
Received 20 February 2024, accepted 5 March 2024, date of publication 11 March 2024, date of current version 21 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3375497

Transforming Scene Text Detection and
Recognition: A Multi-Scale End-to-End
Approach With Transformer
Framework
TIANYU GENG
College of Computer and Information Engineering (College of Artificial Intelligence), Nanjing Tech University, Nanjing, Jiangsu 211816, China

e-mail: xn0anz@163.com

ABSTRACT Text is an essential means for humans to acquire information and engage in social
communication. Accurate text extraction from images is crucial for various tasks in real-life scenarios and
scene understanding. However, text detection and recognition in natural scenes are challenged by noise in
the images, irregular distribution of text fonts, and degradation of image quality under complex acquisition
conditions. These factors severely impact the accuracy of text recognition. Issues such as poor image quality,
diverse text formats, and complex image backgrounds significantly affect the accuracy of the recognition, and
these challenges remain urgent to be addressed in the field. To address these challenges, this paper proposes
a transformer-based scene image text detection and recognition algorithm within a multi-scale end-to-end
framework. Firstly, by integrating detection and recognition stages into an end-to-end framework, the process
is simplified, reducing computation and errors. Subsequently, multi-scale characteristics are incorporated to
effectively capture text information at various scales, enhancing recognition accuracy and robustness through
feature fusion and anti-interference capability. Lastly, leveraging the transformer framework, the algorithm
efficiently handles text information of different scales and positions, improving generalization ability.
The self-attention mechanism, multi-layer stacking structure, and positional encoding in the transformer
framework contribute to its effectiveness in processing diverse text information. Through validation, the
proposed method demonstrates improved efficiency in scene text detection and recognition.

INDEX TERMS Text detection, text recognition, transformer, end-to-end, multi-scale.

I. INTRODUCTION
Text, as the embodiment of human wisdom, plays an indis-
pensable role in cultural inheritance. Its emergence breaks
the temporal and spatial limitations of spoken language,
providing a more powerful carrier for the dissemination
of human civilization. With the rapid development of
information technology, the presentation of text has extended
beyond the confines of traditional paper documents. A vast
amount of text is now stored in the forms of documents,
images, or video data. Therefore, the utilization of computer
technology for scene text image detection [1] and end-to-end
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recognition has become particularly crucial. The detection
and end-to-end recognition of text in natural scenes have
extensive applications. On one hand, it can enhance the
efficiency of various application scenarios, such as license
plate recognition and localization, text-based captcha recog-
nition, or handwritten text recognition [2]. On the other
hand, it provides additional information in practical computer
vision applications like intelligent transportation systems,
image and video retrieval, guidance for visually impaired
individuals, and portable visual systems. As information tech-
nology advances, the modes of text representation continue to
evolve, and the significance of scene text detection and end-
to-end recognition in facilitating communication and access
to information is ever more pronounced.
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Due to the rich semantic information [3] embedded in
scene text, it plays a crucial role in comprehending real-world
scenes. With the continuous advancement of scene text detec-
tion techniques, achieving accurate text recognition in precise
text localization is considered a highly challenging research
problem. Most current efforts focus on the more effective
extraction of visual features [4]. For instance, constructing
more robust visual feature extraction [5] backbones and
introducing text image correction mechanisms have achieved
breakthrough progress in regular, clear-cut text cropped
images. However, when dealing with irregular, fuzzy, or other
complex text images, the effective extraction of visual fea-
tures is insufficient to meet the accuracy demands in practical
applications. This paper references amultiscale texture image
segmentation method based on adaptive window fixation and
propagation. By incorporating multiscale characteristics, text
features of images are extracted at different scales. In scene
text images, text scales, fonts, colors, orientations, and more
vary due to diverse environments. Hence, extracting features
solely at a single scale might not adequately handle these
variations. Different scales in images allow for the use of
varying receptive fields and convolutional kernels to extract
features. Typically, this can be achieved by utilizing sliding
windows of different sizes or employing convolutional layers
of varying depths for multiscale feature extraction.

To construct a more accurate and efficient recogni-
tion network, this study draws inspiration from human
understanding patterns, and introduces a novel hierarchical
self-attention encoder for scene text recognition tasks. This
encoder combines effective sequence semantic information
with visual perception information to infer complete textual
content. By employing depth-wise separable convolutions
in conjunction with deep self-attention mechanisms, the
study enhances the capture of correlations between visual
perception and textual sequences, resulting in more robust
recognition outcomes. The research integrates a convolu-
tional neural network [6] with multiscale feature [7] fusion
and the Transformer architecture into an end-to-end structure,
thereby enhancing the model’s generalization capability.

The contribution points of this article are as follows:
(1) Unlike traditional recurrent neural networks, the

Transformer model excels in handling long text sequences
through its effective self-attention mechanism. This feature
not only improves the model’s recognition of lengthy text
but also enhances interpretability. The Transformer model’s
outstanding performance on benchmark datasets further
underscores its advantages.

(2) By integrating multi-scale features, our model extracts
text information across different scales in scene images,
accommodating variations in scale, font, color, and text
orientation in diverse environments. This approach, achieved
through distinct-sized sliding windows or convolutional
layers, enhances accuracy and robustness in scene text
recognition. It effectively captures shape and structural
details at different scales, proving particularly adept at
handling diverse text forms. Additionally, the inclusion

of multi-scale features helps address challenges like text
overlap, misalignment, and skew in scene contexts.

(3) The end-to-end framework combines the detection and
recognition stages, streamlining the process and reducing
computation and errors. By training the detection and
recognition tasks as a unified entity, the semantic information
of text within images is better preserved, leading to improved
training outcomes and accuracy. This approach enhances
robustness, enabling better handling of text variations and
noise in the scene.

The logical structure of this article is as follows:
In the second section, we present the related work of this

paper and analyze various aspects of deep learning end-to-
end recognition, transformer-based scene recognition, and
other hierarchical attention mechanisms in text recognition.
In the third section, we introduce the algorithms employed in
this study and provide an overall algorithmic flowchart. The
fourth section describes the experimental process, including
comparative experiments and visual displays. In the fifth
section, we engage in a discussion about the paper, exploring
both the strengths and weaknesses of the proposed model,
while also highlighting the limitations of our approach.
Finally, in the sixth section, we summarize the entire research
and provide prospects for future work.

II. RELATED WORK
Scene text detection is the process of locating and localizing
text appearing in natural images. With the advancement of
technology [39], its techniques have made significant strides,
accompanied by a continuous influx of academic research.
Some of these papers represent the latest achievements in
scene text detection research. The development of deep
learning [28], [38] and the progress in hardware for handling
vast amounts of image data have also influenced the study
of scene text detection. In recent years, in deep learning-
based methods for natural scene text detection [32], [36], the
main approaches revolve around detecting scene text from the
perspectives of regressing region proposals and classifying
image pixels. In literature, the classification of natural scene
text detection methods mainly falls into two categories:
regression-based methods and segmentation-based methods.
A more detailed and rational classification of natural scene
text detection methods is presented in [8], providing a better
analysis and summary of existing techniques. Consequently,
this paper classifies the approaches for natural scene text
detection into region proposal-based methods and semantic
segmentation-based methods. Reference [9] introduced the
idea of deep learning to address text detection problems
and achieved promising results. It employed a sliding
window strategy to aid detection and used CNN to capture
text features while analyzing text saliency. Reference [10]
used MSER to determine candidate objects of characters.
CNN was used as a classifier to aid detection, thereby
filtering out the required characters. The paper also intro-
duced sliding window techniques for auxiliary detection.
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Reference [11] proposed DeepText, a fundamental archi-
tecture based on Faster-RCNN. Reference [12] introduced
the CTPN algorithm, which remains a commonly used
network for text detection in OCR systems, significantly
influencing the direction of subsequent text detection algo-
rithms. CTPN introduced a novel idea, similar in concept to
differentiation before integration. Reference [13] proposed
the TextBoxes algorithm, which is an improvement over SSD.
TextBoxes innovatively considers offset information from
different feature layers and incorporates it into candidate
box prediction. The post-processing method employs non-
maximum suppression to remove redundant detection boxes.
Offers a novel perspective in scene text recognition by
utilizing a single visual model with component-level mixing,
merging, and combining to effectively handle text within
an image tokenization framework, achieving competitive
accuracy in English and significant advancements in Chinese
text recognition, while maintaining faster inference speeds
compared to existing methods. Proposes a novel text detec-
tion framework utilizing discrete cosine transform (DCT)
for encoding text masks into compact vectors, enhancing
efficiency and accuracy, with competitive performance
on challenging datasets like CTW1500 and Total-Text,
potentially enhancing accuracy and robustness in detecting
non-standard shaped text. Introduces the Multi-Domain
Character Distance Perception (MDCDP)module, leveraging
position embedding and cross-attention mechanism to fuse
visual and semantic features, enabling precise alignment
between features and characters in scene text recognition,
thereby enhancing accuracy and adaptability across diverse
text domains.

Moreover, the end-to-end framework is also a crucial
component, capable of integrating the detection and recogni-
tion stages, thereby streamlining the process. Reference [14]
proposed an end-to-end trainable system for irregular text
detection and recognition called TextNet. This approach
introduces a scale-aware attention mechanism in the back-
bone network to extract multi-scale image features, utilized in
subsequent detection and recognition tasks. In the detection
branch, TextNet directly generates quadrilateral text candi-
date boxes to cover text regions with various orientations and
deformations. Furthermore, the authors introduced a novel
perspective RoI transform layer to align quadrilateral features
for subsequent text recognition, allowing for more accurate
recognition of irregularly shaped text. Lastly, the aligned
features are encoded by an RNN into text information, and
after incorporating a spatial attention mechanism, the model
outputs predicted text sequences.

The task of scene text recognition involves recognizing text
images cropped from scene pictures into computer-readable
character sequences. Currently, mainstream frameworks
for scene text recognition consist of four main stages:
preprocessing, feature extraction, sequence modeling, and
prediction. In the feature extraction stage, commonly used
convolutional neural networks include ResNet, VGGnet,

etc., while the sequence modeling stage typically employs
recurrent neural networks. The prediction stage often adopts
methods based on connectionist temporal classification
or attention-based approaches. In contrast to traditional
recurrent neural networks, this study employs the Trans-
former model with self-attention mechanism for scene
text recognition. The Transformer model excels in han-
dling long text sequences’ dependencies, making it better
suited for recognizing lengthy text sequences. With the
widespread adoption of Transformers, scholars are increas-
ingly inclined to utilize attention mechanisms to extract
rich semantic information from images. For instance, [15]
proposed a bidirectional decoding Transformer decoder,
and [16] combined natural language processing and com-
puter vision models based on the Transformer framework,
although this method significantly increased training costs.
Existing methods like RNN or LSTM often focus on
sequence-based approaches or use semantic information to
supervise text recognizer training, putting excessive emphasis
on visual information and being susceptible to contextual
semantic influences. The self-attention framework of the
Transformer avoids attention drift. Currently, incorporating
additional language models has also become a research
hotspot. Given that extracting semantic information from
pure text is much easier than from images, this paper
introduces the Multi-Feature (MF) module to fuse multi-
scale features, establishing multi-feature extractors capable
of extracting spatial and sequence information from initial
images.

End-to-end algorithms for scene text detection and
recognition mainly fall into two categories: those based
on pixel-level segmentation prediction and those based on
RNN sequence generation. Algorithms based on pixel-level
segmentation prediction achieve text detection and recog-
nition by predicting the foreground classification of scene
text. For instance, the Text Perceptron proposed in [17]
employs a segmentation-based approach for text detection,
transforms irregular text into regular text using a predefined
shape transformationmodel, and finally performs recognition
through a recognition network. Compared to algorithms
based on pixel-level segmentation prediction, algorithms
based on RNN can better encode the relationships between
text characters, thus enhancing text recognition accuracy.
For example, the model proposed in [18] was among the
first to apply CNN and RNN to end-to-end scene text
detection and recognition tasks. In the aforementioned end-
to-end algorithms for scene text detection and recognition,
algorithms based on pixel-level segmentation prediction
can achieve precise detection down to the pixel level.
However, due to the lack of exploration of textual semantic
information, their recognition accuracy is somewhat limited.
On the other hand, sequence generation algorithms based on
RNN decoding decode the sequence within loops, resulting
in a heavy computational workload and long processing
times. To enhance recognition efficiency while maintaining
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recognition performance, efforts are made to strike a balance
between these aspects.

III. METHODS
The overall algorithm of this study can be divided into
the following three parts: (1) End-to-End Recognition,
(2) Multi-Scale Fusion, and (3) Transformer Framework.
In addressing scene text detection and recognition in scene
images, this paper achieves the following steps: Firstly,
by employing an end-to-end framework, the detection and
recognition stages are merged together. Following this, the
multi-scale fusion approach is applied to effectively capture
text information at various scales. This facilitates enhanced
recognition accuracy and robustness through feature fusion
and anti-interference capabilities. Finally, leveraging the
transformer framework, the model utilizes its inherent self-
attention mechanism, multi-layer stacking structure, and
position encoding characteristics to effectively process text
information at different scales and positions, thereby enhanc-
ing generalization capability. The overall algorithm flowchart
of this article is shown in Figure 1.

A. END-TO-END FRAMEWORK
This paper proposes a fusion of the adaptive Bézier curve
network that can be end-to-end trained for arbitrary-shaped
scene text detection and recognition tasks. The architecture
is shown in Figure 2. Compared to standard rectangular
bounding box-based text detection methods, ABCNet [19]
achieves arbitrary-shaped scene text detection through simple
yet effective adaptive Bézier curve bounding boxes with
almost no additional computational overhead, greatly simpli-
fying the complexity of the recognition branch. In contrast
to existing end-to-end scene text detection and recognition
methods, ABCNet employs parameterized Bézier curves to
describe arbitrary-shaped text, significantly enhancing the
overall framework’s operational efficiency while ensuring
algorithmic detection and recognition performance. Its com-
putational formula is as follows:

ABCNet uses Bernstein polynomials as the basis for the
Bessel parameter curve c (t):

c(t) =

n∑
i=0

biBi,n(t), 0 ≤ t ≤ 1 (1)

Among them, n represents the angle, bi represents the i-th
control point, andBi,n(t) represents the Bernstein polynomial.

Bi,n(t) =

(
n
i

)
t i(1 − t)n−i, i = 0, . . . , n (2)

Among them,
(n
i

)
is the binomial coefficient. By observing

existing datasets and curve texts in practical applications,
ABCNet adopts a cubic Bessel curve, where n is 3.

For each text instance, ABCNet uses the relative distance
as the regression target as follows:

1x = bix − xmin, 1y = biy − ymin (3)

where xmin and ymin represent the minimum x and y values of
the 4 vertices, respectively.

To train the model for the task of predicting control point
coordinates, it is necessary to generate Bézier curve labels
and then follow a method similar to DMPNet to regress the
target coordinates. The advantage of using predicted relative
distances as regression targets is that accurate predictions
can still be made when Bézier control points extend beyond
the image boundaries. Within the detection branch, only a
convolutional layer with 16 output channels is required to
learn the prediction of both 1x and 1y. This enables the
detection branch to accurately output prediction results with
almost no additional computational overhead.

To generate Bezier curve labels using the original polygon
annotation, let (pi)ni=1 be a set of polygon boundary
annotation points, where pi represents the i-th annotation
point. Simply apply the standard least squares method to
obtain the optimal parameters of c (t) under the cubic Bezier
curve in the formula to generate the Bezier curve boundary
box:  B0,3 (t0) · · · B3,3 (t0)

...
. . .

...

B0,3 (tm) · · · B3,3 (tm)



bx0 by0
bx1 by1
bx2 by2
bx3 by3



=


px0 py0
px1 py1
...

...

pxm pym

 (4)

Among them, m represents the number of points labeled
by the curved boundary. For the two commonly used curve
scene text detection and recognition datasets Total Text and
CTW1500, the values of m are 5 and 7, respectively.

By using the ratio of accumulated length to polyline
perimeter, the parameter ‘‘t’’ can be calculated. According
to the formula mentioned above, the original polyline
annotations can be transformed into parameterized Bézier
curves. It’s important to note that the first and last annotated
points will be used as the first ‘‘(b0)’’ and last ‘‘(b4)’’
Bézier curve control points, respectively. Bounding boxes
generated through the above method of Bézier curves often
exhibit better visual results compared to the original polygon
annotations. Additionally, by utilizing the proposed feature
alignment method and the generated Bézier curve bounding
boxes, it becomes easy to transform curved scene text into
horizontal text without significant distortion. The simplicity
of this method allows for its application to different types of
text in practical scenarios.

B. MULTISCALE FUSION
Multi-scale feature fusion [20] can enhance the classification
performance of a network by fusing feature maps from
different scales. Commonmulti-scale feature fusion networks
are mainly divided into parallel multi-branch networks and
sequential skip connection structures. In this study, as the
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FIGURE 1. Algorithm flowchart.

FIGURE 2. The architecture.

multi-scale fusion dataset used is processed end-to-end and
the annotated samples are divided into two classes, abnormal
regions and normal regions, employing networks that are
too deep or overly complex can lead to overfitting issues.

Therefore, based on a streamlined approach, this research
proposes a scene text recognition method using a multi-scale
fusion feature network, as depicted in Figure 3. Initially, text
images are preprocessed and resized to 48 × 48 grayscale
images. Then, these preprocessed images are fed into the
multi-scale fusion feature network for feature extraction.
Finally, Softmax classification is performed. An Inception
structure containing convolutional layers with different scales
is utilized to obtain local detailed features from varying
receptive fields. The outputs of block2, block3, and block5
are employed as the final fused text image feature maps.

The process of complex scene text recognition is intricate
and often requires extensive labeled data, leading to lengthy
training times. Thus, the utilization of regularization methods
becomes crucial to reduce network complexity, prevent
overfitting, and enhance model generalization. In this study,
three regularization methods - batch normalization, L2
regularization, and dropout - were employed within the
multi-scale fusion network to improve model generalization.
These methods collectively serve to enhance the ability of
the model to generalize beyond the training data and mitigate
overfitting issues.

Utilizing L2 regularization involves adding a regulariza-
tion term to the loss function. This term penalizes larger
weight values, causing all weights to converge towards
smaller absolute values. This serves the purpose of guiding
and influencing network training through the regularization
term. The formula for L2 regularization is derived as
follows:

J = J0 +
λ

2m

n∑
i=1

w2
i (5)
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FIGURE 3. A scene text recognition method using a multi-scale fusion
feature network.

Among them, J0 represents the original loss function,∑n
i=1 w

2
i is the L2 regularization term, λ is the regularization

coefficient, m is the number of training samples for a single
batch, and the function of coefficient 1/2 is to simplify the
differentiation process. Adding a dropout layer after the fully
connected layer causes the activation value of a neuron to stop
working with a certain probability in forward propagation,
reducing the interaction between hidden nodes. Based on
experience, θ is set to 0.3.
Constructing the spatial and channel attention modules

involves deriving relationships between specific information
across pixels in terms of spatial relations and interde-
pendencies among feature channels. This process begins
by reshaping the input features and calculating a spatial
similarity matrix. Then, a channel similarity matrix is
computed using matrix multiplication. The Softmax function
is utilized to generate the spatial attention weights. The
specific formula is as follows:

pij =
exp

(
ATi × Aj

)∑N
i=1 exp

(
ATi × Aj

) (6)

qij =

exp
(
Ai × ATj

)
∑C

i=1 exp
(
Ai × ATj

) (7)

where pij represents the impact of the i-th position on the jth
position, qij represents the impact of the i-th channel on the jth
channel, ATi represents the i-th row of AT , and Aj represents
the jth column of A. Fusion channel and spatial attention
mechanism, calculate the feature information of fused spatial
attention through matrix multiplication between A and P, and
obtain the feature information using pixel addition method:

Frefine = reshape (A× Patt ) ⊕ reshape (Qatt × A) (8)

Among them, Frefine represents the feature information
of the attention mechanism module, reshape the feature
information with dimension size C × N to C × H × W ,
Patt is the spatial attention weight generated by the Softmax
function, and Qatt is the channel attention weight generated
by the Softmax function.

Furthermore, in the process of multi-scale fusion,
to expand the receptive field while keeping the relative spatial
positions of pixels unchanged and gaining more contextual
information for the segmentation task, this paper incorporates
dilated convolutions. Unlike standard convolutions, dilated
convolutions introduce an additional parameter known as the
dilation rate. The dilation rate controls the spacing between
adjacent elements in the convolution kernel. As the dilation
rate changes, the size of the convolution kernel’s receptive
field also changes. An example of this is a convolution with a
size of 3× 3, a dilation rate of 2, and a stride of 1, referred to
as dilated convolution. In this study, the convolutional layers
of VGG16 are replaced with dilated convolutional layers
with a dilation rate of 2. This modification enhances the
receptive field of the main feature extraction network without
increasing computational complexity.

C. TRANSFORMER MODEL
In this paper, by utilizing the end-to-end framework of
ABCNet, the merging of detection and recognition [21],
[22] yields promising results. Subsequently, by integrating
multi-scale features, further improvements are achieved in
terms of recognition accuracy and robustness. The final
proposed scene text recognition model, based on CNN and
Transformer, is illustrated in Figure 4. This model comprises
three main components: the CNN feature extraction layer, the
Transformer encoder, and the CTC decoder.

We have constructed a representation method suitable for
text image information feature extraction, using a combina-
tion of word2vec and CNN to extract semantic features of
scene images, ultimately forming a feature representation of
text. It includes three layers, namely input layer, projection
layer, and output layer. Among them, the input layer inputs
the current feature text, and the word vector Wt ∈ Rm of the
text; The output is the probability of words appearing in the
context of the feature word; The purpose of the projection
layer is to maximize the L-value of the objective function.

L =
1
N

N∑
j=1

∑
−c≤i≤c

logp
(
ωj+1|ωj

)
(9)

Among them, N is the length of the word sequence,
c is the contextual length of the current feature word, and
p

(
ωj+1|ωj

)
is the probability of the contextual feature word

ωj+1 appearing when the current word ωj is known. All word
vectors obtained through model training form a word vector
matrix X ∈ Rmn, where xi ∈ Rm represents the word vector
of the feature word i in the m-dimensional space.

Convolutional layer is the most important layer in CNN,
with two key operations: local correlation and window
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FIGURE 4. Scene text recognition mode.

sliding. The input in the convolutional layer is a matrix
with dimension m times n, which is used to represent the
sentence matrix of compilation error information. When
performing convolution operations in the convolutional layer,
the selection of the width of the convolutional kernel is
consistent with the dimension of the word vector, which
ensures that the convolutional kernel is a complete word
vector at each sliding position. The convolution calculation
formula is as follows:

yi = f
(∑

wi × xi:i+h−1 + b
)

(10)

where, wi represents the weight matrix of the convolutional
kernel, xi:i+h−1 denotes the matrix of word vectors from the
i-th row to i+ h− 1 rows, b stands for bias, and the function
f signifies the activation function.

The Transformer consists of two sub-layers: a Multi-Head
Attention (MHA) layer and a Multi-Layer Perceptron (MLP)
layer. Before each sub-layer, Layer Normalization (LN) is
applied, and residual connections are used after each sub-
layer. The calculations are as follows:

head j = Attention(QWQ
j ,Avg (K )WK

j ,Avg (V )WV
j ) (11)

Among them, WQ
j , W

K
j , and WV

j represent the weight
matrix corresponding to the jth header and input, W o

represents the weight matrix of the linear layer, and Avg (·)
represents the average pooling, with the aim of reducing
parameter computation. Attention(·) is calculated as follows:

Attention(Q,K ,V ) = Softmax (
QKT

√
dhead

) V (12)

Perform a dot product between the query matrix Q and
the key matrix K , then divide the result by

√
dhead , where

dhead represents the dimension of each head (used to balance

gradient changes). Normalize the dot product result using the
Softmax function to obtain attention weights, indicating the
level of association between queries and keys. Proceed to
compute the dot product between the normalized attention
weights and the value matrix V , resulting in the final
output. The algorithm pseudocode in this article is shown in
Algorithm 1.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
This paper presents a Transformer-based approach for scene
text detection and recognition. The experimental setup is as
follows: The model is built using the PyTorch framework
and consists of four main parts, including multi-scale
feature extraction, feature fusion, text detection, and text
recognition. Text detection employs an attention-based end-
to-end text detection model, while text recognition utilizes
a Transformer-based recognition model. Finally, evaluation
metrics include the F1 score for text detection and accuracy
for text recognition. Experimental results demonstrate that
the proposed method exhibits excellent performance in
scene text detection and recognition tasks. The experimental
flowchart of this article is shown in Figure 5.

B. EXPERIMENTAL DATASET
In experiments, training sets are usually used for model
training, and test sets are used for model evaluation. The
evaluation indicators include: accuracy of text detection,
recall rate, F1 value, and accuracy of text recognition. In order
to improve the robustness of the model, cross validation
technology is used to evaluate the performance of the model.
Based on the description of the dataset, in order to train
and evaluate the performance of scene text detection and
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Algorithm 1 ETE-MSFT Network Training
Inputs: Training data from COCO-Text, SynthText, ICDAR
2017, and Street View Text dataset
Outputs: Trained ETE-MSFT network parameters
Initialize ETE-MSFT network with Transformer architecture
Initialize attention mechanism parameters Initialize multi-
scale features extractor parameters Initialize learning rate,
batch size, and other hyperparameters
while not converged do

for each batch of training samples do
Calculate multi-scale features for the batch using the
feature extractor Calculate attention weights for each
featuremap using the attentionmechanism Apply the
attention weights to the features to obtain attended
features Apply the Transformer encoder on the
attended features to learn contextual representations
Predict the text localization using a regression head
Compute the text recognition loss using CTC loss for
text transcription Compute the localization loss using
bounding box regression Calculate the total loss as
a combination of recognition and localization losses
Update the network parameters using backpropaga-
tion and optimizer

Calculate Precision(%), Recall(%), and F1(%) using
validation dataset Calculate the current FPS and update
the best FPS achieved so far if current F1(%) is higher
than the best F1(%) then

Save the current ETE-MSFTmodel as the best model
if no significant improvement in validation F1(%) for
certain epochs then

Reduce learning rate with a certain decay factor

Return: Trained ETE-MSFT network with the best model
parameters

FIGURE 5. Experimental flow chart.

recognition models, the following four sets of datasets were
selected:

(1) SCUT CTW1500: The dataset includes 1000 images
for training and 500 images for testing. The text lines in each

image are described using a polygon composed of 14 points.
This dataset is mainly aimed at curve shaped text and is one
of the few datasets in the field of text detection in arbitrary
shaped scenes.

(2) ICDAR2017: This dataset contains text of various
shapes and directions, including horizontal text, vertical
text, curved text, rotated text, arbitrarily shaped text, etc.
In addition, the dataset also provides text data in multiple
languages, including English, Chinese, Arabic, etc. There-
fore, this dataset is more comprehensive and challenging,
and has more reference value for evaluating and comparing
the performance of various character and text recognition
algorithms.

(3) SVT: This dataset is collected in street scenes, and there
are widespread cases of blurring, noise, and low resolution in
the images. This dataset is of great significance for testing the
robustness and stability of algorithms in real-world scenarios,
therefore it is also a very useful dataset.

(4) Synth Text: This dataset includes 800000 synthesized
images, mainly used for training in scene text recognition.
Synthetic datasets can provide a large amount of training data,
which can improve the generalization ability and robustness
of the model. Therefore, Synth Text is a very useful dataset,
especially in the research of scene text recognition.

C. EXPERIMENTAL EVALUATION INDICATORS
The evaluation indicators for text detection include precision,
recall, and F1 value. Accuracy represents the proportion of
detected text regions that are truly text, recall represents
the proportion of detected text regions, and F1 value is
the harmonic average of accuracy and recall, which is
an important indicator for evaluating the performance of
detection models. Model computational complexity: The
computational complexity of a model is an important indica-
tor for evaluating model performance, including the number
of parameters, computational complexity, and inference time
of the model. Robustness: The robustness of a model is one
of the important indicators for evaluating its performance,
including its stability and transferability in different datasets
and environments.

The formula is calculated as follows:

Precision =
TP

TP+ FP
(13)

Among them, TP stands for True Positive, that is, the
number of correctly identified entities; FP stands for False
Positive, that is, the number of non-entities incorrectly
recognized.

Recall =
TP

TP+ FN
(14)

Among them, FN represents False Negative, that is, the
number of real entities that are missed. In addition, there is
the calculation of F1 value:

F1 =
2 × Precision× Recall
Precision+ Recall

(15)
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These indicators comprehensively consider the detection
and recognition performance, computational efficiency, and
robustness of the model, and can comprehensively evaluate
the performance and practicality of Transformer based scene
image text detection and recognition methods. In experi-
ments, techniques such as cross validation are usually used to
evaluate the performance of themodel to ensure the reliability
and stability of the experimental results.

D. ANALYSIS OF EXPERIMENTAL DETAILS
The Transformer-based scene text detection and recognition
method has been studied and applied for recognizing
scene text in different orientations, including rotated text.
Below, we will provide a detailed overview of comparative
experiments of the Transformer-based scene text detection
and recognition method on scene text in various orientations,
including rotated text.

In Table 1, we conducted a comparative analysis of
the performance of different text detection and recognition
methods on the COCO Text dataset and the SynthText
dataset. The following provides a more detailed explanation
of these data to highlight the superiority of our method.
On the COCO-Text dataset, our method showed significant
performance improvement compared to other methods.
In terms of accuracy, our method achieved 94.28%, which
is higher than other methods, with a maximum improvement
of about 12 percentage points. In terms of recall rate,
our method reached 93.84%, which is also higher than
other methods, increasing by about 13 percentage points.
In terms of F1 value, our method reached 94.05%, which is
also significantly higher than other methods, increasing by
about 13 percentage points. This demonstrates the significant
superiority of our method on the COCO Text dataset;
On the SynthText dataset, our method also demonstrated
excellent performance compared to other methods. In terms
of accuracy, our method achieved 93.37%, which is higher
than other methods, with a maximum improvement of
about 11 percentage points. In terms of recall rate, our
method reached 91.46%, which is also higher than other
methods, increasing by about 15 percentage points. In terms
of F1 value, our method reached 92.40%, which is also
significantly higher than other methods, increasing by about
14 percentage points. This further highlights the excellent
performance of our method on the SynthText dataset.
In summary, our method achieved significant performance
improvements on two different datasets, with an improvement
of multiple percentage points compared to other methods,
demonstrating the significant superiority of our method in
scene text detection and recognition tasks. We compared and
visualized the results in Table 1, as shown in Figure 6.
According to Table 2, we analyzed the performance of

different text detection and recognition methods on the
ICDAR 2017 dataset and the Street View Text dataset. Our
method (‘‘Ours’’) demonstrated excellent performance on
the ICDAR 2017 dataset. In terms of accuracy, our method
achieved 92.91%, which is higher than other methods, with

TABLE 1. Performance comparison of text detection and recognition
methods on COCO text and SynthText datasets.

TABLE 2. Performance analysis of text detection and recognition
methods on ICDAR 2017 and street view text datasets.

a maximum improvement of about 9 percentage points.
In terms of recall rate, our method reached 89.77%, which
is also higher than other methods, increasing by about
6 percentage points. In terms of F1 value, our method
reached 91.31%, which is significantly higher than other
methods and has increased by about 7 percentage points. This
indicates that our method exhibits significant superiority on
the ICDAR 2017 dataset; On the Street View Text dataset, our
method also demonstrated excellent performance compared
to other methods. In terms of accuracy, our method achieved
94.66%,which is higher than othermethods, with amaximum
improvement of about 11 percentage points. In terms of recall
rate, our method reached 93.49%, which is also higher than
other methods, increasing by about 12 percentage points.
In terms of F1 value, our method achieved 94.07%, which
is significantly higher than other methods and has increased
by about 10 percentage points. This once again highlights
the excellent performance of our method on the Street
View Text dataset. Overall, our method achieved significant
performance improvements on both the ICDAR 2017 dataset
and the Street View Text dataset, with an improvement
of multiple percentage points compared to other methods,
demonstrating the significant superiority of our method in
different datasets and scenarios. We compared and visualized
the results in Table 2, as shown in Figure 7.
In Table 3, we conducted a detailed analysis of the

parameter size and frame rate (FPS) of different text detection
and recognition methods on the COCO Text dataset and
SynthText dataset, and compared them with other methods.
Compared to other methods, our method exhibits significant
advantages on the COCO Text dataset. Specifically, our
method has a parameter count of only 41.92M, which is
significantly lower than other methods, with the highest
method having a parameter count of 83.64M. This means
that our method is lighter in model size, which helps reduce
storage and computational costs. In addition, our method
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FIGURE 6. Performance comparison of text detection and recognition methods on COCO text and
SynthText datasets.

FIGURE 7. Performance analysis of text detection and recognition methods on ICDAR 2017 and street view
text datasets.

achieved the highest frame rate on the COCO Text dataset,
at 68.89 FPS, while other methods had frame rates ranging
from 30 FPS to 52.73 FPS. This indicates that our method is
not only more efficient in model size, but also able to handle
text detection and recognition tasks faster; On the SynthText
dataset, our method also exhibits significant advantages over
other methods. Our method has a parameter size of 42.15M,
which is relatively low, while the frame rate is 60.93 FPS,
which is higher than other methods. Compared with other
methods, our method has competitive advantages in model
size and processing speed. In summary, our method has lower
parameter count and higher frame rate compared to other
methods on the COCO Text dataset and SynthText dataset.
These results clearly demonstrate the excellent performance
and efficiency of our method in large-scale text detection
and recognition tasks, providing strong support for practical
applications. We compared and visualized the results in
Table 3, as shown in Figure 8.
In Table 4, we conducted a detailed analysis of the

parameter size and frame rate (FPS) of different text detection

TABLE 3. Parameter size and FPS analysis of text detection and
recognition methods on COCO text and SynthText datasets.

and recognition methods on the ICDAR 2017 dataset and
Street View Text dataset, and compared them with other
methods. On the ICDAR 2017 dataset, our method showed
significant competitive advantages in terms of parameter size
and frame rate. Our method has a parameter size of 45.89M,
which is relatively low, and a frame rate of 62.72 FPS, which
is higher than other methods. In contrast, the parameter range
of other methods is between 54.36M and 76.35M, and the
frame rate range is between 30.89 FPS and 58.23 FPS. This
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FIGURE 8. Parameter size and FPS analysis of text detection and recognition methods on COCO text and
SynthText datasets.

indicates that our method is competitive in both model size
and processing speed, and can more efficiently handle text
detection and recognition tasks in the ICDAR 2017 dataset;
Our method also demonstrated superior performance on the
Street View Text dataset. Our method has a parameter size
of 41.94M, which is relatively low, while the frame rate
is 62.45 FPS, which is higher than other methods. The
parameter range of other methods is between 45.78M and
65.12M, and the frame rate range is between 31.81 FPS and
53.09 FPS. This further highlights the excellent performance
of our method in terms of model size and processing speed.
In summary, our method has lower parameter count and
higher frame rate compared to other methods on the ICDAR
2017 dataset and Street View Text dataset. These results
further demonstrate the excellent performance and efficiency
of the proposed method on different datasets, indicating its
practical application potential in various text detection and
recognition tasks. We compared and visualized the results in
Table 4, as shown in Figure 9.
In Table 5, we conducted a series of ablation experiments

by gradually adding different modules to assess their impact
on model performance. These experiments were performed

TABLE 4. Parameter size and FPS analysis of text detection and
recognition methods on ICDAR 2017 and street view text datasets.

using the COCO-Text dataset and the SynthText dataset,
and measured precision (P), recall (R), and frames per
second (FPS). First, we can observe the performance of
the baseline model, which achieved precision and recall
between 79.31% and 78.68% (COCO-Text dataset), as well
as 78.28% and 77.57% (SynthText dataset). The FPS was
45.13 (COCO-Text dataset) and 47.92 (SynthText dataset).
Next, by adding multi-scale feature fusion (+MS), the
model’s performance improved on both datasets. Precision
and recall increased to 83.29% and 82.03% (COCO-Text
dataset), as well as 85.34% and 84.63% (SynthText dataset).
The FPS also slightly improved to 51.72 (COCO-Text

40592 VOLUME 12, 2024



T. Geng: Transforming Scene Text Detection and Recognition

FIGURE 9. Parameter size and FPS analysis of text detection and recognition methods on ICDAR 2017 and
street view text datasets.

dataset) and 51.46 (SynthText dataset). Subsequently, adding
end-to-end training (+EtE) further enhanced the model’s
performance. On the COCO-Text dataset, precision and recall
reached 87.4% and 86.94%, respectively, with an FPS of
56.89. On the SynthText dataset, precision and recall reached
90.29% and 88.74%, respectively, with an FPS of 55.82.
Finally, combining multi-scale feature fusion and end-to-
end training (+MS EtE), the model achieved the highest
level of performance on both datasets. On the COCO-Text
dataset, precision and recall reached 94.28% and 93.84%,
respectively, with a significantly improved FPS of 68.89.
On the SynthText dataset, precision and recall reached
93.37% and 91.46%, respectively, with an FPS of 60.93.
We have compared and visualized the results of Table 5 as
shown in Figure 10.

In Table 6, we present the results of a series of ablation
experiments conducted on the ICDAR 2017 dataset and
the Street View Text dataset. These experiments measured
precision (P), recall (R), and frames per second (FPS). Firstly,
we observed the performance of the baseline model. On the
ICDAR 2017 dataset, the baseline model achieved precision
and recall of 79.84% and 77.91%, respectively, with a frame
rate of 46.15 FPS. On the Street View Text dataset, the

TABLE 5. Ablation experiment results: impact of multi-scale feature
fusion and end-to-end training on COCO-text and SynthText datasets.

baseline model achieved precision and recall of 78.01%
and 75.3%, respectively, with a frame rate of 43.97 FPS.
Next, by adding the multi-scale feature fusion module
(+MS), the model’s performance improved on both datasets.
Precision and recall increased to 82.69% and 81.56%
(ICDAR 2017 dataset), as well as 85.79% and 84.07% (Street
View Text dataset). The frame rate also slightly improved
to 50.78 FPS (ICDAR 2017 dataset) and 52.64 FPS (Street
View Text dataset). Subsequently, the addition of the end-
to-end training module (+EtE) further enhanced the model’s
performance. On the ICDAR 2017 dataset, precision and
recall reached 88.26% and 85.09%, respectively, with a frame
rate of 55.02 FPS. On the Street View Text dataset, precision
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FIGURE 10. Ablation experiment results: impact of multi-scale feature fusion and end-to-end training
on COCO-text and SynthText datasets.

FIGURE 11. Ablation experiment results: impact of multi-scale feature fusion and end-to-end training
on ICDAR 2017 and street view text datasets.

and recall reached 90.51% and 88.38%, respectively, with a
frame rate of 56.17 FPS. Finally, combining the multi-scale
feature fusion and end-to-end training modules (+MS EtE),
the model achieved the highest level of performance on
both datasets. On the ICDAR 2017 dataset, precision and
recall reached 92.91% and 89.77%, respectively, with a
significantly improved frame rate of 62.72 FPS. On the
Street View Text dataset, precision and recall reached 94.66%
and 93.49%, respectively, with a frame rate of 62.45 FPS.
We have also visually compared the results of Table 6,
as shown in Figure 11.

Overall, the results of the ablation experiment clearly
demonstrate the significant improvement of model perfor-
mance by multi-scale feature fusion and end-to-end training.
Their combination has shown excellent accuracy in text
detection and recognition tasks, and has also achieved sig-
nificant gains in frame rate, further verifying the importance
of these modules in improving model performance.

TABLE 6. Ablation experiment results: impact of multi-scale feature
fusion and end-to-end training on ICDAR 2017 and street view text
datasets.

V. DISCUSSION
In the discussion, we will focus on several key aspects.
Firstly, the advantage of multi-scale feature fusion: this
paper adopts multi-scale feature fusion technology, and
experimental results show a significant improvement in
precision and recall onmultiple datasets, ultimately achieving
good performance. This demonstrates that multi-scale feature
fusion is an effective strategy for improving scene text
detection and recognition performance. Secondly, the impact
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of end-to-end training: this paper introduces an end-to-end
training module, which improves model performance by
simultaneously considering multiple tasks in text detection
and recognition. By jointly optimizing text detection and
recognition tasks, the model exhibits excellent performance
on various performance metrics, further confirming the
effectiveness of end-to-end training. Next, the validation of
ablation experiments: in order to gain a deeper understanding
of the impact of each module on performance, this paper con-
ducts ablation experiments. The experimental results show
that the gradual introduction of each module has a positive
impact on performance. The combination of multi-scale
feature fusion and end-to-end training modules achieves
the best results on all datasets, further demonstrating their
complementary roles. However, there are also limitations,
such as high computational resource requirements, dataset
dependencies, model complexity, trade-offs between speed
and performance, and limitations related to text diversity.
In summary, the Transformer-based scene text detection and
recognition method proposed in this paper has demonstrated
outstanding performance in several aspects, and it holds great
significance for advancing research and applications in the
field of scene text processing.

VI. CONCLUSION
This paper investigated a Transformer-based method for
scene text detection and recognition, and through experimen-
tal comparisons, it demonstrated the excellent performance
and robustness of this approach in improving the precision
and efficiency of both detection and recognition tasks. The
paper also explored the positive effects and influences of end-
to-end recognition, multi-scale fusion, and the Transformer
framework on the results, as well as the effectiveness of
this method in addressing the issue of noisy data inherent in
images. By comparing with other methods, the paper con-
cludes the following: End-to-end recognition reduces errors
introduced between multiple independent steps, thereby
enhancing the accuracy of both detection and recognition;
Multi-scale fusion allows for text detection and recogni-
tion at different scales, improving model robustness and
accuracy; The Transformer framework for feature extraction
and classification enhances model efficiency. Experimental
results demonstrate that the Transformer framework can
learn relationships between text elements, thereby improving
classification accuracy and efficiency. Compared to other
methods, this approach significantly improves both accuracy
and computational efficiency; Data augmentation techniques,
such as image rotation, scaling, and cropping, enhance model
robustness and accuracy. The experiments show that these
techniques effectively address the issue of noisy data inherent
in images. In future research, it is possible to explore
additional techniques and methods, such as incorporating
more semantic information, increasing model depth, and
employing more sophisticated feature extraction methods,
to further enhance the precision and efficiency of text
detection and recognition. Additionally, in future work,

considerations may include model lightweighting, multilin-
gual support, and cross-domain applications to better meet
real-world application needs and improve its performance,
universality, and practicality.
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