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ABSTRACT An important service in the wireless systems for the human daily life is the information of a
mobile user location. Wireless sensor network is a structure that can be used to determine the mobile user
position. The time-difference-of-arrival (TDoA) technique is often considered for wireless localization due
to the low cost of the sensor network. In this work, the error covariance matrices are derived for predicting
the error performance of the conventional closed-form constrained total least squares (CTLS) estimator.
More importantly, three new Newton’s methods are proposed for computing the CTLS solution in the TDoA
localization. In addition, theoretical performance of both new Newton-based approaches is provided in
closed forms. Numerical simulation is conducted to compare the derived theoretical prediction with the
corresponding actual estimation error. It is illustrated that the two new Newton-based techniques provide
better performance, in terms of lower bias and root mean square error, less computational time, and more
reliability, than the former Newton-based algorithms. Furthermore, the derived expressions for the theoretical
error covariance well coincide with the actual random estimation results.

INDEX TERMS First-order Taylor’s series expansion, error covariance, localization, time difference of
arrival, Newton’s method.

I. INTRODUCTION
The use of electronic technology for the control of ground
transportation systems including traffic aid systems, traffic
control systems, automatic vehicle identification, location,
and monitoring systems receives much attention nowadays.
The information of a mobile user location is an important
service in the wireless systems for the human daily life.
Wireless sensor network (WSN) is a fundamental wireless
structure that still receives much attention [1], [2], [3],
[4], [5], especially for localization [6], [7], [8], [9], [10].
The measured quantity that can be used for finding a user
location in a WSN includes received signal strength (RSS)
indicator [11], [12], time of arrival (ToA) [13], angle of
arrival (AoA), time difference of arrival (TDoA) [14], [15],
[16], [17], [18], [19], [20] etc. Orthogonal frequency division
multiplexing (OFDM) is taken into account in distance
estimation for combating the fading effect, which is caused by
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multipath propagation. As benefitting from perfect periodic
autocorrelation, Zadoff-Chu sequences are transmitted in
the preambles of the OFDM in [21]. A pair of right-hand
circularly polarized helical antennas result in the accuracy
on the order of centimeter under occupying 20 MHz of
bandwidth. The implementation of AoA localization can
be found, e.g., in [22]. Phase interferometric approach is
adopted therein to deal with multiple sources. The phase
interferometric approach is validated in an experimental
setup, where multiple transmitting units are separated from
each other and the receiver is a 4-element microstrip uniform
linear array antenna connected to four individual custom
designed radio frequency frontends.

Various aspects of wireless localization are discussed
in [23] and [24]. RSS approach is a simple and cost-
efficient technique, yet prone to fading effect or multipath
propagation and path loss [25]. The AoAmethod can achieve
high localization accuracy, but incurs directional antennas,
complex algorithms, and complex hardware. The ToA
technique can provide high localization accuracy only when
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the time synchronization between the transmitter and the
receiver is perfect. The TDoA technique plays a prominent
role in wireless localization due to the low cost of sensor
network [26], [27], [28]. While the ToA localization requires
a precise synchronization between the wireless node and the
mobile station, the TDoA needs the strict synchronization
among several wireless sensors [23]. In other words, the
TDoA gets rid of the stringent synchronization between the
wireless node and the mobile user [24].
The TDoA localization problem can be cast into a

second-order polynomial equation [29]. Due to its nonlinear
nature, the least squares fit is adopted to the TDoA
localization in [30] and [31]. TDoA measurement and sensor
position are considered to impose the errors in [32]. The
mean square error (MSE) caused by the receiver location
subject to an error is investigated in [33] by means of
frequency difference of arrival and the TDoA. In [34], the
sensor positions are subject to random errors and each signal
emitter does not share the same time and frequency. Under
both conditions, the solutions to the weighted least squares
criteria are derived in closed forms. Constrained least squares
criterion is considered for determining the mobile position
in [35]. In [36] and [37], a constrained weighted least squares
criterion is proposed for the TDoA localization.

Constrained total least squares (CTLS) criterion is intro-
duced in [38]. It is a special case of total least squares
(TLS) method [39], [40], [41], when the perturbations in the
modelingmatrixA and the receivedmeasurement vector b are
known to be algebraically related. This TLS variant is applied
in [38] to the problems of sinusoidal frequency estimation
and angle-of-arrival estimation. In [42], the CTLS criterion
is addressed when the constraint is unitary. It is pointed out
in [43] that the CTLS objective in [38] is equivalent to the
structured TLS idea in [44], where the matrices have a special
structure.

Apart from the eigenvalue problems [45], the CTLS can
be solved by the Newton’s method (NM) [46], [47], [48],
[49], [50], [51], [52], [53]. The CTLS criterion solved by
the NM is adopted for sensor localization by means of the
bearing angles [46], the TDoA [47], [48], [51], differential
received signal strength [53], joint TDoA and angle of
arrival [50], joint TDoA and wave velocity [52], and a general
framework [49]. In this work, we pay attention to only the
TDoA localization.

A. SHORTCOMINGS OF [47]
When the objective function in an optimization can be
differentiated up to the second order, the NM often attracts
much attention to solving an unconstrained problem. This is
because it can offer the second-order or quadratic speed of
convergence, provided that an initialized point is sufficiently
close to the true value. The NM is adopted in [47] for the
TDOA localization. This work is also considered in [54],
[55], and [56]. The disadvantage of the NM in [47] is that
the gradient and Hessian involve cumbersome expressions.

Their complicated forms lead to inefficient computation and
incur ill conditions for the inverse of the Hessian matrix.
In addition, the theoretical error performance of the proposed
method is not validated therein. In this work, the gradient
and Hessian are expressed in concise forms, which lead to
an efficient computation and alleviates the ill condition for
the inverse of the Hessian matrix.

B. SHORTCOMINGS OF [48]
Total least squares approach still spans its application to the
TDoA localization, e.g., in [48], [52], and [57]. The NM
in [48] follows the framework in [47]. The key idea is that
the second-order term of the noise is incorporated into the
algorithm design at the beginning. Although the performance
of the NM-CTLS in [48] outperforms that in [47] in terms of
localization error, the shortcoming of the CTLS in [48] is that
exploiting the quadratic term of the TDoAmeasurement noise
gives rise to more complexity due to larger size of matrices.
Theoretical performance analysis in terms of error covariance
is also derived therein, based on the results in [47].

C. SHORTCOMINGS OF [51]
Alternating direction method of multipliers (ADMM) is
an algorithm that can solve several convex optimization
problems by breaking them into smaller pieces, each of
which are easier to solve. Due to this advantage, it is applied
to a number of areas. The ADMM method for the TDoA
localization is introduced in [51] and also discussed in [58],
[59], and [60]. The error expressions therein are concentrated
on the relative mobile user position vector, yet not the mobile
user position vector as same as in [47] and this work. The first
downside of the work in [51] is that the unknown parameter
vector includes a redundant quantity, which is the norm of the
relativemobile user position. The redundant parameterization
can deteriorate localization accuracy, because an additional
search dimension introduces more local minima for the
optimization and increases the computational effort in each
iteration. The second drawback in [51] is that the gradient
and Hessian also appear to be complicated, leading to
computational demand. Third, the ADMM brings about an
additional parameter, i.e. the regularization parameter, that
needs to be chosen. This issue remains open and undiscussed,
if one would like to obtain theminimal localization error from
choosing an optimal value for this parameter. Furthermore,
the benefit of convex optimization is not explored for the
ADMM [51].

D. CONTRIBUTION OF THIS WORK
In this work, we derive the error covariances of the previous
CTLS estimate that is expressed in a closed form [61].
The derivations are based on the first-order Taylor’s series
expansion (FOTSE). All expressions we drive herein are
represented in closed forms and there is no need for
further computing any expectation term. More importantly,
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we propose an implementable version of the typical CTLS
using a fixed-point iteration and two improved versions of
the CTLS based on the NM.

Numerical simulation is conducted to
• investigate the closeness between the predicted theoret-
ical errors and the actual CTLS estimation errors, and

• demonstrate better error performance of the proposed
CTLS methods.

Simulation reveals that the new derived expressions of
the theoretical error covariance are accurate, i.e. can well
capture the simulated MSEs at a high signal-to-noise ratio,
a large number of sensors. In addition, the two new CTLS
methods involving Newton’s method provide less mobile
position estimation error and less computational time, which
can fulfill the requirement of compact computing power
in [27].

Contribution of this work thus includes
• the expressions of the error covariance given by the
CTLS estimator
and

• the proposed CTLS algorithms based on the fixed-point
iteration and Newton’s method for sensor network
localization using the TDoA.

• The error expressions concentrating on the mobile user
position for both proposed CTLS approaches are also
derived.

• Simulation is provided to validate the accuracy of the
proposed theoretical prediction.

Merit of this work lies in
• the accurate theoretical prediction of the CTLS estima-
tion error performance
and

• two new accurate methods in determining the mobile
user position.

E. PAPER ORGANIZATION
The structure of this paper is arranged as follows.
• Introduction

– Shortcomings of [47]
– Shortcomings of [48]
– Shortcomings of [51]
– Contribution of This Work
– Paper organization

• Localization via Time Difference of Arrival
– Time Difference of Arrival
– Linear Model of TDoA Perturbation
– Noise Approximation
– Noise Assumptions
– Model Limitation

• Previous Methods
– Constrained Total Least Squares
– Constrained Total Least Squares Using Alternating

Direction Method of Multipliers
– Constrained Total Least Squares Using Newton’s

Method

TABLE 1. Mathematical notations and their meanings.

• Proposed Methods
– Constrained Total Least Squares Using Fixed-Point

Iteration
– Constrained Total Least Squares Using Newton’s

Method with Two Steps
– Constrained Total Least Squares Using Newton’s

Method with One Step
• Numerical Examples

– Algorithmic Comparison
– Simulation Results
∗ Effect of the standard deviation of the TDoA

error
∗ Effect of the number of sensors
∗ Effect of the imperfect synchronization

• Conclusion
• Appendices

– Preliminary Results
– Proof of Lemma 1
– Proof of Lemma 2
– Proof of Lemma 3
– Proof of Corollary 1

All Mathematical notations in this paper are listed in
Table 1 and all abbreviations are provided in Table 2. Sec. II
addresses the localization model that adopts the TDoA as the
measured signal. In Sec. III, we review previous methods and
derive the theoretical error performance of the CTLS in the
closed form. Sec. IV presents three new methods based on
the CTLS for the TDoA localization. In Sec. V, numerical
examples are conducted to examine the closeness of the
theoretical error prediction to the actual CTLS estimation
error performance and to investigate the superior performance
of the proposed algorithms. In Sec. VI, concluding remark is
given to this work.

II. LOCALIZATION VIA TIME DIFFERENCE OF ARRIVAL
Let p ∈ R2×1 be an unknown position of a mobile user in a
two-dimensional Cartesian coordinates, i.e.

p =
[
x
y

]
. (1)
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TABLE 2. Acronyms and their full names.

FIGURE 1. Wireless sensors, namely s1, s2, . . ., sK , for K = 7 locate in the
vicinity of the mobile user m.

Wireless sensor network is a system that has a mobile user
and K fixed sensors with different positions

pk =
[
xk
yk

]
, (2)

for k ∈ {1, 2, . . . ,K }. An example of the geometrical
illustration is in Fig. 1. Themodel in Fig. 1 can be perceived as
the use of mobile radio on land with applications to dispatch
and control vehicles or status monitoring and reporting.

A. TIME DIFFERENCE OF ARRIVAL
Let dk be the distance from the k-th sensor to the mobile user,
given by

dk = ∥p− pk∥2

=

√
(xk − x)2 + (yk − y)2, (3)

where ∥ · ∥2 is the ℓ2 norm of a vector ·. Assume that
• all sensor positions, pk for k ∈ {1, 2, . . . ,K }, are
perfectly known and

• the mobile user position p is unknown and needs to be
determined.

The TDoA strategy assumes that the first sensor is
designated as the reference node. The distance from the k-th
sensor to the first sensor can be expressed as [51, eq. (1)]

δk,1 = dk − d1

=

√
(xk − x)2 + (yk − y)2 −

√
(x1 − x)2 + (y1 − y)2.

(4)

In the absence of noise, there exists an equality

A0θ0 = b0, (5)

where A0 ∈ R(K−1)×3 is the matrix, given by

A0 =


x2 − x1 y2 − y1 δ2,1
x3 − x1 y3 − y1 δ3,1

...
...

...

xK − x1 yK − y1 δk,1

 , (6)

θ0 ∈ R3×1 is the unknown true value vector, given by

θ0 =

x − x1y− y1
d1

 , (7)

and b0 ∈ R(K−1)×1 is the observation vector, given by

b0 =
1
2


(x2 − x1)2 + (y2 − y1)2 − δ22,1
(x3 − x1)2 + (y3 − y1)2 − δ23,1

...

(xK − x1)2 + (yK − y1)2 − δ2K ,1

 . (8)

Under perfect time synchronization among K sensors, the
TDoA from the first sensor to the k-th sensor can be observed
without any noise. It has a relationship to the distance with
respect to the first sensor according to

τk,1 =
1
c
δk,1, (9)

where c = 299, 792, 458 ≈ 3 × 108 [m/s] is the speed of
light.

B. LINEAR MODEL OF TDOA PERTURBATION
In realistic measurement, it is difficult to keep the syn-
chronization among K sensors perfect. Let ηk,1 be a TDoA
measurement error, which is given by

ηk,1 =
1
c
nk,1, (10)

where nk,1 is the corresponding relative distance error.
Therefore, the measured TDoA τ̃k,1 encounters the additive
noise according to

τ̃k,1 = τk,1︸︷︷︸
=

1
c δk,1; (9)

+ ηk,1︸︷︷︸
=

1
c nk,1; (10)

=
1
c
(δk,1 + nk,1). (11)

The data we can receive is given by

Aθ = b, (12)

where A ∈ R(K−1)×3 is the noisy value of the true value A0
according to

A =


x2 − x1 y2 − y1 δ2,1 + n2,1
x3 − x1 y3 − y1 δ3,1 + n3,1

...
...

...

xK − x1 yK − y1 δK ,1 + nK ,1


= A0 +1A, (13)
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with 1A ∈ R(K−1)×3 that represents of the perturbation of A,
given by

1A =


0 0 n2,1
0 0 n3,1
...

...
...

0 0 nK ,1

 , (14)

and b ∈ R(K−1)×1 is the noisy value of the true value b0
corresponding to

b =
1
2


(x2 − x1)2 + (y2 − y1)2 − (δ2,1 + n2,1)2

(x3 − x1)2 + (y3 − y1)2 − (δ3,1 + n3,1)2
...

(xK − x1)2 + (yK − y1)2 − (δK ,1 + nK ,1)2


= b0 + δb, (15)

with δb ∈ R(K−1)×1 that represents of the perturbation of b.
The perturbation of A can be expressed as [47, eq. (6)]

1A =
[
0 0 n

]
, (16)

where n is the noise caused by the imperfect TDoA
measurement, written by

n =


n2,1
n3,1
...

nK ,1

 . (17)

C. NOISE APPROXIMATION
The perturbation of b can be approximated as [47, eq. (6)]

δb = −D(δ)n−
1
2
D(n)n

≈ −D(δ)n, (18)

where δ ∈ R(K−1)×1 is the relative distance vector, written by

δ =


δ2,1
δ3,1
...

δk,1

 , (19)

and D(·) is the diagonal matrix whose diagonal is taken from
the vector ·. In [48], the approximation in (18) is not taken into
account. However, the quadratic term of the additive noise
brings about more complexity. From (16) and (18), one can
see that there are errors at both sides of (12). The TDoA
localization can be considered as a structured TLS problem,
when the perturbations have a special structure as shown in
(16) and (18). Model description of Fig. 1 can be summarized
in Tbl. 3. From (6) and (19), there exists a relation

A0 =
[
δx δy δ

]
, (20)

where δx ∈ R(K−1)×1 is the vector, given by

δx =


x2 − x1
x3 − x1

...

xK − x1

 , (21)

and δy ∈ R(K−1)×1 is the vector, given by

δy =


y2 − y1
y3 − y1

...

yK − y1

 . (22)

D. NOISE ASSUMPTIONS
The TDoA measurement error is assumed to obey ηk,1 ∼

NR(0, σ 2
η ) for k ∈ {2, 3, . . . ,K }, where ση is the standard

deviation of the TDoA measurement error, e.g., ση = 10[ns]
[51, Sec. IV.A]. If the elements of the noise vector n have a
zero mean and an identical noise variance σ 2

n [47], we can see
that

En{n} = 0, (23a)

En{nnT
} = σ 2

n IK−1, (23b)

where En{·} is the expectation of · with respect to the random
variable n, ·T is the transpose of a vector · or a matrix ·, and
IN is the identity matrix of size N × N .

E. MODEL LIMITATION
The limitation of the TDoA localization in this model is that
the approximation in (18) causes the loss of the accuracy
for all methods designed to handle the TDoA localization
problem. To overcome this issue, one should avoid the
approximation in (18) and have to deal with the second-order
term of the noise. We shall leave this idea for future work.

III. PREVIOUS METHODS
A classical method in solving (12) adopts the LS criterion
[31, eq. (7)], i.e.

θ̂ℓ2 = argmin
θ
∥Aθ − b∥22

=
(
ATA

)−1ATb, (24)

where ·−1 is the inverse of a square matrix ·. In what follows,
we review a few sophisticated approaches for achieving
higher localization accuracy.

A. CONSTRAINED TOTAL LEAST SQUARES
It is fruitful to note that

rank (D(d)) = K − 1, (25)

for

d2 ̸= d3 ̸= . . . ̸= dK , (26)
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TABLE 3. Model of Fig. 1.

where rank(·) is the rank of a matrix · and d ∈ R(K−1)×1 is
the vector given by

d =


d2
d3
...

dK

 . (27)

The observation model in (12) results in [47, eq. (8)]

Aθ − b = (A0 +1A)θ − (b0 + δb)

= A0θ︸︷︷︸
=b0; (5)

+ 1A︸︷︷︸
=
[
0 0 n

]
; (16)

θ︸︷︷︸
=

[
x − x1
y− y1
d1

]
; (7)

−b0 − δb︸︷︷︸
≈−D(δ)n; (18)

≈ b0 − b0 + 0(x − x1)+ 0(y− y1)

+ nd1 − (−D(δ)n)

= d1n+ D(δ)n

= (D(δ)+ d1IK−1)n

= (D(δ + d11))n

= D(d)n. (28)

Solving (12) for θ in a minimal ℓ2-norm sense of n subject to
the condition Aθ − b = D(d)n in (28) gives [38][

θ̂ℓ2

n̂ℓ2

]
= argmin[

θ
n

] ∥n∥22 s.t. Aθ − b = D(d)n. (29)

The above problem is known as constrained total least squares
(CTLS) [51], [61]. To reduce the computational effort, the
joint optimization problem in (29) can be decoupled into two
separate optimization problems.
Lemma 1 (CTLS solution for θ ): The CTLS solution of θ

in (29) is given by

θ̂ℓ2 = argmin
θ
(Aθ − b)TD−2(d)(Aθ − b), (30)

which becomes an unconstrained problem. Let the CTLS cost
function in (30) be

fCTLS(θ ) = (Aθ − b)TD−2(d)(Aθ − b). (31)

The gradient of the CTLS can be written as

gθ (θ ) = 2ATD−2(d)(Aθ − b). (32)

The closed-form solution to (30) can be shown as

θ̂ℓ2 =
(
ATD−2(d)A

)−1ATD−2(d)b. (33)

Proof: The derivation is based on typical algebra. See
Appendix B.

The result in (33) corresponds to [61, eq. (31)]. The CTLS
estimation can be summarized in Algorithm 4. The CTLS in
Algorithm 4 requires a single calculation of its closed-form

Algorithm 1 Constrained Total Least Squares (CTLS) [61]

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }

Output: p̂CTLS ∈ RN×1

d ←


∥p− p2∥2
∥p− p3∥2

...

∥p− pK∥2


θ̂ℓ2 ←

(
ATD−2(d)A

)−1ATD−2(d)b
[p̂ℓ2

]1← [θ̂ℓ2 ]1 + [p1]1
[p̂ℓ2

]2← [θ̂ℓ2 ]2 + [p1]2
return p̂ℓ2

solution. It finally converts the first two elements resided in
θ to the mobile position p.
Lemma 2 (TheHessian of the CTLSwith respect to θ ):The

Hessian of the CTLS with respect to θ can be expressed as

Hθθ (θ ) =
∂2

∂θ∂θT fCTLS(θ )

= 2ATD−2(d)A. (34)

The expectation of (34) can be shown as

H̄θθ (θ ) = En{Hθθ (θ )}

= 2

AT
0D
−2(d)A0 +

0 0 0
0 0 0
0 0 σ 2

n tr(D−2(d))

 ,

(35)

where tr(·) is the trace of a square matrix ·.
Proof: The derivation is based on typical algebra. See

Appendix C.
Based on the FOTSE, the CTLS estimate can be approxi-

mated by [62, p. 281]

θ̂CTLS − θ0 ≃ −H̄
−1
θθ (θ0)gθ (θ0), (36)

where H̄θθ (θ0) is given by (35) and gθ (θ0) is given by (32).
Lemma 3 (The error covariance matrix of the CTLS

estimate): The error covariance matrix of the CTLS estimate
is given by

6θθ (θ̂CTLS) = En
{
(θ̂CTLS − θ0)(θ̂CTLS − θ0)T

}
≈ σ 2

nQ
−1
1 Q2Q

−1
1 , (37)

where Q1 ∈ R3×3 is given by

Q1 = AT
0D
−2(d)A0 + σ 2

n

0 0 0
0 0 0
0 0 tr(D−2(d))

 , (38)
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and Q2 ∈ R3×3 is given by

Q2 = AT
0D
−2(d)A0 + σ 2

n

0 0 0
0 0 0
0 0 α3

 , (39)

with α3 given by

α3 = 2
K∑
k=2

1

d2k
+

K∑
k1=2

K∑
k2=2

1
dk1dk2

. (40)

Proof: The derivation is based on the FOTSE. See
Appendix D.
Corollary 1 (The error covariance matrix of the CTLS

estimate for small noise variance): For a small σ 2
n , the error

covariance in (37) can be simplified into

lim
σ 2
n→0

6θθ (θ̂CTLS) ≈ σ 2
n
(
AT
0D
−2(d)A0

)−1
. (41)

Proof: The derivation is straightforward from (37). See
Appendix E.

To our best knowledge, the error covariance matrix in (37)
and its simplification in (41) are not available yet in any
previous work. The error covariance matrix of the mobile
position that is estimated by the CTLS in (33) is given by

6pp(p̂CTLS)

= En
{
(p̂CTLS − p0)(p̂CTLS − p0)

T}
= En

{
(p̂CTLS − p1 − p0 + p1)(p̂CTLS − p1 − p0 + p1)

T}
= En

{
(p̂CTLS − p1︸ ︷︷ ︸
=[θ̂CTLS]1:2,1

−(p0 − p1︸ ︷︷ ︸
=[θ0]1:2,1

))(p̂CTLS − p1︸ ︷︷ ︸
=[θ̂CTLS]1:2,1

−(p0 − p1︸ ︷︷ ︸
=[θ0]1:2,1

))T
}

= [6θθ (θ̂CTLS)]1:2,1:2, (42)

which yields the first 2×2 sub-block matrix of6θθ (θ̂CTLS) ∈
R3×3 in (37).

B. CONSTRAINED TOTAL LEAST SQUARES USING
ALTERNATING DIRECTION METHOD OF MULTIPLIERS
In [51], the ADMM is applied to the CTLS function in (31).
A constraint of

∥v∥2 = d1, (43)

is introduced, where v ∈ R2×1 is the vector that contains the
first two elements of θ , i.e.

v = p− p1. (44)

It is worth noting that

Aθ − b =
[
A2 a3

] [ v
d1

]
− b

= A2v+ a3d1 − b, (45)

where A2 ∈ R(K−1)×2 is the matrix that contains the first
two columns of A and a3 ∈ R(K−1)×1 is the vector that
contains the last column of A. Extended from [47, eq. (13)],

the objective function of the CTLS can be formulated as the
augmented Lagrangian according to

L(v, d1, ρ) = (A2v+ a3d1 − b)TD−2(d)(A2v+ a3d1 − b)

+ λ(∥v∥2 − d1)+
1
2
ρ(∥v∥2 − d1)2, (46)

where λ ∈ R1×1 is the Lagrange multiplier and ρ ∈ R1×1
+

is the regularization parameter. The partial derivatives of the
augmented Lagrangian in (46) with respect to v and d1 can be
written as [51, eq. (21)-(26)]

∂

∂v
L = 2AT

2D
−2(d)(A2v+ a3d1 − b)

+
1
∥v∥2

ρ

(
∥v∥2 − d1 +

λ

ρ

)
v, (47)

∂2

∂v∂vT L = 2AT
2D
−2(d)A2 +

1
∥v∥2

ρ

(
1
∥v∥2

vvT

+

(
∥v∥2 − d1 +

λ

ρ

)(
I2 −

1

∥v∥22
vvT

))
, (48)

∂

∂d1
L = 2aT

3D
−2(d)(A2v+ a3d1 − b)

− 2(A2v+ a3d1 − b)TD−3(d)(A2v+ a3d1 − b)

− ρ

(
∥v∥2 − d1 +

λ

ρ

)
, (49)

and

∂2

∂d21
L = 2aT

3D
−2(d)a3 − 8aT

3D(d)(A2v+ a3d1 − b)

− 2(A2v+ a3d1 − b)TD−4(d)(A2v+ a3d1 − b)

+ ρ. (50)

The iterative computation of the CTLS using the ADMM can
be summarized as follows. The computation in Algorithm 2
is an iterative computation. Inside each loop, there are four
variables that need to be updated, such as two variables
in v̂[n], one variable in d̂1[n], and one variable in λ̂[n].
Therefore, the Newton’s iterations for v̂[n] and d̂1[n] are
intensive in Algorithm 2.
Based on (42), we can find that

6pp(p̂ADMM-CTLS)

= En
{
(p̂ADMM-CTLS − p0)(p̂ADMM-CTLS − p0)

T}
= En

{
(p̂ADMM-CTLS − p1 − p0 + p1)

(p̂ADMM-CTLS − p1 − p0 + p1)
T}

= En
{
(p̂ADMM-CTLS − p1︸ ︷︷ ︸

=v̂ADMM-CTLS

−(p0 − p1︸ ︷︷ ︸
=v0

))

(p̂ADMM-CTLS − p1︸ ︷︷ ︸
=v̂ADMM-CTLS

−(p0 − p1︸ ︷︷ ︸
=v0

))T
}

= 6vv(v̂ADMM-CTLS). (51)

The result in (51) implies that the error covariance matrix of
p̂ADMM-CTLS is the same as that of v̂ADMM-CTLS.
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Algorithm 2 Constrained Total Least Squares Using Alter-
nating Direction Method of Multipliers (ADMM-CTLS) [51]

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }, ϵmin ∈ (0, 1), Nmax ∈ Z1×1

+ , ρ ∈ (0, 1),
p̂CTLS

Output: p̂ADMM-CTLS ∈ RN×1

n← 0
v̂[0]← p̂CTLS − p1
while ϵv̂ > ϵmin ∧ n ≤ Nmax do
n← n+ 1

v̂[n]← v̂[n− 1]−
(

∂2

∂v∂vT L︸ ︷︷ ︸
(48)

∣∣∣ v=v̂[n−1]
d1=d̂1[n−1]
λ=λ̂[n−1]

)−1
∂

∂v
L︸︷︷︸

(47)

∣∣∣ v=v̂[n−1]
d1=d̂1[n−1]
λ=λ̂[n−1]

d̂1[n]← d̂1[n− 1]−

∂

∂d1
L︸ ︷︷ ︸

(49)

∣∣∣ v=v̂[n]
d1=d̂1[n−1]
λ=λ̂[n−1]

∂2

∂d21
L︸ ︷︷ ︸

(50)

∣∣∣ v=v̂[n]
d1=d̂1[n−1]
λ=λ̂[n−1]

λ̂[n]← λ̂[n− 1]+ ρ(∥v̂[n]∥2 − d̂1[n])
ϵv̂←

∥v̂[n]−v̂[n−1]∥2
∥v̂[n−1]∥2

end while
p̂ℓ2
← v̂[n]+ p1

return p̂ℓ2

C. CONSTRAINED TOTAL LEAST SQUARES USING
NEWTON’S METHOD
Let v0 ∈ R2×1 be the true value of v, i.e.

v0 = p0 − p1. (52)

One can see that

θ0 =

[
v0
∥v0∥2

]
. (53)

We can derive [47, eq. (A.4)]

gv(v) =
∂

∂v
fCTLS(θ )

= 2

(
2D−2(d)β −

βTD−3(d)β
∥v∥2

v

)
, (54)

and [47, eq. (A.5)]

Hvv(v) =
∂2

∂v∂vT fCTLS(θ )

=
2
∥v∥2

(
aT
3D
−2(d)β − βTD−3(d)β

)
(
I2 −

1

∥v∥22
vvT

)
−

4
∥v∥2

2D−3(d)βvT

+
6βTD−4(d)β

∥v∥22
vvT
−

4
∥v∥2

vβTD−3(d)2T

+ 22D−2(d)2T, (55)

Algorithm 3 Constrained Total Least Squares Using New-
ton’s Method (NM-CTLS) [47]

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }, ϵmin ∈ (0, 1), Nmax ∈ Z1×1

+ , p̂CTLS
Output: p̂NM-CTLS ∈ RN×1

n← 0
v̂[0]← p̂CTLS − p1
while ϵv̂ > ϵmin ∧ n ≤ Nmax do
n← n+ 1
v̂[n]← v̂[n− 1]−

(
Hvv(v̂[n− 1])︸ ︷︷ ︸

(55)

)−1 gv(v̂[n− 1])︸ ︷︷ ︸
(54)

ϵv̂←
∥v̂[n]−v̂[n−1]∥2
∥v̂[n−1]∥2

end while
p̂ℓ2
← v̂[n]+ p1

return p̂ℓ2

where 2 ∈ R2×(K−1) is given by

2 = AT
2 +

1
∥v∥2

vaT
3 , (56)

β ∈ R(K−1)×1 is given by

β = A2v+ ∥v∥2a3 − b. (57)

An iterative computation using the gradient in (54) and the
Hessian in (55) is as follows. At the end of Algorithm 3, one
needs to convert v̂[n] to p̂ℓ2

, which is deemed the second step.
In Algorithm 3, there is only a single update for the Newton’s
iteration, rather than three updates needed in Algorithm 2.
Furthermore, it does not involve the regularization parameter
ρ as required in Algorithm 2. Based on the derivation
in (51), the error covariance matrix of the NM-CTLS estimate
p̂NM-CTLS = p̂ℓ2

in Algorithm 3 is given by [47, eq. (20)]

6pp(p̂NM-CTLS) = 6vv(v̂NM-CTLS)

= En
{
(v̂NM-CTLS − v0)(v̂NM-CTLS − v0)T

}
≈ σ 2

n

(
BT
0D
−2(d)B0

)−1
. (58)

where B0 ∈ R(K−1)×2 is given by

B0 = A2 +
1
∥v0∥2

δvT
0 . (59)

The NM-CTLS estimate p̂NM-CTLS in Algorithm 3 is pro-
posed earlier than the ADMM-CTLS estimate p̂ADMM-CTLS
in Algorithm 2. Note that in [51], the NM-CTLS estimate
p̂NM-CTLS in Algorithm 3 is not compared to the ADMM-
CTLS estimate p̂ADMM-CTLS in Algorithm 2.

IV. PROPOSED METHODS
In this section, three new methods based on the CTLS are
presented for the TDoA localization.
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Algorithm 4 Fixed-Point Constrained Total Least Squares
(FP-CTLS)

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }

Output: p̂FP-CTLS ∈ RN×1

n← 0
p̂[0]← p̂LS
while ϵp̂ > ϵmin ∧ n ≤ Nmax do
n← n+ 1

d̂ ←


∥p̂[n− 1]− p2∥2
∥p̂[n− 1]− p3∥2

...

∥p̂[n− 1]− pK∥2


θ̂ℓ2 ←

(
ATD−2(d̂)A

)−1ATD−2(d̂)b
[p̂[n]]1← [θ̂ℓ2 ]1 + [p1]1
[p̂[n]]2← [θ̂ℓ2 ]2 + [p1]2
ϵp̂←

∥p̂[n]−p̂[n−1]∥2
∥v̂[n−1]∥2

end while
return p̂ℓ2

A. CONSTRAINED TOTAL LEAST SQUARES USING
FIXED-POINT ITERATION
The fixed-point CTLS (FP-CTLS) estimation can be summa-
rized in Algorithm 4. The FP-CTLS in Algorithm 4 entails an
iterative calculation of the implicit form in (33). In each loop,
it converts the first two elements residing in θ to the mobile
position p.

B. CONSTRAINED TOTAL LEAST SQUARES USING
NEWTON’S METHOD WITH TWO STEPS
The gradient in (54) and the Hessian in (55) appear to be
complicated, leading to computational demands. In what
follows, we derive a new simpler expression of both
quantities. Substituting (53) into (31), we obtain

fCTLS(v) =
(
A
[

v
∥v∥2

]
− b

)T
D−2(d)

(
A
[

v
∥v∥2

]
− b

)
.

(60)

By using the chain rule, one may find that

gv(v) =
∂

∂p
fCTLS(v)

= Jvθ (v) gθ (θ )︸ ︷︷ ︸
=2ATD−2(d)(Aθ−b); (32)

= 2Jvθ (p)ATD−2(d)(Aθ − b), (61)

and

Hvv(v) =
∂2

∂v∂vT fCTLS(v)

= Jvθ (p) Hθθ (θ )︸ ︷︷ ︸
=2ATD−2(d)A; (34)

JT
vθ (p)

= 2Jvθ (p)ATD−2(d)AJT
vθ (p), (62)

where Jvθ ∈ R2×3 is the Jacobian of θ with respect to v,
which can be shown as

Jvθ (v) =
∂

∂v
θT

=
[

∂
∂vv

T ∂
∂v∥v∥2

]
=

[
I2 1

d1
v
]
. (63)

The incorporation of (61) and (62) into Algorithm 3 leads
to a new algorithm, which can be referred to as Constrained
Total Least Squares Using Newton’s Method with Two Steps
(TSNM-CTLS).

Algorithm 5 Constrained Total Least Squares Using New-
ton’s Method With Two Steps (TSNM-CTLS)

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }, ϵmin ∈ (0, 1), Nmax ∈ Z1×1

+ , p̂CTLS
Output: p̂NM-CTLS ∈ RN×1

n← 0
v̂[0]← p̂CTLS − p1
while ϵv̂ > ϵmin ∧ n ≤ Nmax do
n← n+ 1

v̂[n]← v̂[n− 1]−
(
Jvθ (v)ATD−2(d)AJT

vθ (v)
)−1

Jvθ (v)ATD−2(d)
(
A
[

v
∥v∥2

]
− b

)∣∣∣∣
v=v̂[n−1]

ϵv̂←
∥v̂[n]−v̂[n−1]∥2
∥v̂[n−1]∥2

end while
p̂ℓ2
← v̂[n]+ p1

return p̂ℓ2

The Jacobian notion is introduced in Algorithm 5 in order
to differentiate Algorithm 5 from Algorithm 3. Based on
the derivation in (51), the error covariance matrix of the
TSNM-CTLS estimate p̂TSNM-CTLS = p̂ℓ2

in Algorithm 5 can
borrow the results in (37), yielding

6pp(p̂TSNM-CTLS)

= 6vv(v̂TSNM-CTLS)

= En
{
(v̂TSNM-CTLS − v0)(v̂TSNM-CTLS − v0)T

}
≈ σ 2

n

(
Jvθ (v0)Q1J

T
vθ (v0)

)−1
Jvθ (v0)Q2J

T
vθ (v0)(

Jvθ (v0)Q1J
T
vθ (v0)

)−1
. (64)

As same as (41), one can derive

lim
σ 2
n→0

6pp(p̂TSNM-CTLS)

≈ σ 2
n
(
Jvθ (v0)AT

0D
−2(d)A0JT

vθ (v0)
)−1

. (65)

In the next subsection, a new approach is presented without
the conversion of v̂ to p̂ℓ2

as performed in both Algorithm 3
and Algorithm 5.
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C. CONSTRAINED TOTAL LEAST SQUARES USING
NEWTON’S METHOD WITH ONE STEP
As d1 = ∥p− p1∥2, another form of (7) can be written as

θ0 =

[
p0 − p1
∥p0 − p1∥2

]
. (66)

The Jacobian Jpθ ∈ R2×3 can be shown as

Jpθ (p) =
∂

∂p
θT

=

[
∂
∂p (p− p1)

T ∂
∂p∥p− p1∥2

]
=

[
I2 1

d1
(p− p1)

]
. (67)

The optimization search in (30) involves three variables in θ .
Note that this search is redundant, because it also includes
the additional parameter d1, which actually depends on p.
We propose an alternative estimation that entails only two
variables without the dedicated d1, i.e.

p̂ℓ2
= argmin

p

(
A
[

p− p1
∥p− p1∥2

]
− b

)T
D−2(d)

×

(
A
[

p− p1
∥p− p1∥2

]
− b

)
. (68)

The problem in (68) is nonconvex for the variable p and
involves several local minima of the variable p. It is hard
to find a closed-form solution of (68) in a similar way
to (33). Approximately, given a good initialization p̂[0],
we would rather compute the solution p̂ℓ2

in an iterative
manner according to the Newton’s method. By using the
chain rule, one can find that

gp(p) =
∂

∂p
fCTLS(θ )

= Jpθ (p) gθ (θ )︸ ︷︷ ︸
=2ATD−2(d)(Aθ−b); (32)

= 2Jpθ (p)ATD−2(d)(Aθ − b), (69)

and

Hpp(p) =
∂2

∂p∂pT fCTLS(θ )

= Jpθ (p) Hθθ (θ )︸ ︷︷ ︸
=2ATD−2(d)A; (34)

JT
pθ (p)

= 2Jpθ (p)ATD−2(d)AJT
pθ (p). (70)

For a maximum number of iterations, denoted by Nmax, and
for n ∈ {1, 2, . . . ,Nmax}, the Newton’s iteration reads as

p̂[n+ 1] = p̂[n]−
(

Hpp(p̂[n])︸ ︷︷ ︸
=2Jpθ (p̂[n])ATD−2(d)AJT

pθ (p̂[n]); (70)

)−1
gp(p̂[n])︸ ︷︷ ︸

=2Jpθ (p̂[n])ATD−2(d)(Aθ−b); (69)

= p̂[n]−
(
Jpθ (p̂[n])ATD−2(d)AJT

pθ (p̂[n])
)−1

Algorithm 6 Constrained Total Least Squares Using New-
ton’s Method With One Step (OSNM-CTLS)

Input: A ∈ R(K−1)×3, b ∈ R(K−1)×1, pk ∈ R2×1 for k ∈
{1, 2, . . . ,K }, ϵmin ∈ (0, 1), Nmax ∈ Z1×1

+ , p̂CTLS
Output: p̂OSNM-CTLS ∈ RN×1

n← 0
p̂[0]← p̂CTLS
while ϵp̂ > ϵmin ∧ n ≤ Nmax do
n← n+ 1

p̂[n]← p̂[n− 1]−
(
Jpθ (p)ATD−2(d)AJT

pθ (p)
)−1

Jpθ (p)ATD−2(d)
(
A
[

p− p1
∥p− p1∥2

]
−b
)∣∣∣∣

p=p̂[n−1]

ϵp̂←
∥p̂[n]−p̂[n−1]∥2
∥p̂[n−1]∥2

end while
p̂ℓ2
← p̂[n]

return p̂ℓ2

× Jpθ (p̂[n])ATD−2(d)
(
A
[

p̂[n]− p1
∥p̂[n]− p1∥2

]
− b
)

.

(71)

This iterative computation can be proposed as follows. Sim-
ilar to (37), the error covariance matrix of the OSNM-CTLS
estimate p̂OSNM-CTLS = p̂ℓ2

in (68) is given by

6pp(p̂OSNM-CTLS)

= En
{
(p̂OSNM-CTLS − p0)(p̂OSNM-CTLS − p0)

T}
≈ σ 2

n

(
Jpθ (p0)Q1J

T
pθ (p0)

)−1
Jpθ (p0)Q2J

T
pθ (p0)

×

(
Jpθ (p0)Q1J

T
pθ (p0)

)−1
. (72)

As same as (41), one can derive

lim
σ 2
n→0

6pp(p̂OSNM-CTLS)

≈ σ 2
n
(
Jpθ (p0)A

T
0D
−2(d)A0JT

pθ (p0)
)−1

. (73)

At the true value θ0, the Jacobian Jvθ (v0) in (63) is equal to
the Jacobian Jpθ (p0) in (67). Therefore, the error covariance
matrix in (64) is exactly the same as that in (72), as well as
the simplified expression in (65) is exactly the same as that in
(73). Hence, it is sufficient to investigate only each of these
coincident covariance matrices.

The design of the TSNM-CTLS and the OSNM-CTLS
methods comes from investigating the derivations of the
gradient and the Hessian of the CTLS objective function
in a previous work, i.e. the NM-CTLS in [47]. After an
exploration, we end up using the Jacobian matrix. This
technique leads to a smoother iteration for Newton’s method.
The smoothness is in the sense that there is no ill condition of
the Hessian matrix that can cause the deviation of the search
from the desired solution. The nature of Newton’s method
is that if Newton’s iteration can be well updated, it will
more quickly and more precisely reach the desired solution.
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TABLE 4. The novelty of the related works and the proposed methods and their motivations.

TABLE 5. Number of realizations for each random variable.

The quick iterative computation can be resulted from less
number of iterations and/or less computational burden in
each iteration. This is the reason why one will see that
the TSNM-CTLS and the OSNM-CTLS methods consume
less computational time than the NM-CTLS approach. More
precision to the solution of both methods can be observed
from the simulation results in terms of lower bias and
RMSE than the NM-CTLS approach. Hence, our objective
is to improve Newton’s iteration method, thus allowing for
both more mobile position estimation accuracy and lower
computational cost.

Complexity analysis of Newton-based methods, such as
Algorithm 3, Algorithm 5, and Algorithm 6 is as follows.
Let O(·) be the big ‘o’ notation of Bachman-Landau
symbols [63], [64]. For any Newton’s method, the n-th
iteration requires 1

6N
3
p + O(N

2
p ) multiplications per iteration

[65, p. 44], where Np is the size of the unknown position
vector p in Algorithm 6 or v in Algorithm 3 and Algorithm 5.
One can see that for a two-dimensional localization problem,
there are two unknown variables, such as x and y, i.e. Np = 2.

The convergence of Newton-based methods, such as
Algorithm 3, Algorithm 5, and Algorithm 6 can be observed
as follows. If the initialized values for either p or v are
sufficiently close to their true values for some iteration
indices n and if the true values of the Hessian matrices
are positive definite, the Newton’s method converges at the
second order [65, p. 46].

V. NUMERICAL EXAMPLES
A. ALGORITHMIC COMPARISON
For any value of the first sensor position p1, the first 2×2 sub-
block matrix of 6θθ represents the error covariance of the
mobile position estimate given by the CTLS in (33). We refer
to
• the square root of the trace of the first 2 × 2 sub-block
matrix of 6θθ in (37) as CTLS approximation,

• the square root of the trace of the first 2 × 2 sub-
block matrix of 6θθ in (41) as simplified CTLS
approximation,

• the square root of the trace of 6vv in (58) as NM-CTLS
approximation,

• the square root of the trace of 6pp in (72) as OSNM-
CTLS approximation, and

• the square root of the trace of 6pp in (73) as simplified
OSNM-CTLS approximation.

Note that except for (58), the above four quantities are,
to our best knowledge, unavailable in the former works. All
these four amounts are provided herein in order to verify
whether our estimation results coincide with their theoretical
approximations or not. Regarding the estimation methods,
we refer to
• the output p̂FP-CTLS of Algorithm 4 as FP-CTLS
estimate,

• the output p̂ADMM-CTLS of Algorithm 2 as ADMM-
CTLS estimate,

• the output p̂NM-CTLS of Algorithm 3 as NM-CTLS
estimate,

• the output p̂TSNM-CTLS of Algorithm 5 as TSNM-CTLS
estimate, and

• the output p̂OSNM-CTLS of Algorithm 6 as OSNM-CTLS
estimate.

The initialization values, such as v̂[0] required inAlgorithm 2,
Algorithm 3, and Algorithm 5, as well as p̂[0] needed in
Algorithm 4 and Algorithm 6, are taken from the LS estimate
θ̂LS in (24). We use Nmax = 100 and ϵmin = 10−6 in all
iterative algorithms and ρ = 10−6 in Algorithm 2.

B. SIMULATION RESULTS
Similar to [51, Sec. IV], we divide the simulation into two
scenarios, such as the case in which the standard deviation of
the TDoA error changes and the case in which the number of
sensors increases.

1) EFFECT OF THE STANDARD DEVIATION OF THE TDOA
ERROR
We consider the TDoA localization that has K = 7 sensors.
For the (x, y)-coordinates in meter, the sensor location entails
[51, Sec. IV.B]

P =
[
p1 p2 · · · pK

]
=

[
0 − 260 − 80 160 360 700 − 200
0 300 400 180 60 − 120 730

]
, (74)

and the mobile user is at

p =
[
1,200
800

]
. (75)

In Fig. 2, the bias norm given by each algorithm is shown
as a function of TDoA error standard deviation. The greater
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FIGURE 2. Bias norm as a function of TDoA error standard deviation ση

from NR = 1,000,000 independent runs.

the TDoA error standard deviation, the larger the bias norm
we can get from each method. In terms of the first-order
error, i.e. bias, one can see that the proposed TSNM-CTLS
and OSNM-CTLS approaches provide the lowest error,
followed by the FP-CTLS and the ADMM-CTLS method,
respectively. The NM-CTLS algorithm is the same as the
proposed TSNM-CTLS and OSNM-CTLS approaches for a
small TDoA error variance. It heavily deviates from other
algorithms for a large TDoA error variance. This unexpected
result is caused by the ill condition of the Hessian matrix,
leading to a large perturbation during its inverse.

In Fig. 3, the error performance on the second order in
terms of the RMSE is shown as a function of the TDoA
error standard deviation. One can see that the simplified
CTLS approximation in (41) can well capture the RMSE by
the FP-CTLS estimate in Algorithm 4, while the simplified
OSNM-CTLS approximation in (73) well coincides with
the proposed TSNM-CTLS estimate in Algorithm 5 and the
proposedOSNM-CTLS estimate inAlgorithm 6. On the other
hands, the theoretical prediction of the NM-CTLS in (58) has
a significant mismatch with respect to the actual estimation
by Algorithm 3.

In Fig. 4, one can clearly see that the proposed
TSNM-CTLS estimation in Algorithm 5 and the proposed
OSNM-CTLS estimation in Algorithm 6 provide lower
RMSE than the ADMM-CTLS estimate in Algorithm 2
presented in [51], which has higher RMSE than the FP-CTLS
estimate in Algorithm 4. The RMSE predictions directly
given by the FOTSE in (37) and (72) do not exactly match
the actual estimation errors. This mismatch is obvious when
the TDoA error standard deviation is large.

In Fig. 5, the computational time consumed by the
ADMM-CTLS is greatest, followed by the NM-CTLS,
the TSNM-CTLS, the OSNM-CTLS, and the FP-CTLS,
respectively. This is because

FIGURE 3. RMSE as a function of TDoA error standard deviation ση from
NR = 1,000,000 independent runs.

FIGURE 4. A zoom of Fig. 3, which represents the RMSE as a function of
TDoA error standard deviation ση from NR = 1,000,000 independent runs.

• the computational time taken by all iterative methods
includes the closed-form LS estimation time due to
the use of their initializing values, such as v̂[0] in
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FIGURE 5. Computational time as a function of TDoA error standard
deviation ση from NR = 1,000,000 independent runs.

Algorithm 2, Algorithm 3, and Algorithm 5 as well as
p̂[0] in Algorithm 4 and Algorithm 6, respectively, and

• both the ADMM-CTLS and the NM-CTLS incur heavy
Newton’s iterations.

The NM-CTLS estimate in Algorithm 3, the FP-CTLS
estimate in Algorithm 4, the TSNM-CTLS estimate in
Algorithm 5, and the OSNM-CTLS estimate in Algorithm 6
take less time in computation than the ADMM-CTLS
estimate in Algorithm 2, because they have only an update,
compared to three updates required by the ADMM-CTLS
estimate in Algorithm 2. Especially, the two updates in
Algorithm 2 are computationally intensive due to the
nature of Newton’s iteration. It is worth noting that the
OSNM-CTLS estimate in Algorithm 6 consumes less compu-
tational time than the TSNM-CTLS estimate in Algorithm 5.

2) EFFECT OF THE NUMBER OF SENSORS
We consider the TDoA localization that varies the number
of participating sensors from K = 5 to K = 9 sensors. For
the (x, y)-coordinates in meter, the sensor location entails [51,
Sec. IV.C]

P =
[
0 − 260 − 80 160 360 640 320 220 370
0 300 400 180 60 280 150 120 − 30

]
,

(76)

and the true position of the mobile user is the same as that
in (75).

In Fig. 6, the norm of the biases caused by each method is
shown as a function of the number of participating sensors.
One can see that when more information of the TDoA from
the sensors is available, the localization system can gain more
accuracy in terms of bias.

In Fig. 7, the RMSE is shown as a function of the number
of sensors K . Similar to Fig. 6, one can see that when the
wireless sensor network receives more knowledge of the

FIGURE 6. Bias norm as a function of the number of sensors from
NR = 1,000,000 independent runs.

FIGURE 7. RMSE as a function of the number of sensors from
NR = 1,000,000 independent runs.

distances, its localization performance in terms of the RMSE
improves.

Again, in Fig. 8, the ADMM-CTLS encounters intensive
updates in theNewton’s iteration, thus consuming the greatest
amount of the computational time. It is followed by the NM-
CTLS, which also involves Newton’s iteration yet with less
computational burden. Note that when the number of sensors
is sufficiently large, the inverse of the Hessian matrix inside
the Newton’s iteration is not stringent. In this situation, the
TSNM-CTLS method takes less computational time than the
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FIGURE 8. Computational time as a function of the number of sensors
from NR = 1,000,000 independent runs.

OSNM-CTLS approach. The FP-CTLS consumes the least
amount of computational time.

3) EFFECT OF THE IMPERFECT SYNCHRONIZATION
In reality, multipath and shadowing may arise in electromag-
netic wave propagation. Furthermore, the first sensor and
the k-th sensor may not share the same exact time in their
clocks [66]. These effects can be realized as an additional
term to the right-hand side of (11) according to [67, eq. (5)]

τ̃k,1 = τk,1︸︷︷︸
=

1
c δk,1; (9)

+ ηk,1︸︷︷︸
=

1
c nk,1; (10)

+δτk,1

=
1
c
(δk,1 + nk,1)+ δτk,1 , (77)

where δτk,1 ∈ R1×1 is the offset time between the first
sensor and the k-th sensor caused by the synchronization
error and the propagation fluctuation, such as multipath
and shadowing. We shall see the characterization and the
deterioration of all algorithms considered in the former
comparison, when the offset time δτk,1 occurs in the previous
simulation setups and is not compensated or removed. The
estimation and the compensation of the unknown offset time
δτk,1 are beyond the scope of this paper and can be performed
in terms of, e.g., multi-hop synchronization, etc. [68].
Following from (13), we find that the noisy value of the

true value A0 now becomes

A =


x2 − x1 y2 − y1 δ2,1 + n2,1 + cδτ2,1

x3 − x1 y3 − y1 δ3,1 + n3,1 + cδτ3,1
...

...
...

xK − x1 yK − y1 δK ,1 + nK ,1 + cδτK ,1


= A0 +1A, (78)

where the perturbation matrix 1A ∈ R(K−1)×3 is given by

1A =


0 0 n2,1 + cδτ2,1

0 0 n3,1 + cδτ3,1
...

...
...

0 0 nK ,1 + cδτK ,1


=
[
0 0 n+ cδτ

]
, (79)

with δτ ∈ R(K−1)×1 is the vector that contains K − 1 time
offsets, i.e.

δτ =


δτ2,1

δτ3,1
...

δτK ,1

 . (80)

The vector b ∈ R(K−1)×1 can be expressed with time
offsets as

b =
1
2


(x2 − x1)2 + (y2 − y1)2 − (δ2,1 + n2,1 + cδτ2,1)

2

(x3 − x1)2 + (y3 − y1)2 − (δ3,1 + n3,1 + cδτ3,1)
2

...

(xK − x1)2 + (yK − y1)2 − (δK ,1 + nK ,1 + cδτK ,1 )
2


= b0 + δb, (81)

where the perturbation δb can be approximated as

δb = −D(δ)(n+ cδτ )−
1
2
D(n+ cδτ )(n+ cδτ )

≈ −D(δ)(n+ cδτ ). (82)

For simplicity, we assume that the synchronization and
propagation errors in δτ are uniform with

δτ2,1 = δτ3,1 = . . . = δτK ,1 = δτ , (83)

thus resulting in

δτ = δτ1K−1, (84)

where δτ ∈ R1×1 is a common time offset and 1N
is the column vector containing only ones of size N .
In the mismatch simulation caused by the asynchronization,
multipath, and shadowing, let the offset time be δτ = 20 [ns].

Figs. 9 and 10 replicate the simulation framework of
Figs. 2 - 5, except that the timing offset in (77) is assumed to
occur instead of adopting the perfect synchronization in (11).
In Fig. 9, for ση less than 30 [ns], the FP-CTLS

bias is lower than those by the other methods and the
typical NM-CTLS bias is slightly lower than the proposed
TSNM-CTLS and OSNM-CTLS algorithms. However, for
ση greater than 30 [ns], the proposed TSNM-CTLS and
OSNM-CTLS algorithms outperform the other methods. It is
worth noting that the proposed FP-CTLS method and the
ADMM-CTLS approach do not significantly suffer from the
existence of the time offset.

In Fig. 10, the RMSE tendency is similar to the bias trend
in Fig. 9. However, most derived theoretical predictions of the
RMSE fail to capture the actual RMSE from the estimation,

VOLUME 12, 2024 39251



B. Tausiesakul, K. Asavaskulkiet: TDoA Localization in WSNs Using CTLS and Newton’s Methods

FIGURE 9. Bias norm as a function of TDoA error standard deviation ση

from NR = 1,000,000 independent runs.

FIGURE 10. RMSE as a function of TDoA error standard deviation ση from
NR = 1,000,000 independent runs.

except for the coincidence between the FP-CTLS RMSE and
the simplifiedCTLS approximation in (41) for ση greater than
20 [ns]. Note that in this region, the conventional NM-CTLS
method is unreliable to provide the acceptable RMSE.

Figs. 11 and 12 represent the error performance of all
localization algorithms in Figs. 6, 7, and 8, where the number
of sensors changes according to (76). Their simulation setup
is similar to that in Figs. 6 - 8, except that the TDoA offset
in (77) is taken into account.

For στ = 4 [ns], in Fig. 11, the proposed methods,
such as the TSNM-CTLS and the OSNM-CTLS approaches

FIGURE 11. Bias norm as a function of the number of sensors from
NR = 1,000,000 independent runs.

FIGURE 12. RMSE as a function of the number of sensors from
NR = 1,000,000 independent runs.

provide the lowest bias and are followed by the ADMM-
CTLS and the FP-CTLS algorithms, respectively.

In Fig. 12, when the time offset of 4 [ns] exists, the
sophisticated TSNM-CTLS and OSCTLS algorithms still
work well but they deviate from their theoretical RMSE
prediction. The ADMM-CTLS method coincides with the
above two algorithms when the number of involved sensors
is 9.
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VI. CONCLUSION
We propose three alternative techniques for the CTLS solved
by the fixed-point iteration and the NM. By using the
chain rules, the new derived gradient vectors and Hessian
matrices can be elaborated in compact forms, thus leading
to i) less computational burden than the former approaches
and ii) more computational reliability, in terms of no
degenerate matrix inverse caused by the ill condition of the
Hessian matrix, than the previous methods. Theoretical error
performance prediction is also provided for the conventional
CTLS estimate and each proposed algorithm. It is validated
through numerical simulation that the simplified RMSE
expressions well comply with the corresponding actual
estimation results. Future work would be the design of
an algorithm that can handle the imperfect synchronization
raised in (77). This idea can be done by keeping the time offset
at the beginning, i.e. the formulation of the CTLS objective
function.

APPENDIX A
PRELIMINARY RESULTS
Based on (136), the expectations of some scalars for u ∈
R(K−1)×1 and v ∈ R(K−1)×1 can be determined by

En
{
uTD(d)nnTD(d)v

}
= uTD(d) En

{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

D(d)v

= σ 2
n u

TD2(d)v, (85)

En
{
uTD(d)nnTD(d)n

}
= uTD(d)En

{
n︸︷︷︸

=


n2,1
n3,1

.

.

.
nK ,1

; (17)
nTD(d)n︸ ︷︷ ︸

=

K∑
k=2

dkn2k,1; (17), (27)

}

= uTD(d)
K∑
k=2

dk



...

En
{
nk̃,1n

2
k,1
}︸ ︷︷ ︸

=



En
{
n3k,1

}︸ ︷︷ ︸
=0; (103)

, k̃ = k,

En{nk̃,1}︸ ︷︷ ︸
=0; (23a)

En
{
n2k,1}, k̃ ̸= k,

...︸ ︷︷ ︸
k̃∈{2,3,...,K }



= 0, (86)

En
{
nTD(d)nnTD(d)v

}
= En

{
nTD(d)nnT}︸ ︷︷ ︸
=0T
; (86)

D(d)v

= 0, (87)

and

En
{
nTD(d)nnTD(d)n

}
= En

{
nTD(d)n︸ ︷︷ ︸

=

K∑
k=2

dkn2k,1; (17), (27)

nTD(d)n︸ ︷︷ ︸
=

K∑
k=2

dkn2k,1; (17), (27)

}

=

K∑
k1=2

K∑
k2=2

dk1dk2 En
{
n2k1,1n

2
k2,1
}︸ ︷︷ ︸

=



En
{
n4k,1

}︸ ︷︷ ︸
=3σ 4

n ; (104)

, k1 = k2 = k,

En
{
n2k1,1

}︸ ︷︷ ︸
=σ 2

n ; (23b)

En
{
n2k2,1

}︸ ︷︷ ︸
=σ 2

n ; (23b)

, k1 ̸= k2

=

K∑
k1=2

d2k13σ 4
n +

K∑
k2=2̸=k1

dk1dk2σ
4
n


= σ 4

n

(
2

K∑
k=2

d2k +
K∑

k1=2

K∑
k2=2

dk1dk2︸ ︷︷ ︸
=α1

)

= σ 4
n α1, (88)

where α1 is given by

α1 = 2
K∑
k=2

d2k +
K∑

k1=2

K∑
k2=2

dk1dk2 . (89)

The expectations of (16) and (18) are given by

En{1A} =

[
0 0 En{n}︸ ︷︷ ︸

=0; (23a)

]
= O(K−1)×3, (90)

and

En{δb} = −D(δ) En{n}︸ ︷︷ ︸
=0; (23a)

= 0(K−1)×1. (91)

Let us consider the products

AT
08A0 =

[
δx δy δ

]T
8
[
δx δy δ

]
=

δT
x

δT
y

δT

[8δx 8δy 8δ
]

=

δT
x8δx δT

x8δy δT
x8δ

δT
y8δx δT

y8δy δT
y8δ

δT8δx δT8δy δT8δ

 , (92)

1T
A81A =

[
0 0 n

]T
8
[
0 0 n

]
=

0T

0T

nT

[0 0 8n
]
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=

0 0 0
0 0 0
0 0 nT8n

 , (93)

AT
081A =

[
δx δy δ

]T
8
[
0 0 n

]
=

δT
x

δT
y

δT

[0 0 8n
]

=

0 0 δT
x8n

0 0 δT
y8n

0 0 δT8n

 , (94)

1T
A8A0 =

[
0 0 n

]T
8
[
δx δy δ

]
=

0T

0T

nT

[8δx 8δy 8δ
]

=

 0 0 0
0 0 0

nT8δx nT8δy nT8δ

 , (95)

1T
A8δb =

[
0 0 n

]T
8
(
− D(δ)n

)
= −

0T

0T

nT

8D(δ)n

= −

 0
0

nT8D(δ)n

 . (96)

Let us consider the expectations

En
{
1T

A8δb
}
= En

{ [
0 0 n

]T
8
(
− D(δ)n

)︸ ︷︷ ︸
(96)

}

= −

 0
0

En
{
nT8D(δ)n

}


= −

 0
0

tr(8D(δ) En
{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

)



= −σ 2
n

 0
0

tr(8D(δ))

 , (97)

and

En
{
AT8b

}
= En

{
AT︸︷︷︸

=AT
0+1T

A; (13)

8 b︸︷︷︸
b0+δb; (15)

}
= En

{
AT
08b0 + AT

08δb +1T
A8b0 +1T

A8δb
}

= AT
08 b0︸︷︷︸
=A0θ0; (5)

+AT
08 En{δb}︸ ︷︷ ︸
=0; (91)

+ En
{
1T

A
}︸ ︷︷ ︸

=O; (90)

8b0 + En
{
1T

A8δb
}︸ ︷︷ ︸

(97)

= AT
08A0θ0 − σ 2

n

 0
0

tr(8D(δ))

 . (98)

From

ATb = (AT
0 + 1A︸︷︷︸

=

[
0 0 n

]
; (16)

T)(b0 + δb︸︷︷︸
≈−D(δ)n; (18)

)

≈ AT
0
(
b0 − D(δ)n

)
+

 0
0

nT(b0 − D(δ)n)
 , (99)

the product ATbbTA can be written as

ATbbTA = AT
0
(
b0 − D(δ)n

)(
bT
0 − n

TD(δ)
)
A0

+ AT
0
(
b0 − D(δ)n

) [
0 0 nT(b0 − D(δ)n)]

+

 0
0

nT(b0 − D(δ)n)
 (bT

0 − n
TD(δ)

)
A0

+

 0
0

nT(b0 − D(δ)n)
 [0 0 nT(b0 − D(δ)n)] .

(100)

From (98), the expectation of (99) can be found from

En
{
ATb

}
= AT

0A0θ0 − σ 2
n tr(D(δ))

00
1

 . (101)

Further multiplication of (99) gives

ATbbTA = AT
0b0b

T
0A0 − AT

0b0n
TD(δ)A0

− AT
0D(δ)nb

T
0A0 + AT

0D(δ)nn
TD(δ)A0

+
[
0 0 AT

0

(
b0 − D(δ)n

)(
bT
0 − n

TD(δ)
)
n
]

+

 0T

0T

nT(b0 − D(δ)n)(bT
0 − n

TD(δ)
)
AT
0


+

0 0 0
0 0 0
0 0 nT(b0 − D(δ)n)(bT

0 − n
TD(δ)

)
n

 .

(102)

Basic calculus reveals that for µn = 0, we have∫
∞

−∞

n3
(

1

σn
√
2π

)
e
−

1
2σ2n

(n−µn)2
dn = 0, (103)

and ∫
∞

−∞

n4
(

1

σn
√
2π

)
e
−

1
2σ2n

(n−µn)2
dn = 3σ 4

n . (104)

The expectation of each term in (102) becomes

En
{
AT
0
(
b0 − D(δ)n

)(
bT
0 − n

TD(δ)
)
A0
}

= AT
0b0b

T
0A0 − AT

0b0 En
{
nT}︸ ︷︷ ︸

=0T
; (23a)

D(δ)A0
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− AT
0D(δ) En{n}︸ ︷︷ ︸

=0; (23a)

bT
0A0 + AT

0D(δ) En
{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

D(δ)A0

= AT
0b0b

T
0A0 + σ 2

nA
T
0D(δ

2)A0, (105)

En
{
AT
0
(
b0 − D(δ)n

)(
bT
0 − n

TD(δ)
)
n
}

= AT
0b0b

T
0 En{n}︸ ︷︷ ︸
=0; (23a)

−AT
0b0En

{
nTD(δ)n︸ ︷︷ ︸
=tr(D(δ)nnT)

}
− AT

0D(δ)En
{
nbT

0n︸ ︷︷ ︸
=nnTb0

}
+ AT

0D(δ)En
{
nnT D(δ)n︸ ︷︷ ︸

=D(n)δ

}
= −AT

0b0 tr
(
D(δ) En

{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

)
− AT

0D(δ) En
{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

b0

+ AT
0D(δ) En

{
nnTD(n)︸ ︷︷ ︸

=

[
nn22 nn23 · · · nn

2
K

]
}

︸ ︷︷ ︸
=O; (23a), (103)

δ

= −σ 2
n tr

(
D(δ)

)
AT
0b0 − σ 2

nA
T
0D(δ)b0, (106)

En
{
nT(b0 − D(δ)n)(bT

0 − n
TD(δ)

)
A0
}

=

(
En
{
AT
0
(
b0 − D(δ)n

)(
bT
0 − n

TD(δ)
)
n
}︸ ︷︷ ︸

=−σ 2
n tr(D(δ))AT

0 b0−σ 2
nA

T
0D(δ)b0; (106)

)T

= −σ 2
n tr

(
D(δ)

)
bT
0A0 − σ 2

n b
T
0D(δ)A0, (107)

and

En
{
nT(b0 − D(δ)n)(bT

0 − n
TD(δ)

)
n
}

= En
{
nTb0bT

0n︸ ︷︷ ︸
=tr(b0bT

0nn
T)

}
− En

{
nTb0nTD(δ)n

}︸ ︷︷ ︸
=0; (86)

− En
{
nTD(δ)nbT

0n
}︸ ︷︷ ︸

=0; (87)

+ En
{
nTD(δ)nnTD(δ)n

}︸ ︷︷ ︸
=σ 4

n α1; (88)

= tr
(
b0bT

0 En
{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1

)
+ σ 4

n α1

= σ 2
n ∥b0∥

2
2 + σ 4

n α1. (108)

According to (102), it follows from (105), (106), (107), and
(108) that

En
{
ATbbTA

}
= AT

0b0b
T
0A0 + σ 2

nA
T
0D(δ

2)A0

− σ 2
n
[
0 0 tr

(
D(δ)

)
AT
0b0 + A

T
0D(δ)b0

]
− σ 2

n

 0T

0T

tr
(
D(δ)

)
bT
0A0 + bT

0D(δ)A0


+
(
σ 2
n ∥b0∥

2
2 + σ 4

n α1
)0 0 0

0 0 0
0 0 1

 . (109)

Let us consider the expectations

En
{
(δ + n)T8δx

}
= (δ + En{n}︸ ︷︷ ︸

=0; (23a)

)T8δx

= δT8δx, (110)

En
{
δT
x8(δ + n)

}
= En

{
δT
x8(δ + En{n}︸ ︷︷ ︸

=0; (23a)

)
}

= En
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δT
x8δ

}
, (111)

En
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(δ + n)T8(δ + n)

}
= En
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(
8(δ + n)(δ + n)T

)}
= tr

(
8
(
δδT
+ En{n}︸ ︷︷ ︸
=0; (23a)

δT
+ δ En{nT
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=0T; (23a)

+ En{nnT
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=σ2
n IK−1; (23b)
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En
{
AT8A

}

=



δT
x8δx δT

x8δy En
{
δT
x8(δ + n)

}︸ ︷︷ ︸
=δT

x8δ; (111)

δT
y8δx δT

y8δy En
{
δT
y8(δ + n)

}︸ ︷︷ ︸
=δT

y8δ; (111)

En
{
(δ + n)T8δx

}︸ ︷︷ ︸
=δT8δx; (110)

En
{
(δ + n)T8δy

}︸ ︷︷ ︸
=δT8δy; (110)

En
{
(δ + n)T8(δ + n)

}︸ ︷︷ ︸
=δT8δ+σ2

n tr(8); (112)



=

δT
x8δx δT

x8δy δT
x8δ

δT
y8δx δT

y8δy δT
y8δ

δT8δx δT8δy δT8δ + σ 2
n tr(8)


= AT

08A0 +

0 0 0
0 0 0
0 0 σ 2

n tr(8)

 . (113)

Substituting 8 = IK−1 into (113), we obtain

En
{
ATA

}
= AT

0 IK−1A0 +

0 0 0
0 0 0
0 0 σ 2

n tr(IK−1)


= AT

0A0 + (K − 1)σ 2
n

0 0 0
0 0 0
0 0 1

 . (114)

APPENDIX B
PROOF OF LEMMA 1
First, we consider

n̂ℓ2 = argmin
n
∥n∥22 s.t. Aθ − b = D(d)n

= arg
n

arg
λ

(
∂

∂n

(
∥n∥22 + λT(Aθ − b− D(d)n)

)
= 0 ∧

∂

∂λ

(
∥n∥22 + λT(Aθ − b− D(d)n)

)
= 0

)
= arg

n
arg
λ

(2n− D(d)λ = 0 ∧ Aθ − b− D(d)n = 0)

= arg
n

arg
λ

(
n =

1
2
D(d)λ ∧ Aθ − b = D(d) n︸︷︷︸

=
1
2D(d)λ

)
.

(115)
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From (25), the solution of n in the minimal ℓ2-norm sense
becomes

n̂ℓ2 = arg
n

(
λ = 2(D(d)D(d))−1(Aθ − b) ∧

n =
1
2
D(d) λ︸︷︷︸

=2(D(d)D(d))−1(Aθ−b)

)
= D(d)

(
D(d)D(d)

)−1(Aθ − b)

= D−1(d)(Aθ − b). (116)

Substituting (116) into ∥n∥22, we obtain

∥n̂ℓ2∥
2
2 =

(
D−1(d)(Aθ − b)

)T
D−1(d)(Aθ − b)

= (Aθ − b)TD−1(d)D−1(d)(Aθ − b)

= (Aθ − b)TD−2(d)(Aθ − b). (117)

Substituting (116) and (117) into (29), we obtain

θ̂ℓ2 = argmin
θ
(Aθ − b)TD−2(d)(Aθ − b)

s.t. Aθ − b = D(d)D−1(d)(Aθ − b)

= argmin
θ
(Aθ − b)TD−2(d)(Aθ − b)

s.t. Aθ − b = Aθ − b

= argmin
θ
(Aθ − b)TD−2(d)(Aθ − b). (118)

By using few straightforward differentiations, we find that

∂

∂θ1
D(d) =

∂

∂ θ1︸︷︷︸
=x−x1; (7)

D(d)

= O, (119)
∂

∂θ2
D(d) =

∂

∂ θ1︸︷︷︸
=y−y1; (7)

D(d)

= O, (120)
∂

∂θ3
D(d) =

∂

∂ θ1︸︷︷︸
=d1; (7)

D(d)

= O, (121)
∂

∂θn
D−1(d) = −D−1(d)

( ∂

∂θn︸︷︷︸
=O

D(d)
)
D−1(d)

= O; n ∈ {1, 2, 3}, (122)
∂

∂θn
D−2(d) =

( ∂

∂θn
D−1(d)︸ ︷︷ ︸

=O; (122)

)
D−1(d)

+ D−1(d)
( ∂

∂θn
D−1(d)︸ ︷︷ ︸

=O; (122)

)

= O; n ∈ {1, 2, 3}. (123)

The gradient of the CTLS can be derived from

gθ (θ ) =
∂

∂θ
fCTLS(θ )

=
∂

∂θ

(
(Aθ − b)TD−2(d)(Aθ − b)

)
= 2ATD−2(d)(Aθ − b)

+



(Aθ − b)T
( ∂

∂θ1
D−2(d)︸ ︷︷ ︸

=O; (123)

)
(Aθ − b)

(Aθ − b)T
( ∂

∂θ2
D−2(d)︸ ︷︷ ︸

=O; (123)

)
(Aθ − b)

(Aθ − b)T
( ∂

∂θ3
D−2(d)︸ ︷︷ ︸

=O; (123)

)
(Aθ − b)


= 2ATD−2(d)(Aθ − b). (124)

Solving (124) for θ leads to (33). In other words, the problem
in (30) can be solved as

θ̂ℓ2 = argmin
θ
fCTLS(θ )

= arg
θ

(
gθ (θ ) = 0

)
= arg

θ

(
2ATD−2(δ)(Aθ − b) = 0

)
= arg

θ

(
ATD−2(d)Aθ − ATD−2(d)b = 0

)
=
(
ATD−2(d)A

)−1ATD−2(d)b. (125)

APPENDIX C
PROOF OF LEMMA 2
It is simple to show that

Hθθ (θ ) =
∂2

∂θ∂θT fCTLS(θ )

=
∂

∂θ
gT
θ (θ )

=
∂

∂θ
2(Aθ − b)TD−2(d)A

= 2
(

∂

∂θ
θT︸ ︷︷ ︸
=I

ATD−2(d)A−
∂

∂θ
bTD−2(d)A︸ ︷︷ ︸
=O

)

= 2ATD−2(d)A. (126)

The expectation of the Hessian in (34) can be derived from

H̄θθ (θ ) = En
{
2ATD−2(d)A

}
= 2 En

{
ATD−2(d)A

}︸ ︷︷ ︸
(113)

. (127)

APPENDIX D
PROOF OF LEMMA 3
Let us consider the outer product (Aθ − b)(Aθ − b)T from

(Aθ−b)(Aθ−b)T= (Aθ − b)(θTAT
− bT)

= AθθTAT
−bθTAT

−AθbT
+bbT.

(128)
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Substituting (18), (13), and (15) into each term of (128),
we obtain

AθθTAT
= (A0 +1A)θθT(A0 +1A)T

= (A0θθT
+1AθθT)(AT

0 +1T
A)

= A0θ︸︷︷︸
=b0

θTAT
0︸ ︷︷ ︸

=bT
0

+1Aθ︸︷︷︸
=d1n

θTAT
0︸ ︷︷ ︸

=bT
0

+ A0θ︸︷︷︸
=b0

θT1T
A︸ ︷︷ ︸

=d1nT

+1Aθ︸︷︷︸
=d1n

θT1T
A︸ ︷︷ ︸

=d1nT

= b0bT
0 + d1nb

T
0 + d1b0n

T
+ d21nn

T, (129)

bθTAT
= (b0 + δb)θT(A0 +1A)T

= (b0θT
+ δbθ

T)(AT
0 +1T

A)

= b0 θTAT
0︸ ︷︷ ︸

=bT
0

+ δb︸︷︷︸
=−D(δ)n

θTAT
0︸ ︷︷ ︸

=bT
0

+ b0 θT1T
A︸ ︷︷ ︸

=d1nT

+ δb︸︷︷︸
=−D(δ)n

θT1T
A︸ ︷︷ ︸

=d1nT

= b0bT
0 − D(δ)nb

T
0 + d1b0n

T
− d1D(δ)nnT,

(130)

AθbT
= (bθTAT︸ ︷︷ ︸

(130)

)T

=

(
b0bT

0 − D(δ)nb
T
0 + d1b0n

T
− d1D(δ)nnT

)T

= b0bT
0 − b0n

TD(δ)+ d1nbT
0 − d1nn

TD(δ),

(131)

and

bbT
= (b0 + δb)(b0 + δb)T

= b0bT
0 + δb︸︷︷︸

=−D(δ)n

bT
0 + b0 δT

b︸︷︷︸
=−nTD(δ)

+ δb︸︷︷︸
=−D(δ)n

δT
b︸︷︷︸

=−nTD(δ)

= b0bT
0 − D(δ)nb

T
0 − b0n

TD(δ)+ D(δ)nnTD(δ).

(132)

Substituting (129), (130), (131), and (132) into (128),
we obtain

(Aθ − b)(Aθ − b)T

= b0bT
0 + d1nb

T
0 + d1b0n

T
+ d21nn

T

− (b0bT
0 − D(δ)nb

T
0 + d1b0n

T
− d1D(δ)nnT)

− (b0bT
0 − b0n

TD(δ)+ d1nbT
0 − d1nn

TD(δ))

+ b0bT
0 − D(δ)nb

T
0 − b0n

TD(δ)+ D(δ)nnTD(δ)

= d21nn
T
+ D(δ)nnTD(δ)+ d1D(δ)nnT

+ d1nnTD(δ)

= (D(δ)+ d1I︸ ︷︷ ︸
=D(δ)

)nnT(D(δ)+ d1I︸ ︷︷ ︸
=D(δ)

)

= D(d)nnTD(d). (133)

The correlation of the CTLS gradient can be determined by

Rθθ = En
{
gθ (θ )g

T
θ (θ )

}
= En

{
2ATD−2(d)(Aθ − b)

(
2ATD−2(d)(Aθ − b)

)T}
= 4En

{
ATD−2(d) (Aθ − b)(Aθ − b)T︸ ︷︷ ︸

=D(d)nnTD(d); (133)

D−2(d)A
}

= 4En
{
ATD−1(d)nnTD−1(d)A

}
. (134)

Let 1 ∈ R3×3 be a perturbation matrix, which is given by

1 = 1T
A81A︸ ︷︷ ︸
(93)

+AT
081A︸ ︷︷ ︸
(94)

+1T
A8A0︸ ︷︷ ︸
(95)

=

 0 0 δT
x8n

0 0 δT
y8n

nT8δx nT8δy nT8n+ δT8n+ nT8δ

 . (135)

The noisy product AT8A can be written as

AT8A = AT
08A0︸ ︷︷ ︸
(92)

+ 1︸︷︷︸
(135)

=

 δT
x8δx δT

x8δy δT
x8(δ + n)

δT
y8δx δT

y8δy δT
y8(δ + n)

(δ + n)T8δx (δ + n)T8δy (δ + n)T8(δ + n)

 .

(136)

Based on (136), the expectations of some scalars for u ∈
R(K−1)×1 and v ∈ R(K−1)×1 can be determined by

En
{
uTD−1(d)nnTD−1(d)v

}
= uTD−1(d) En

{
nnT}︸ ︷︷ ︸

=σ 2
n IK−1; (23b)

D−1(d)v

= σ 2
n u

TD−2(d)v, (137)

En
{
uTD−1(d)nnTD−1(d)n

}
= uTD−1(d)En

{
n︸︷︷︸

=


n2,1
n3,1

.

.

.
nK ,1

; (17)
nTD−1(d)n︸ ︷︷ ︸

=

K∑
k=2

1
dk
n2k,1; (17), (27)

}

= uTD−1(d)
K∑
k=2

1
dk



...

En
{
nk̃,1n

2
k,1
}︸ ︷︷ ︸

=



En
{
n3k,1

}︸ ︷︷ ︸
=0; (103)

, k̃ = k,

En{nk̃,1}︸ ︷︷ ︸
=0; (23a)

En
{
n2k,1}, k̃ ̸= k,

...︸ ︷︷ ︸
k̃∈{2,3,...,K }



= 0, (138)

En
{
nTD−1(d)nnTD−1(d)v

}
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= En
{
nTD−1(d)nnT}︸ ︷︷ ︸
=0T
; (138)

D−1(d)v

= 0, (139)

En
{
nTD−1(d)nnTD−1(d)n

}
= En

{
nTD−1(d)n︸ ︷︷ ︸

=

K∑
k=2

1
dk
n2k,1; (17), (27)

nTD−1(d)n︸ ︷︷ ︸
=

K∑
k=2

1
dk
n2k,1; (17), (27)

}

=

K∑
k1=2

K∑
k2=2

1
dk1dk2

En
{
n2k1,1n

2
k2,1
}︸ ︷︷ ︸

=



En
{
n4k,1

}︸ ︷︷ ︸
=3σ 4

n ; (104)

, k1 = k2 = k,

En
{
n2k1,1

}︸ ︷︷ ︸
=σ 2

n ; (23b)

En
{
n2k2,1

}︸ ︷︷ ︸
=σ 2

n ; (23b)

, k1 ̸= k2

=

K∑
k1=2

 1

d2k1
3σ 4

n +

K∑
k2=2̸=k1

1
dk1dk2

σ 4
n


= σ 4

n

(
2

K∑
k=2

1

d2k
+

K∑
k1=2

K∑
k2=2

1
dk1dk2︸ ︷︷ ︸

α3

)

= σ 4
n α3. (140)

From (136) and by using the results in (137), (138), (139),
and (140), the matrix Rθθ in (134) can be shown as

Rθθ = 4σ 2
n

δT
xD
−2(d)δx δT

xD
−2(d)δy δT

xD
−2(d)δ

δT
yD
−2(d)δx δT

yD
−2(d)δy δT

yD
−2(d)δ

δTD−2(d)δx δTD−2(d)δy δTD−2(d)δ + α2σ
2
n


= 4σ 2

n


δT

xD
−2(d)

δT
yD
−2(d)

δTD−2(d)

[δx δy δ
]︸ ︷︷ ︸

=A0

+

0 0 0
0 0 0
0 0 α3σ

2
n




= 4σ 2
n


δT

x
δT
y

δT


︸ ︷︷ ︸
=AT

0

D−2(d)A0 + σ 2
n

0 0 0
0 0 0
0 0 α3




= 4σ 2
n

AT
0D
−2(d)A0 + σ 2

n

0 0 0
0 0 0
0 0 α3

 . (141)

The error covariance matrix of the CTLS estimate can be
calculated by

6θθ = En
{
(θ̂CTLS − θ0)(θ̂CTLS − θ0)T

}
≃ En

{
H̄
−1
θθ (θ0)gθ (θ0)g

T
θ (θ0)H̄

−1
θθ (θ0)

}
= H̄

−1
θθ (θ0) En

{
gθ (θ0)g

T
θ (θ0)

}︸ ︷︷ ︸
=Rθθ ; (134)

H̄
−1
θθ (θ0). (142)

Substituting (35) and (141) into (142), we obtain

6θθ =
(

H̄θθ (θ0)︸ ︷︷ ︸
=2En{ATD−2(d)A}; (35)

)−1
Rθθ︸︷︷︸

=4σ 2
n

AT
0D
−2(d)A0+σ 2

n


0 0 0
0 0 0
0 0 α3


; (141)

(
H̄θθ (θ0)︸ ︷︷ ︸

=2En{ATD−2(d)A}; (35)

)−1
= σ 2

n
(
En
{
ATD−2(d)A

}︸ ︷︷ ︸
(113)

)−1
AT

0D
−2(d)A0 + σ 2

n

0 0 0
0 0 0
0 0 α3


(
En
{
ATD−2(d)A

}︸ ︷︷ ︸
(113)

)−1
, (143)

which yields (37).

APPENDIX E
PROOF OF COROLLARY 1
For a small σ 2

n , a simplified error covariance can be found
from

lim
σ 2
n→0

6θθ ≈ σ 2
n
(
AT
0D
−2(d)A0

)−1(AT
0D
−2(d)A0

)
×
(
AT
0D
−2(d)A0

)−1
= σ 2

n
(
AT
0D
−2(d)A0

)−1
. (144)
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