as:

X (k, ω) =

∫
∞

−∞

x(t) · w(t − kT ) · e−jωt dt, (20)

Here, T is the length of the analysis window. w(t) is the
window function used to reduce spectral leakage, typically
a tapering window like the Hamming or Hann window. k is
the time frame index, representing the position of the analysis
window in the signal. ω is the frequency index, representing
the frequency component at a specific point in time, and j is
the imaginary unit.

3) LOG AMPLITUDE
The log amplitude Li(k, ω) of each Gammatone filter
output is computed to mimic the human auditory system’s
logarithmic perception of loudness:

Li(k, ω) = log(|Xi(k, ω)|2 + ϵ), (21)

where ϵ is a small constant added to avoid taking the
logarithm of zero.

4) DISCRETE COSINE TRANSFORM (DCT)
Finally, the DCT is applied to the log amplitude spectrum
Li(k, ω) to obtain the GFCC coefficients. The DCT reduces
the dimensionality of the log amplitude spectrum while
preserving the most relevant information:

GFCC(i, n) =

K−1∑
k=0

wn(k) · Li(k, ω), (22)

where GFCC(i, n) is the ith filter’s nth GFCC coefficient, and
wn(k) represents the DCT basis function.

Using the Gammatone Frequency Cepstral Coefficients,
ASR systems can effectively capture critical frequency-
related information from speech signals, improving speech
recognition performance, especially in noisy environments or
competing background sounds.

V. LANGUAGE MODELING
Language modeling stands as a foundational idea in the
realm of NLP, holding significant importance in various
tasks that involve working with language. At its core,
language modeling consists of building a statistical model
that aims to predict the likelihood of sequences of words or
characters occurring in a given language. The main objective
of language modeling is to predict the likelihood distribution
of a sequence of words or characters within a sentence.
By understanding the likelihood of different word sequences,
language models can generate new text, predict the next word
in a sentence, evaluate the grammaticality of a sentence, and
even assess a paragraph’s coherence.

Different methods exist for language modeling, but the
ones most frequently utilized are:

A. N-GRAM LANGUAGE MODELS
N -gram language models are a type of statistical language
model that estimates the probability of a word or a sequence
of words based on the occurrence frequencies of N -grams
(N consecutive words) in a given text corpus [101]. These
models operate under the idea that the preceding N−1 words
solely influence the likelihood of a word appearing. This
concept is referred to as the Markov assumption.

The main idea behind N -gram language models is to
estimate the conditional probability P(wi|wi−1,wi−2, . . . ,

wi−N+1), which represents the likelihood of word wi given
the previous N-1 words wi−1,wi−2, . . . ,wi−N+1 [102].

The probability of an N -gram is calculated using the
relative frequency of its occurrence in the training data. The
formula for estimating the N -gram probability is given as
follows:

P(wi|wi−1,wi−2, . . . ,wi−N+1) =

C(wi−N+1,wi−N+2, . . . ,wi)
C(wi−N+1,wi−N+2, . . . ,wi−1)

, (23)

Here, C(wi−N+1,wi−N+2, . . . ,wi) is the count of the
N -gram sequence (wi−N+1,wi−N+2, . . . .,wi) in the training
corpus. And C(wi−N+1,wi−N+2, .. . . . ,wi−1) is the count of
the (N − 1)-gram sequence (wi−N+1,wi−N+2, . . . ,wi−1) in
the training corpus.

To handle cases where certain N -grams have not been
seen in the training data, smoothing techniques like add-
k smoothing (Laplace smoothing) or backoff techniques
are commonly used. These techniques assign a small
probability to unseen N -grams to ensure that no N -gram
has a zero probability. The choice of N in N -gram language
models affects the trade-off between capturing local context
(e.g., unigrams for basic word prediction) and considering
longer-range dependencies (e.g., trigrams for capturing some
phrase-level information).
N -gram language models have been widely used in various

NLP tasks, especially in the early days of NLP, when
computational resources were limited. However, with the
advent of neural network-based language models, such as
the Transformer-basedmodels,N -grams have been surpassed

VOLUME 12, 2024 39701



A. Rahman et al.: Arabic Speech Recognition: Advancement and Challenges

TABLE 5. Advantages and disadvantages of acoustic feature extraction methods for arabic ASR system.

mainly in terms of performance and capability to capture
long-range dependencies. Nonetheless,N -grams still serve as
a foundational concept in language modeling and continue to
find applications in specific scenarios.

B. NEURAL NETWORK LANGUAGE MODELS (NNLM)
NNLM is a language model that uses neural networks to
estimate the conditional probability distribution of a sequence
of words in a sentence or document [103]. The NNLM uses
the context of preceding words in a sequence to anticipate
the likelihood of the next word. The general architecture of an
NNLM involves embedding the phrase in a continuous vector
space and using NN layers to learn the relationships between
the words in the context [104]. Here, we present all the steps
for a basic NNLM:

• Word Embedding: Each word in the vocabulary is
represented by a fixed-size dense vector (embedding).
Let’s denote the word embeddings as e(w), where w
represents the word.

• Context Formation: Given a sequence of words, the
context of a specific word wt (target word) is formed

by considering the preceding n− 1 words as the context
for predicting the target word. The context is represented
as C(wt ).

• Neural Network Architecture: The context C(wt ) is
passed through one or more neural network layers
to capture the relationships between the words in
the context. These layers can be fully connected
(dense), recurrent neural network (RNN), convolutional,
or transformer-based layers. Let’s denote this neural
network layer as f (C(wt )) for simplicity.

• Softmax Layer: The output of the neural network layer
is then passed through a softmax function to convert
the logits (raw scores) into probabilities. The softmax
function takes the form:

P(wt |C(wt )) =
exp(f (C(wt ))[wt ])∑
wi exp(f (C(wt ))[wi])

(24)

where P(wt |C(wt )) is the probability of word wt given
the context C(wt ), f (C(wt ))[wt ] is the score (logit)
assigned to word wt by the neural network. The sum
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in the denominator is taken over all words in the
vocabulary.

• Loss Function: The training of the model involves
reducing the cross-entropy loss. This loss quantifies the
disparity between the predicted probabilities assigned to
words and the real probabilities represented by one-hot
encoding for the target word. The equation for Cross-
Entropy Loss:

L(θ ) = −
1
N

N∑
i=1

log (P(wi | wi−1,wi−2, . . .

. . . ,wi−n+1; θ)) (25)

Here, L(θ ) is the Cross-Entropy Loss. N is the number
of training examples in the dataset. wi represents the
i-th word in the sequence and P(wi | wi−1,wi−2,

. . . ,wi−n+1; θ ) is the predicted probability of word
wi given the context words wi−1,wi−2, . . . ,wi−n+1,
parameterized by θ .

• Training: The model is trained using backpropagation
and optimization algorithms, such as SGD or Adam,
to adjust the neural network’s weights and minimize the
loss function.

C. TRANSFORMER-BASED LANGUAGE MODELS
Transformer-based language models have revolutionized nat-
ural language processing tasks, including automated speech
recognition [105]. The core innovation of the Transformer
model lies in its self-attention mechanism, which allows
it to capture long-range dependencies between words in a
sequence without the need for recurrent connections. The
model consists of an encoder-decoder architecture, but we
typically use only the encoder part for language modeling
since we do not need the decoding aspect for this task.

1) SELF-ATTENTION MECHANISM
The self-attention mechanism empowers the model to assess
the significance of individual words within a sequence while
creating representations for each word [106]. The attention
score between a word at position i and a word at position j are
calculated using three learned matrices: Query (Q), Key (K ),
and Value (V ). The attention mechanism can be represented
as follows:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (26)

Here, dk represents the dimension of the Key and Query
matrices. Q is the matrix representing queries (word repre-
sentations to be attended). K is the matrix representing keys
(word representations used to calculate attention scores), and
V is the matrix representing values (word representations
used in the final weighted sum).

2) MULTI-HEAD ATTENTION
To capture different types of information and dependen-
cies, the Transformer model uses multiple self-attention

heads [107]. Each head has its set of learned Q, K , and
V matrices. The final attention output is generated by
combining and transforming the results of several attention
heads. This multi-head attention process can be described as
follows in mathematical terms:

MultiHead(Q,K ,V ) = Concat(head1, head2, . . . , headh)WO

(27)

Here, h is the number of attention heads, headi =

Attention(QWQi,KWKi,VWVi) represents the i-th attention
head, andWO is the output linear transformation matrix.

3) POSITIONAL ENCODING
Since Transformers don’t have an inherent sense of word
order like recurrent models, positional encoding injects
information about word positions into the model. One
common approach is to add positional encodings to the word
embeddings. The positional encoding is defined as follows:

PE(pos, 2i) = sin
( pos
100002i/dmodel

)
(28)

PE(pos, 2i+ 1) = cos
( pos
100002i/dmodel

)
(29)

Here, pos is the position of the word in the sequence, i is
the index of the dimension in the word embedding, and dmodel
is the dimension of the word embeddings and the positional
encodings.

These equations enable the Transformer-based language
models to efficiently process and generate representations for
language sequences, making them highly effective for a wide
range of natural language processing tasks, including speech
recognition.

VI. ACOUSTIC MODELING
Acoustic modeling plays a vital role in the functionality of
Arabic ASR systems. It involves building statistical models
that capture the relationship between acoustic features
extracted from speech signals and corresponding phonetic or
subword units. The goal is to accuratelymap acoustic patterns
to linguistic units, enabling the ASR system to transcribe
speech into text effectively. In this context, we’ll explore
several frequently employed methods for creating acoustic
models in Arabic ASR systems.

A. HIDDEN MARKOV MODELS (HMM)
HMM is a statistical model widely used in ASR systems,
including those for Arabic speech recognition [19], [108].
It is based on the Markov property, which assumes that the
future state depends only on the current state and not on the
sequence of states leading up to it.

1) MODEL COMPONENTS
• Hidden States (h): The hidden states represent the
underlying linguistic units, such as phonemes or sub-
word units, which are not directly observable.
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FIGURE 6. Hidden markov model (HMM) for Arabic ASR system.

• Observations (o): The observations are the acoustic
features extracted from the speech signal, such asMFCC
coefficients or filter banks, which can be observed.

• State Transition Probabilities (A): A is a matrix
containing the probabilities of transitioning from one
hidden state to another.

• Emission Probabilities (B): B is a matrix representing
the probabilities of observing specific acoustic features
given a hidden state.

• Initial State Probabilities (π): π is a vector containing
the starting probabilities from each hidden state.

2) MODEL EQUATION
The HMM [109] can be mathematically represented as
follows:

Initialization:

π = [π1, π2, . . . , πn] (30)

where πi is the initial probability of being in state i, and n is
the total number of hidden states.

State Transition Probability Matrix:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 (31)

where aij represents the probability of transitioning from state
i to state j.
Emission Probability Matrix:

B =


b1(o1) b1(o2) · · · b1(ok )
b2(o1) b2(o2) · · · b2(ok )

...
...

. . .
...

bn(o1) bn(o2) · · · bn(ok )

 (32)

where bi(oj) represents the probability of observing acoustic
feature vector oj given the hidden state i.

3) MODEL VISUALIZATION
In Figure 6, the circles represent the hidden states
(1, 2, . . . , n), and the arrows between them represent the state
transition probabilities (A). By incorporating the probabilities
of state transitions and emission probabilities, HMMs can
effectively model the relationship between acoustic features
and linguistic units in speech, making them a valuable tool
for Arabic speech recognition and other ASR tasks.

HMM is one of the oldest and most powerful models for
speech recognition tasks [110]. The paper [19] describes
creating and assessing a natural Arabic ASR system that
works for different speakers without needing specific train-
ing. This system employs HMMs and Sphinx tools, leading to
impressive accuracy in recognizing words from comparable
speakers and sentences. The paper [20] details the process
of building an Arabic ASR engine using the HMM Toolkit.
This engine effectively identifies both uninterrupted speech
and individual words, achieving exceptional accuracy rates:
90.62% for sentence correction, 98.01% for word correction,
and 97.99% for overall word accuracy. Bahi and Sellami [21]
propose a system that integrates HiddenMarkovModels with
vector quantization for recognizing Arabic isolated words.
The system transforms the word into a symbolic sequence
and compares it to reference Markov models to recognize the
word. The proposed system can handle the variability of the
speech signal.

B. GAUSSIAN MIXTURE MODELS (GMM)
Arabic speech recognition using Gaussian Mixture Models
(GMM) involves modeling the acoustic features of speech
using a combination of Gaussian distributions. The GMM is
widely used in ASR systems for its ability to approximate
complex probability distributions effectively [111], [112].
Each Gaussian component in the GMM represents a specific
speech sound or phonetic unit.

The equation for the GMM [113] can be represented as
follows:

Let’s assume we have a set of acoustic feature vectors for
a given speech signal:

X = x1, x2, . . . , xi, . . . , xn (33)

Here, ’n’ is the total number of frames, and each ’xi’ is a
D-dimensional acoustic feature vector.

The GMM is represented as a weighted sum ofK Gaussian
components:

P(X |θ ) =

∑
i

wi · N (xi|µi, 6i) (34)

Here, P(X |θ ) is the likelihood of the observed acoustic
feature vectors X given the model parameters θ . wi is
the weight of the i-th Gaussian component, representing
the probability of choosing that component. It satisfies∑

i wi = 1. And N (xi|µi, 6i) is the multivariate Gaussian
distribution representing the i-th Gaussian component, with
mean vector µi and covariance matrix 6i.
The mathematical expression describing the probability

density function (PDF) of the multivariate Gaussian distri-
bution can be formulated as follows:

N (xi|µi, 6i) =
1

(2π )
D
2 · |6i|

1
2

· exp
(

−
1
2
(xi − µi)T6−1

i (xi − µi)
)

(35)
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FIGURE 7. Gaussian mixture models (GMM) for automated arabic speech
recognition (ASR).

Here, D is the dimensionality of the acoustic feature
vectors. |6i| is the determinant of the covariance matrix 6i.
(xi − µi)T represents the transpose of the difference between
the feature vector xi and the mean vector µi and 6−1

i is the
inverse of the covariance matrix 6i.
The model parameters (weights, means, and covariance

matrices) are calculated using the Expectation-Maximization
(EM) algorithm during training. Once the GMM is trained,
it can be used in the ASR system to calculate the likelihood of
acoustic feature vectors given themodel, and this likelihood is
used for speech recognition and decoding. Figure 7 represents
a basic GMM for the Arabic ASR system.

The GMM finds extensive application within the realm
of speech recognition [114]. The paper [22] presents a
method for recognizing spoken Arabic digits using a
Gaussian mixture model (GMM) classifier and Delta-Delta
Mel-frequency cepstral coefficients (DDMFCC) for feature
extraction. The experimental results show a 99.31% correct
digit recognition rate, which is better than previous work
on spoken Arabic digit speech recognition. Huang and
Hasegawa-Johnson [115] propose a cross-dialectal GMM
training scheme for Arabic ASR, which transfers knowledge
between Modern Standard Arabic (MSA) and regional
dialects and between different dialects to improve phone clas-
sification tasks. The results of the experiments demonstrate
that training GMM models across different dialects brings
notable benefits, particularly when a small quantity of MSA
data is moved.

C. CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs are widely used in Arabic speech recognition to
capture local patterns and features in speech data [116], [117].
The paper [118] focuses on Arabic ASR using MFSC and
GFCC with their first and second-order derivatives. Using
CNN facilitates feature learning and classification, enhancing
Arabic ASR performance. The highest achieved accuracy
when employing CNN in conjunction with GFCC is 99.77%.
Amari et al. [119] presents a new model for Arabic ASR
using deep CNNs. The proposed model is tested on the
Arabic Isolated Words Corpus (ASD) database and achieves
promising results. The study compares two models based
on CNN and LSTM, and the deep CNN model performs
better. The mathematical representation of a CNN [120] can
be summarized as follows:

FIGURE 8. CNNs architecture for Arabic ASR system.

Let’s consider an input speech signal represented as a
time-domain waveform or a spectrogram, denoted as x.
A CNN’s structure includes various types of layers, such as
convolutional, pooling, and fully connected layers.

1) CONVOLUTIONAL LAYER
In the convolutional layer, we use a set of learnable filters
(kernels) to convolve over the input speech signal x. This
operation is mathematically represented as:

zi = (x ∗ wi) + bi (36)

Here, zi is the output feature map for the i-th filter. x is
the input speech signal. wi is the learnable weight (filter)
for the i-th filter. * denotes the convolution operation and bi
is the bias term for the i-th filter.
The convolution operation essentially slides the filter over

the input signal, and element-wise multiplies the filter values
with the corresponding input signal values. It sums them up
to produce the output feature map zi.

2) ACTIVATION FUNCTION
After the convolution operation, an activation function
(commonly ReLU) is applied to each element of the resulting
feature map to introduce non-linearity:

ai = ReLU(zi) (37)

Here, ai is the output after applying the activation function to
the i-th feature map.

3) POOLING LAYER
We downsample the feature maps in the pooling layer to
reduce the spatial dimensions and computational complexity.
An often-used pooling technique is max-pooling, where the
highest value within each local area is chosen.

pi = max_pool(ai) (38)

Here, pi is the downsampled feature map (pooled output) for
the i-th feature map.

4) FULLY CONNECTED LAYER
Following multiple convolutional and pooling layers, the
resulting feature maps undergo flattening and are then
inputted into fully connected layers for prediction generation.
The fully connected layers use weights and biases to map
the extracted features to the final output classes (phonemes,
words, or sentences). Figure 8 represent a basic architecture
of CNNs for the Arabic ASR system.
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D. RECURRENT NEURAL NETWORKS (RNN)
RNNs represent a neural network design frequently
employed for handling sequential information, like speech
signals [121], [122]. They prove highly suitable for tasks
like speech recognition as they excel in retaining concealed
states that encapsulate time-related patterns present in the
data [123]. In the context of Arabic ASR, an RNN can be
utilized to convert the input speech signal into a sequence
of phonemes or characters, which can then be further
processed to recognize the spoken words [24], [38], [124].
Themathematical equation for the basic operation of a simple
RNN can be defined as follows:

ht = σ (Whh · ht−1 +Whx · xt + bh) (39)

yt = σ (Wy · ht + by) (40)

Here, ht is the hidden state at time step t , representing the
network’s memory of past information. xt is the input at time
step t , which can be a vector representation of the speech
signal or its extracted features. Whh and Whx are weight
matrices for the recurrent and input connections. bh is the bias
vector for the hidden state. Wy is the weight matrix for the
output connection. by is the bias vector for the output, and σ

denotes the activation function, such as the sigmoid function
or hyperbolic tangent (tanh), used to introduce non-linearity.

The RNN processes the input speech signal frame by
frame (xt ) and updates its hidden state (ht ) at each time
step. The final output (yt ) can be used for various purposes,
like phoneme or word recognition. However, traditional
RNNs suffer from vanishing gradient problems when dealing
with long sequences. To address this issue, variants like
LSTM [76] and GRU [125] have been introduced to improve
the capability of modeling long-term dependencies in speech
data. These variants modify the basic RNN equation to
incorporate gating mechanisms that regulate the flow of
information and gradients, making them more effective for
speech recognition tasks. Figure 3 gives a very detailed
architecture of RNN for speech recognition.

E. TRANSFORMER-BASED ACOUSTIC MODELS
Arabic speech recognition using Transformer-based Acoustic
Models involves employing the Transformer architecture
for acoustic modeling tasks [126], [127]. The Transformer
model, initially proposed for NLP tasks, has also shown
promising results in speech recognition [128]. It leverages
self-attention mechanisms to capture long-range dependen-
cies in the input sequence and has achieved state-of-the-
art performance in various tasks. The architecture of the
Transformer-based Acoustic Model can be represented as
follows:

1) INPUT SEQUENCE
Let’s assume we have an input audio sequence represented as
a sequence of acoustic feature vectors:

X = {x1, x2, x3, . . . , xT } (41)

2) ACOUSTIC ENCODER
The acoustic encoder in the Transformer-based Acoustic
Model processes the input sequence and transforms it
into a sequence of high-level representations. This is
achieved through self-attention layers and feed-forward
neural networks.

3) SELF-ATTENTION MECHANISM
The self-attention mechanism enables the model to assess the
significance of each input element (acoustic feature vector)
concerning all other elements in the sequence [106]. It com-
putes a weighted sum of the input sequence, considering the
relationships between different elements. The equation of the
Self-Attention Mechanism is given in eq.26.

4) MULTI-HEAD ATTENTION
The Transformer-based Acoustic Model usually employs
multiple self-attention heads to capture different dependen-
cies in the input sequence [107]. A detailed equation of
Multi-Head Attention is given in eq. 27.

5) FEED-FORWARD NEURAL NETWORKS (FFNN)
After the self-attention layers, the output is passed through a
feed-forward neural network [129], which applies non-linear
transformations to the representations:

FFNN(x) = ReLU(xW1 + b1)W2 + b2 (42)

Here, ReLU is an activation function.W1, b1,W2, and b2 are
learnable parameters.

6) LAYER NORMALIZATION AND RESIDUAL CONNECTIONS
Layer normalization and residual connections stabilize
training and facilitate the flow of gradients during backprop-
agation.

7) OUTPUT LAYER
The output layer of the Transformer-based Acoustic Model
is typically a linear layer followed by a softmax activation,
used for predicting the probabilities of different output
units (phonemes, characters, or subword units) at each
time step. It’s important to note that the specifics of the
Transformer-based Acoustic Model may vary depending
on the implementation and the specific ASR task. During
training, the model is trained to minimize a suitable loss
function (e.g., cross-entropy loss) to learn the appropriate
acoustic representations for accurate speech recognition.

Acoustic models are the backbone of speech recognition
systems, shaping their performance and capabilities. These
models offer distinct advantages that contribute to accurate
and robust speech recognition. From Hidden Markov Mod-
els’ adaptability to DNNs’ capacity for automatic feature
learning, each model type brings its strengths to the table,
catering to awide range of recognition needs. Table 6 presents
the advantages and disadvantages of all the acoustic models
discussed.
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TABLE 6. Advantages and disadvantages of acoustic models for arabic ASR system.

The fundamental Bayesian equation for finding the optimal
word sequence in an Arabic ASR system involves the
combination of the feature extractor, acoustic model, and
language model. The equation is often expressed using
Bayes’ theorem [130]:

P(W |X ) =
P(X |W ) · P(W )

P(X )
(43)

where:
• P(W |X ) is the posterior probability of the word sequence
W given the observed acoustic features X .

• P(X |W ) is the likelihood, representing the probability
of observing the acoustic features X given the word
sequenceW (modeled by the acoustic model).

• P(W ) is the prior probability of the word sequence W ,
typically based on the language model.

• P(X ) is the probability of the observed acoustic features
X and acts as a normalization factor.

The goal is to find the word sequence W that maximizes the
posterior probability P(W |X ), which essentially identifies the
most likely sequence of words given the observed acoustic
features. This Bayesian framework helps integrate informa-
tion from both the acoustic and language models to enhance
the ASR system’s accuracy. Figure 9 provides a pictorial
description of finding the optimal word sequence using a
feature extractor, acoustic, and language model.

VII. DECODING AND RECOGNITION
This focuses on converting acoustic input, the spoken
speech signal in Arabic, into a meaningful and accurate
textual representation. This section addresses the complex
task of deciphering spoken words and transcribing them
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FIGURE 9. Arabic ASR system to find optimal word sequence using a
feature extractor, acoustic model, and language model.

FIGURE 10. This figure illustrates the procedure of the Viterbi search.

into written text. Here’s a breakdown of what this section
entails:

A. VITERBI ALGORITHM
The Viterbi Algorithm is a dynamic programming algorithm
that plays a crucial role in various fields, including
speech recognition, digital communications, and bioinfor-
matics [131]. Named after its inventor Andrew Viterbi,
this algorithm is fundamental in Hidden Markov Models
(HMMs), where it’s used for sequence estimation or decod-
ing. The Viterbi search is like following a path through a
map of connected HMM states. At each step and for each
moment, it keeps track of the best score for the path so
far. This method goes step by step through time, dealing
with all the states at each time before moving to the next
time [8]. Imagine it moving through a chart: one side shows
the different states, and the other shows the progression of
time. The basic procedure of the algorithm is made clearer
by looking at Figure 10.

Even when dealing with a medium-sized set of words,
conducting a complete search is impractical. The Viterbi
beam search is a widely used and straightforward method
to expedite the search process. However, solely relying on

a beam is not always enough, leading to two commonly
adopted alternatives for addressing this search challenge.

• Utilize basic acoustic and language models to create a
list of several options or a structure called a lattice or N-
best list. Then, employ more complex acoustic and/or
language models to reevaluate and refine the smaller
options to identify the most accurate sequence of words.
This strategy is known as the multi-pass method.

• Create a complete set of options to explore, then
simplify it using specific techniques to make it more
manageable. After that, a specialized search method will
be applied to find the most suitable sequence of words.
This streamlined process is known as the single-pass
approach.

B. BEAM SEARCH DECODING
In Arabic ASR, the Beam Search decoding algorithm is
a crucial technique for efficiently identifying the most
likely sequence of words based on the provided audio
features [132]. Beam Search enhances the decoding process
by maintaining a limited number of possible hypotheses,
referred to as the ‘‘beam width.’’ This significantly reduces
computational complexity while ensuring accurate transcrip-
tions. The Beam Search algorithm can be described with the
following equation:

At each time step t , the Beam Search algorithm maintains
a set of K hypotheses (word sequences) denoted asHt , where
K is the beam width.

Ht = {h1, h2, . . . , hK } (44)

Each hypothesis hk consists of a sequence of words up to time
step t: hk = [w1,w2, . . . ,wt ].

The Beam Search algorithm operates as follows:
• Initialization: At time step t = 1, the algorithm starts
with K initial hypotheses, each consisting of a single
word:

H1 = {[w1
1], [w

2
1], . . . , [w

K
1 ]} (45)

• Expansion: For each hypothesis hk in Ht , the algorithm
generates K new hypotheses by considering all possible
next words based on acoustic and language model
scores. The hypotheses with the highest combined
scores are retained:

Ht+1 = Top-K([hk ,wt+1] for all hk in Ht ) (46)

• Pruning: After generating the new hypotheses, the set
is pruned to retain only the top-K hypotheses with the
highest combined scores.

• Repeat: Steps 2 and 3 are repeated for each subsequent
time step until the entire input audio sequence is
processed.

• Final Selection: Once the decoding process is com-
pleted, the hypothesis with the highest cumulative score
among all time steps is selected as the final transcription.

In this algorithm, the combined score of a hypothesis
hk at time step t is calculated as the sum of its acoustic
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score (reflecting the fit between the acoustic features and the
predicted phonemes) and its language model score (reflecting
the linguistic likelihood of the word sequence up to time
step t).
The Beam Search algorithm balances exploration and

exploitation by retaining a limited number of hypotheses with
the highest scores, effectively navigating the search space of
possible word sequences. This strategy maintains a balance
between precision and computational speed, rendering it
appropriate for tasks that require real-time processing, such
as speech recognition.

C. WEIGHTED FINITE STATE TRANSDUCERS (WFST)
The WFST decoding algorithm for Arabic speech recog-
nition involves utilizing a WFST to represent the rela-
tionship between input speech features and output word
sequences [133]. This can be achieved through a composition
process with a language model and an acoustic model. The
final decoding is based on finding the best path through the
WFST.

Here we provide a simplified representation of the
decoding algorithm in equation form:

1) Acoustic Model Score:

AcousticModelScore(X,O) =

T∑
t=1

logP(ot |xt ) (47)

where X represents the input feature sequence, O
represents the output word sequence, xt is the acoustic
feature at time t , and ot is the corresponding output
symbol. P(ot |xt ) is the acoustic model probability.

2) Language Model Score:

LanguageModelScore(O) = logP(O) (48)

where O is the output word sequence. P(O) is the
language model probability.
WFST Composition:

WFST = Compose(AcousticModel,LanguageModel)

(49)

This represents the composition of the acoustic and
language models into a WFST.

3) Decoding:

BestPath = ShortestPath(WFST,AcousticModelScore

+ LanguageModelScore) (50)

The BestPath is determined by finding the shortest path
through the composed WFST based on the combined
scores of the acoustic and language models.

VIII. EVALUATION METRICS
To evaluate the effectiveness and accuracy of the Arabic
ASR system, various evaluation matrices are utilized [134].
These matrices help to measure the system’s effectiveness in
converting spoken Arabic utterances into text. The following

are some of themain evaluationmetrics that are used to assess
the ASR system:

A. WORD ERROR RATE (WER)
The WER is a widely adopted measure that quantifies the
disparity between the transcribed output and the reference,
representing the true intended text [135]. It’s computed by
tallying the insertions, deletions, and substitutions needed
to convert the transcribed text into the reference text [136].
WER is defined as:

WER =
S + D+ I

N
(51)

where:
• S = Number of substitution errors (words that were
incorrectly recognized),

• D= Number of deletion errors (words that were missed
in recognition),

• I = Number of insertion errors (extra words that were
incorrectly added during recognition),

• N = Total number of words present in the reference
transcript.

B. CHARACTER ERROR RATE (CER)
The CER quantifies the difference between the identified
output and the reference transcript at the character level. It is
beneficial when assessing the accuracy of the ASR system in
languages with complex scripts, such as Arabic [137]. CER
is calculated as follows:

CER =
Sc + Dc + Ic

Nc
(52)

where:
• Sc =Number of substitution errors (characters that were
incorrectly recognized),

• Dc = Number of deletion errors (characters that were
missed in recognition),

• Ic = Number of insertion errors (extra characters that
were incorrectly added during recognition),

• Nc = Total number of characters in the reference
transcription.

C. SENTENCE ERROR RATE (SER)
The SER evaluates the ASR system’s ability to transcribe
entire sentences correctly. It measures the percentage of
sentences that are inaccurately recognized [138]. SER is
defined as:

SER =
Nincorrect sentences

Ntotal sentences
× 100 (53)

where:
• Nincorrect sentences = Number of sentences with recogni-
tion errors,

• Ntotal sentences = Total number of sentences in the
evaluation dataset.

These evaluationmetrics provide a comprehensive analysis
of the ASR system’s performance, allowing for a thorough
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FIGURE 11. Some of the general difficulties faced by speech recognition
systems.

assessment of its strengths and areas for improvement. The
lower the values of WER, CER, and SER, the better the
accuracy of the ASR system.

IX. CHALLENGES ON ARABIC ASR
Speech recognition faces various challenges, which can
be categorized into two main sections: a) challenges that
are specific to the language being spoken (language-
dependent), and b) challenges that are common across
languages (language-independent). It is crucial for the design
of speech recognition systems to consider these obstacles, and
overcoming them would lead to improved performance for
an Arabic ASR system. Language-independent challenges in
speech processing include dealing with various factors such
as background noise, dependence on individual speakers,
variations in speech patterns, segmenting speech accurately,
and accounting for differences in recording devices used.
On the other hand, language-dependent challenges encom-
pass specific linguistic features like structural properties,
complex consonant conjuncts, diacritics, the availability of
comprehensive word databases, diverse dialects, the presence
of silent letters, and the similarity between word and letter
utterances. Figure 11 visually represents how the obstacles
depend on each other.

Addressing the language-dependent challenge of Arabic
ASR will require linguistic expertise in morphological anal-
ysis, phonetic analysis, and morphophonemic interactions of
Arabic. Here, we briefly describe each linguistic expertise
one by one.

• Morphological Analysis: Morphological analysis is a
linguistic process that involves the study of the structure
and formation of words, focusing on how morphemes,
the smallest units of meaning, combine to create com-
plex word forms. In Arabic, a language renowned for
its rich morphological system, morphological analysis
is particularly crucial. Arabic words typically share
a root consisting of consonants, and morphological
analysis in Arabic involves identifying these roots and
understanding how they change the addition of prefixes,
suffixes, and vowels. For example, consider the root
of Figure 12(a) word (K-T-B), meaning ‘‘to write.’’
The morphological variations include Figure 12(b)

FIGURE 12. Some Arabic words are provided here to illustrate the
language-dependent challenges in Arabic ASR.

(kitab - book), 12(c) (katib - writer), and 12(d)
(yaktub - he writes), illustrating how the root adapts
to convey different meanings and grammatical forms.
Morphological analysis is fundamental for creating
accurate lexicons and understanding the derivational
and inflectional processes that shape Arabic words.
Linguists leverage this analysis to ensure precision in
natural language processing tasks, including Automatic
Speech Recognition (ASR), where a profound grasp
of morphology aids in accurately transcribing spoken
Arabic.

• phonetic analysis: Phonetic analysis is a linguistic
discipline focused on the study and representation of
speech sounds within a language. In ASR, phonetic
analysis is crucial in accurately transcribing spoken
words. This involves breaking down speech into discrete
phonetic units, such as consonants and vowels, and
understanding their articulatory and acoustic character-
istics. For example, in English, the word ‘‘cat’’ can
be phonetically analyzed as /kæt/, where /k/ represents
the voiceless velar plosive sound, /æ/ denotes the
short vowel in ‘‘cat,’’ and /t/ indicates the voiceless
alveolar plosive. Phonetic analysis involves identifying
and categorizing these sounds based on their distinctive
features, such as place and manner of articulation.
In more complex languages like Arabic, phonetic analy-
sis extends to diverse consonants, vowels, and nuances.
For instance, the Arabic word in Figure 12(b) (kitab -
book) can be phonetically analyzed as /kItæb/, where
/k/ is the voiceless velar plosive, /I/ represents the short
vowel, and /t/ and /b/ signify voiceless alveolar plosive
and voiced bilabial plosive, respectively. The phonetic
analysis is fundamental for developing accurate ASR
systems, aiding in creating phonetic transcriptions that
bridge spoken language and machine-understandable
representations.

• Morpho-phonemic Interactions: Morpho-phonemic
interactions in Arabic involve the intricate relationship
between morphology and phonetics. This linguistic
concept explores how morphological changes in words
impact their pronunciation. For instance, root con-
sonants undergo morphological modifications in the
Arabic verb system to indicate tense, person, and
number. The verb in Figure 12(d) (yaktub - he writes)
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FIGURE 13. A simple Arabic sentence.

shares the root Figure 12(a) (K-T-B) with variations like
Figure 12(e) (yaktubu - they write). Understanding these
morpho-phonemic interactions is crucial for accurate
representation in ASR systems, ensuring that the system
recognizes spoken words with consideration for both
their morphological and phonetic dimensions.

• Diacritization:Diacritization in Arabic involves adding
diacritical marks to written text to indicate short vowels,
enhancing phonetic clarity. Discretization interactions
are crucial in distinguishing words with similar conso-
nantal roots but different vowel patterns. For instance,
differentiating between Figure 12(b) (kitab - book)
and 12(d) (katab - he writes) relies on diacritics to
signify the vowels. Discretization is pivotal in linguistic
analysis, aiding manual transcription and automatic
processes like Automatic Speech Recognition (ASR).
Its accurate application ensures proper pronunciation
and understanding of Arabic words, particularly when
written vowels are absent or ambiguous.

The sentence shown in Figure 13, has several language-
dependent challenges for Arabic speech recognition:

• Phonetic Variation: Different dialects might pronounce
the Arabic word ‘‘yaqra’’ (reads) differently, and
a speech recognition system needs to handle these
variations to transcribe the spoken words accurately.

• Diglossia: This sentence is in Modern Standard Arabic
(MSA), but in spoken language, the pronunciation
might differ significantly based on regional dialects.
Recognizing both MSA and dialectal variations is a
challenge.

• Vowel System: Arabic vowels, like ‘‘y’’ (pronounced
as ‘ee’ or ‘i’ sound) in ‘‘yaqra,’’ can be challenging
to distinguish, especially when they’re pronounced less
distinctly in casual speech.

• Lack of Punctuation and Capitalization: The Arabic
script doesn’t use spaces to separate words, and there
is no capitalization, making it difficult to segment the
sentence into individual words.

The researchers thoroughly understand the obstacles
faced in language-independent speech recognition and have
developed advanced techniques to overcome these challenges
effectively. Moreover, they have made considerable strides
in illustrating the language-independent issues that arise in
both speech recognition methods [139], [140] and feature
extraction processes [141], [142]. In the subsequent sections,
we will highlight the language-dependent challenges specific
to an Arabic speech recognition system and propose potential
solutions. However, before delving into that, we will con-
cisely explain the language-independent challenges, which
can be found in Table 7.

X. FUTURE RESEARCH DIRECTION ON ARABIC ASR
In this segment, we outline the primary obstacles an Arabic
ASR system faces to enhance the effectiveness of current
approaches. Additionally, we put forward an architectural
solution to address these challenges. After an extensive
examination of Section IX, three crucial language-specific
difficulties have been identified:

• Words can be filtered out based on their grammatical
relationship with previous words. Additionally, under-
standing the literal dependencies between similar words
with similar patterns can lead to selecting the correct
word more easily. This reduces the search space for
the right word. However, successfully extracting both
grammatical and literal dependencies requires a robust
memory-based architecture.

• Grammatical and preceding character dependencies
involve understanding the correct combinations of vowel
diacritics, consonant diacritics, and graphemes within a
word. All languages possess specific grammatical pat-
terns that enable accurate prediction of the appropriate
graphemes from a given set. Revealing these patterns
necessitates the assistance of a generator that operates
based on memory, facilitating the extraction process.

Current studies on Arabic ASR systems overlook the
connection between grammatical complexities and accurate
word predictions. As a result, the mentioned issues present
promising avenues for future research in Arabic ASR.
Moreover, we aim to enhance the future scope of Arabic ASR
by introducing a novel theoretical architecture. We present in
Figure 14 a carefully devised architecture that we consider
the most optimal after extensive research efforts. To our
knowledge, the proposed framework remains untapped and
unexplored in any preceding research endeavors. Further-
more, the suggested framework integrates an innovative
blend of recurrent and hybrid components, introducing a
new vantage point to the current research landscape. Thus,
we subsequently outline the key attributes of the proposed
ASR system.

• Grammatical dependencies between words play a cru-
cial role in identifying the most appropriate literary
expressions by applying specific rules. These rules can
be reinforced and interconnected through short-term
memory. The system can efficiently grasp grammatical
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TABLE 7. An overview of obstacles not dependent on any particular language.

relationships by leveraging this short-term memory,
especially when exposed to extensive speech data during
training.

• By utilizing a blend of short-term memory and a
speech character generator, it becomes possible to ascer-
tain characters’ grammatical structure and preceding
dependency. Prominent systems in this domain rely
on short-term memory to investigate character-level
prediction dependency [75].

• All languages, including Arabic, have words with
irregular letter patterns. To address this issue, one
can memorize specific fixed words. Consequently,
phoneme-to-word or speech-to-word matching would
be the most effective approach. However, current
architectures primarily employ end-to-end schemes,
generating characters and relying solely on information
from preceding characters [143], [144]. As a result, they
often neglect the nuances of irregular word structures.

• At present, the existing implementations primarily
focus on character recognition methods [75]. However,
we put forth a hybrid strategy that merges word and
character-matching techniques to tackle the issue of
generating words that are irregular or not found in the
dictionary. Through this approach, our recommended
system adeptly seeks optimal word matches. In cases
where an exact word match is not found, the model
can intelligently extract characters from the speech to
provide meaningful output.

FIGURE 14. An ideal Arabic ASR system can be designed with a suggested
architecture incorporating short-term memory. The system can
comprehend words, characters, and their intricate linguistic associations
by integrating these memory elements. Techniques for word matching can
be harnessed to detect words harboring diverse or unpronounced letters.
Furthermore, a confidence assessment procedure can ascertain the
model’s certainty regarding the presence of a spoken word in its existing
speech-to-word lexicon. In instances of uncertainty, the model can derive
recurring characters from the speech, enhancing its recognition prowess.

Suppose the proposed architectural pattern is trained using
speech corpora that exhibit appropriate variations in speech
and grammar. In that case, it can potentially address the
overall challenges outlined in the paper effectively.

XI. CONCLUSION
This survey initiates by exploring the ongoing research efforts
in the field of Arabic Automatic Speech Recognition (ASR)
systems, encompassing speech databases and recognition
techniques. Subsequently, various challenges existing within
the domain of Arabic ASR are thoroughly investigated.
We have discussed the differences in structure and linguistic
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aspects among languages that researchers working on ASR
(Automatic Speech Recognition) systems should focus on.
We have thoroughly explored the foundational grammatical
principles and proposed potential solutions for addressing
these challenges. While some difficulties are shared across
various languages, we have specifically emphasized the
unique challenges and opportunities that arise when dealing
with Arabic. We have thoroughly examined the latest
implementations of Arabic ASR systems and discovered they
are imperfect. Our extensive investigation led us to believe
that our refined research could enhance Arabic-specific and
universal ASR systems. By doing so, we hope to provide
valuable guidance to researchers, helping them address the
precise challenges that must be overcome.
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