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ABSTRACT Multiphysics simulation of Maxwell’s and Landau-Lifshitz—Gilbert equations are performed to
solve electromagnetic fields by considering the dynamics of magnetization. These equations are discretized,
and the time-domain responses are computed using a finite-difference time-domain scheme. This study
focuses on the acceleration of multiphysics simulations in terms of the multiscale modeling of the interaction
between electromagnetic fields and magnetization. A nanoscale magnetic film is conducted to develop a
method for measuring the magnetic properties using the near field of the magnetic film.

INDEX TERMS Finite-difference time-domain (FDTD) scheme, Landau-Lifshitz—Gilbert (LLG) equation,

multiphysics simulation, multiscale modeling.

I. INTRODUCTION
Recently, the development of devices based on spin dynam-
ics and studies on the magnetic properties of materials
have been conducted in the field of magnetic materials [1],
[2], [3], [4], [5], [6], [7], [8]. In the electromagnetic field
analysis of magnetic materials, magnetic permeability is
expressed using a constant value, tensor with dispersion,
frequency-independent tensor with dispersion, or by solving
the Landau-Lifshitz—Gilbert (LLG) equation [2], [3], [4],
[5], [6]. The permeability tensor is formulated under the
assumption that the magnetization in the magnetic mate-
rial is saturated in a certain direction and constantly moves
along a fixed rotation axis [9]. The LLG equation can be
used to perform multiphysics simulations of magnetization
and nonlinear electromagnetic fields. Magnetization has been
incorporated into Maxwell’s equation under the small-signal
approximation [10], [11], [12], [13], [14], [15], [16], [17].
However, the LLG equation was not solved directly; thus, the
dynamics of magnetization could not be considered.
References [18] and [19] showed that the dynamics of
magnetization can be treated by solving the LLG equation
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using an implicit and iterative solver. Maxwell’s equation and
the LLG equation have been solved using the finite-difference
time-domain (FDTD) scheme to analyze the electromag-
netic problems of magnetic materials. The simulation method
reported in [18] and [19], which is an electromagnetic analy-
sis that considers the dynamics of magnetization, is useful
for analyzing spin waves and designing related devices.
To simulate spin dynamics, it is crucial to solve the LLG
equations, including the exchange interaction and angular
momentum. For research on spin oscillators in the tera-
hertz range [7], [8], it is necessary to consider the exchange
interaction, which is a quantum mechanical effect between
magnetizations, and the interaction between electromagnetic
fields and magnetizations.

The conventional method proposed in [18] and [19] can
simultaneously solve the LLG and Maxwell’s equations. The
electromagnetic fields and magnetization were discretized
using a standard Yee cell [9]. The effects of magnetization
dynamics are incorporated into the electromagnetic fields.
Here, the LLG equation is solved implicitly. Thus, the stabil-
ity conditions need not be considered when solving the LLG
equation. The simulation is numerically stable if the numer-
ical stability conditions for solving Maxwell’s equations are
satisfied. As the time step size of explicit FDTD depends on
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the space step size of the Yee cell, the computational time
increases for a more accurate simulation [9]. Furthermore,
the magnetization needs to be modeled in sub-nano-meter
size for the analysis considering the exchange interaction, and
the finite difference should be implemented to obtain highly
accurate results. As a result of the complete expression of the
effects of the exchange interaction, the magnetization space
step size must become extremely small for detailed modeling
in the sub-nanometer size. However, because the resonance
phenomenon of spin waves occurs in the microwave band, the
wavelength of the electromagnetic field to be analyzed in free
space ranges from several millimeters to centimeters. Simul-
taneous coupling analysis between the exchange interaction
and the electromagnetic field in the microwave band becomes
a large-scale problem that requires 10° to 107 divisions for
one wavelength.

In this study, a novel multiscale model was applied for the
fast computation of electromagnetic analysis with magnetics
dynamics. The computation time for analyzing the interaction
between the electromagnetic field and magnetization can be
reduced using multiscale modeling. Several studies [20], [21]
have been conducted on multiphysics simulations, and the
multiscale model proposed in this study is applicable to
various multiphysics simulations. The space step size of the
electromagnetic field and that of the magnetizations were
considered variables. It reduces the number of time steps
required to obtain accurate results because the space step size
of electromagnetic fields larger than that of magnetization can
be selected. Furthermore, as an application of this method,
ananoscale magnetic film is analyzed in this study. Moreover,
the magnetic properties can be measured from the magnetic
field near the magnetic film.

Il. FORMULATION

A. MULTIPHYSICS SIMULATION FOR ELECTROMAGNETIC
FIELDS AND MAGNETIZATION DYNAMICS

Magnetic field analysis, considering the dynamics of mag-
netization, was performed using the FDTD scheme with the
Yee cell, as shown in Fig. 1 [7], [18], [19]. In this case, the
arrangement of the magnetic field is expressed around the
magnetization placed at the lattice points in the Yee cell.
The electromagnetic field and magnetization dynamics were
calculated from (1) (Maxwell’s equation) and (2) (the LLG
equation) [22], respectively.

VxHy = J+6 2

X = &E—,

M 31

9B

VXxE=—-"— 1
X a7 (D
aM, My xH,p+-2M, x M )
_— xHy ¢+ — —_—.
dt YV X B ™y VL dr

Here, Hy; denotes the magnetic fields to update the electric
field, B denotes the magnetic flux density, E indicates the
electric field, J denotes the current density, ¢ signifies the
permittivity, po symbolizes the permeability for free space,
and M indicates the magnetization obtained. In solving the
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FIGURE 1. Yee cell for multiphysics simulation. (a) Position of magnetic
field vector components and (b) magnetization vector components.

LLG equation, y is the gyromagnetic ratio, ¢ is the damping
constant, and M indicates the saturation magnetization. The
effective magnetic field Hey indicates the magnetic field
applied to create magnetization, which is expressed using the
following equation:

Hy=H;+Hp. 3)

Here, Hy denotes the externally time-varying magnetic field
applied to the magnetization and represents the component of
the magnetic field used to solve the LLG equation. Hp indi-
cates the externally given static magnetic field to saturate
the magnetization. The external magnetic field is obtained
by solving Maxwell’s equations with FDTD. For example,
an incident electromagnetic wave applied to a magnetic mate-
rial or a magnetic field generated by magnetization elsewhere
corresponds to an external magnetic field.

In these equations, the dynamics of the electromagnetic
field and magnetization are coupled using the following
equations: The magnetic field Hy; was obtained using the
following equation:

B
Hy = — — My, (4)
Ko
where My, denotes the magnetization calculated from the
LLG equation and converted to Maxwell’s equations.

The interaction between the electromagnetic field and
magnetization dynamics can be calculated from these
equations.

In the FDTD method, the electromagnetic field and
magnetization are discretized using a Yee cell. Maxwell’s
equation (1) was applied to the finite difference and solved
using an explicit scheme.

Magnetization was calculated using the central differences
in (2). The updated equation at time step »n is given by:

- At -
My =M, "/* — M x (—l’/'z H, (M) + ]%MZ ‘/2).
N
o)
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( STA‘RT ]

Set up space step size
Ax, Ay, and Az
and observation time 7'

Set up time step size At
by Ax, Ay, and Az

Compute H,, by Maxwell’s
equation and incorporating M,

Compute M, by LLG

equation and incorporating H, t=1+At

t=T

( END )

FIGURE 2. Flowchart of multiphysics simulation for electromagnetic
fields and dynamics of magnetization.

However, these schemes cannot be applied explicitly to (5).
Thus, implicit and iterative numerical schemes were applied
to solve (5), as shown in [18], [20], and [23]. To obtain [M"]",
which is the magnetization for iteration number r, the updated
LLG equation can be rewritten as

—1/2 —1/2 —1/2
My (M) - pxomg Y
1+ (8
-1 o —1/2
MG+ M) )
N

[M;]" =

_ (lylar
p=-("

(6)

Equation (6) is iteratively solved until the convergence cri-
—__r —__qr—1
terion |[M2] — [MZ] | < 107" is met to achieve

,
machine precision, where |Mj | indicates the average of

the magnetization of the neighboring iterations by one cell
around the magnetization to be found for the r-th time.
Here, a numerical accuracy equivalent to machine precision
is selected. Multiphysics analysis that couples the time evolu-
tion of the electromagnetic field and magnetization requires
satisfying the numerical stability conditions for both the elec-
tromagnetic field and magnetization. The time evolution of
magnetization can be computed with unconditional stabil-
ity using the implicit and iterative method. Therefore, the
electromagnetic field and magnetization can be computed
considering only the stability conditions of the electromag-
netic field.

Fig. 2 shows a flowchart of the multiphysics simulation
of the electromagnetic fields and dynamics of magnetiza-
tion. The magnetic flux density B and electric fields E were
computed using an explicit FDTD scheme. The magnetic
field Hy, is obtained using (4) and magnetization vector M.
Since the discretization sizes of the electromagnetic field and
magnetization are the same, the magnetization M, obtained
by solving the LLG equation is substituted into My,. The
magnetization vectors were obtained via the iterative method
using the effective magnetic field H,y, which includes the
magnetic field calculated from Maxwell’s equation, Hy . Hy,
obtained from (4) is substituted into H; . Moreover, the time
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evolution of the magnetization can be updated stably using
an iterative method. In this multiphysics simulation, the LLG
equations were solved using the iterative method, which is
an implicit solution method, and Maxwell’s equations were
solved using the FDTD method, which is an explicit solution
method. Therefore, the time-step size is limited by the FDTD
method.

B. MULTISCALE MODELING

In the FDTD scheme used in this method, an upper limit to the
time step size At is imposed. The speed at which information
propagates is higher than that at which waves propagate in
actual phenomena. The stability condition for this method is
called the Courant—Friedrich-Levy condition [7]. For three-
dimensional (3D) propagation problems, we will be dealing
with the limited time step size as follows,

1
At< : ®)

- 1 \2 1\2 1\2

@)+ @)+ ()
As the space step size Ax, Ay, Az decreases, At decreases,
whereas the computational cost increases. However, because
the LLG equation is solved using implicit and iterative numer-
ical schemes, a limit does not exist for the time step size based
on the cell size. Furthermore, in magnetization analysis, the
target object is often small compared to the wavelength of
the electromagnetic wave. Therefore, the spatial step size
required for magnetization analysis is smaller compared to
the spatial step size required for magnetic field analysis.
Therefore, the space step size of the electromagnetic field
can be set larger than the space step size of magnetization
dynamics. The proposed method leverages this fact and sets
the space step size of the electromagnetic field larger than the
space step size of the magnetization dynamics to reduce the
computation time.

Fig. 3 shows the positions of the magnetic field vector com-
ponents and the magnetization vector for multiscale modeling
applied in the z-direction. The ratio of the space step size of
the magnetic fields to the magnetization, , is 2. The grid used
for solving the LLG equation is the same as that used in a
previous multiphysics simulation; k is given as

Space step size of electromagnetic field

" Space step size of magnetization dynamics

In the conventional method or k£ = 1, since the discrete size of
the electromagnetic field and magnetization are the same, the
magnetization My obtained from the LLG equation is used
as the magnetization My, for updating the electromagnetic
field. Therefore, My; = M; and Hy; = H; are selected. Our
proposed multiscale method is designed to set the cell size
for solving Maxwell’s equations larger than that for solving
the LLG equation. In this case, My = My and Hy; = Hg
cannot be selected.

The magnetic field Hy, is required to update magnetization
M; in (5). As the cell size for solving Maxwell’s and LLG
equations is different, Hy; = H; could not be selected. Hy, is
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FIGURE 3. Discretization for multiphysics simulation. (a) Position of
electromagnetic field vector components for k = 2, (b) Position of

magnetization vector for solving the LLG equation, and (c) magnetization
vector for solving Maxwell’s equation.
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FIGURE 4. Linear approximation for computing the magnetic fields for
solving LLG equation.

obtained by linear interpolation from the magnetic field Hy,,
which is obtained by solving Maxwell’s equation, as shown
in the following equation and Fig. 4.

H; (knAz 4+ 1Az)
IA
— Hyy (knAz)+ k_AZz(HM (knAz + kAz) — Hy (knAz))
(10)

Here, 0 <[ <k.

On the other hand, the magnetic field Hy; obtained by solv-
ing Maxwell’s equations is computed by the magnetization
My, as (4). Here, My; = M; can be selected if the cells
for solving Maxwell’s equations and the cells for solving
the LLG equations are identical. However, if the cell sizes
for solving the LLG and Maxwell’s equations are different,
My, = M, cannot be selected. To obtain the magnetization
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FIGURE 5. Discretization for multiphysics simulation for multiscale
method. (a) kK =2 and (b) k = 3.

M,, for solving Maxwell’s equations, the magnetizations
M, obtained by solving the LLG equation are weighted and
summed as
L
My (knAz) = Z WMy, ((kn +1) Az), (11)
i=—L
where W; denotes the weight and L corresponds to the number
of the M, to determine M.

We consider the extent to which the cells for solving
Maxwell’s equations cover the cells for solving the LLG
equations. Fig. 5 illustrates the discretization of the multi-
physics simulation using the multiscale method. (a) k =2
and (b) k = 3. When k is an even number, the cell end for
solving Maxwell’s equations is placed at the center of the cell
to solve the LLG equations. As half of the cell for solving
the LLG equation is contained in the cell to solve Maxwell’s
equations, the magnetization at the end of the cell for solving
Maxwell’s equations must be added with a weight of 1/2,
which is determined in numerical experiments. Therefore,
when k is an even number, My, for solving Maxwell’s equa-
tions is obtained using the following equation:

My (knAz)
L

= D M ((kn+i) A2)
i=1-%

1
+ 7 ML (knAz+kAz/2)+M (knAz—kAz/2))] (12)

Fig. 6 shows a flowchart of the multiscale modeling. The
magnetic field was computed using the magnetization vector
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( START )

Set up space step size
Ax, Ay, and Az
and observation time 7'

Set up time step size A¢
by Ax, Ay, and Az
!
Compute H,, by Maxwell’s
equation and incorporating M,

Obtain H, (knAz + [Az) by
linear interpolation

1
Compute M, by LLG
equation and incorporating H,

I
Obtain M, (knAz)
by equation (12)

t=t+At

t=T

( END )

FIGURE 6. Flowchart of multiscale modeling. The magnetic field is
computed by linear approximated magnetic field. The magnetization
vector is computed by the magnetization vector obtained from (12).

Magnetic material

x o !

Incident wave

Hg

R
Im

150mm

FIGURE 7. Computational model of a magnetic material with thickness
150 mm and microwave impinging. The linear polarized wave propagates
to +z direction and contains x components of the magnetic field.

M), obtained from (11) and (12): The magnetization vec-
tor was computed using the linearly approximated magnetic
field Hy,.

The restricted time step can be reduced by increasing the
space step size for solving Maxwell’s equations with respect
to the space step size for solving the LLG equation. Alterna-
tively, fine cells can be used to represent magnetic materials
while maintaining the space step size to solve Maxwell’s
equations.

Ill. COMPUTATIONAL RESULTS

Fig. 7 shows the computational model. The magnetic film was
placed at z = 50-200 mm in free space, and the incident wave
was linearly polarized with only the x component of the mag-
netic field and frequency f = 10 GHz and has the waveform
illustrated in Fig. 8. This electromagnetic wave is assumed
to be irradiated from a waveguide to a magnetic material.
The magnetic film was comprised of yttrium iron garnet. In a
free space, the electromagnetic field is obtained by Maxwell’s
equations. In the presence of a magnetic film, the LLG
equations and Maxwell’s equations are solved simultane-
ously to obtain the magnetization and electromagnetic field.
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FIGURE 8. Waveform of incident plane wave.
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FIGURE 9. Time response waveform of magnetization compared to
reference solution (a) kK = 2, (b) k = 10.

The computational parameters were y = 2.21 x 10° rad/T,
a =23 x107%, My =139 x 10> A/m, and A = 4.15 x
10~!2 J/m. The magnetization in the film was in the neg-
ative z-axis direction using an external magnetic field with
an amplitude Hp = — 4.76 x 10° A/m [21]. The space
step size for solving the LLG equation was fixed at Ax =
Im, Ay = Im, and Az = 1 x 107% m. Perfectly matched
layer (PML) is used as the absorbing boundary condition.
The development environment in this study is as follows:
Coding language: MATLAB 2023b, OS: Windows 10 Edu-
cation, version: 22H2, CPU: 11th Gen Intel(R) core(TM)
i7-11700@2.50GHz, memory: 64 GB.

Fig. 9 illustrates the time-response waveforms of magne-
tization. The red solid line is the result of the conventional
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TABLE 1. Computational time and accuracy for the multiscale modeling.

Az (m) Az (m) Computational Digits of
(Maxwell) (LLG) time (s) accuracy
-6 -6
1 1x10 1x10 873747 —
2 2x10° 1x10° 379890 4
3 3x10° 1x10" 203673 3
10 10x10° 1x10" 52174 2
Magnetic material
x An
Hp
z
0 1m g
(@) \(b)
y
|<—-| 10nm
150nm

FIGURE 10. Configuration of the analysis of a 150 nm thick nanoscale
magnetic film.

method (k = 1), and the black dotted line is the result of the
multiscale modeling (k = 2, 10). All results obtained by the
conventional multiphysics method and multiscale modeling
are in agreement.

Table 1 lists the computation time and accuracy for the
multiscale modeling. The analysis was performed up to a
steady state 7 = 0.4 ns. The space step size for solving
the LLG equation was fixed at 1 x 107 m. The space
step size for solving Maxwell’s equation was set to discrete
values: 2 x 107°m, 3 x 107°m, and 10 x 10~% m, whereas
the one for solving the LLG equation was fixed at 1 x
107% m. The digits of accuracy indicate the relative error
when the k=1 case is used as the reference solution in
the proposed method, which is the same condition as the
conventional method [18], [19]. When k increased, the com-
putational time is reduced by approximately 1/k times. The
accuracy was approximately four digits when k = 2, and
two digits when k = 10. As k is increased, the accuracy of
the FDTD decreases because the discretization size of the
electromagnetic field increases. Comparing k = 2 and k =
10, we observe a 2-digit change in digits of accuracy. This is
because the calculation accuracy of FDTD is determined by
the square of the discretization size [9].

An analysis of a nanoscale magnetic film is presented as
an example of the application of this method. Fig. 10 shows
the computational model. The thickness of the magnetic film
was 150 nm and & = 50. The computational cost of analyzing
nano-sized magnetic models using conventional analytical
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FIGURE 11. Time response waveform of magnetic field (a) in magnetic
film (b) near magnetic film.
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FIGURE 12. Frequency response of the magnetic field (a) in the magnetic
film (b) near the magnetic film.

methods is prohibitive. The use of a multi-scaling model,
which greatly reduces the computational cost, enables the
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analysis of nanosized magnetic films. Fig. 11 shows the time
response waveforms of the magnetic field at two observation
points. The two observation points, (a) and (b), were 10 nm
apart. Fig. 12 shows the frequency characteristics of the mag-
netic field obtained by applying the fast-Fourier-transform
(FFT) [24] to the time response waveform shown in Fig. 11.
Although magnetization generates standing waves inside the
magnetic film, the magnetic field observed outside the mag-
netic film can be used to measure the nonlinearity of the
magnetization and the magnetic properties from the magnetic
field in the vicinity of the magnetic film. Although it was
impractical to perform the analysis in terms of the analysis
time using the conventional method, the multi-scaling model
resulted in an analysis time of 1053508 s.

IV. CONCLUSION

This study examined multiscale modeling to reduce the
computation time for multiphysics simulations of Maxwell’s
and LLG equations. Accordingly, the space step size of the
electromagnetic field and that of the magnetization dynam-
ics were varied to determine the relationship between the
computing time and simulation accuracy. The computational
time for the variable space step size was investigated, and
it was found to be reduced by a factor of approximately the
reciprocal of the ratio between the space step size of the elec-
tromagnetic field and that of the magnetization, that is, 1/k.
Furthermore, as an application of our method, analysis of a
nanoscale magnetic film was performed. Magnetic properties
can be measured using a magnetic field near the magnetic
film.
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