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ABSTRACT In this paper, two basic novel modifications of Diffusion Leaky Least Mean Square (DL-LMS)
algorithm are proposed. First, the optimized leaky factor is obtained in closed form using the minimum
disturbance principle, thanks to quadratic form of disturbance. Then, a low complexity decorrelated version
of DL-LMS is presented based on the statistical Hidden Markov Modeling (HMM) of time correlations of
input signals. The decorrelation is performed using a simple one-tap filter. Simulation results demonstrate
the effectiveness of both modifications in comparison to other methods.

INDEX TERMS Distributed estimation, leaky LMS, hidden Markov model, diffusion.

I. INTRODUCTION
Distributed estimation problem in a network is a well known
field in signal processing which has applications in channel
estimation, spectrum sensing, target tracking and etc [1]. The
nodes of the network collaborate to each other to estimate
an unknown parameter vector. The collaboration strategies
are incremental, consensus, and diffusion [1]. The diffusion
strategy reported to have more numerical stability, scalability,
ease of computations and outperforms other strategies [2].
Among diffusion algorithms [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17], [18], diffusion
LMS is the most versatile diffusion algorithm. In LMS
adaptive filters, the implementation of LMS algorithm
reported to be problematic [19], [20]. Two problems are
numerical problem and stagnation behavior [20]. Numerical
problem is due to inadequacy of excitation in the input data
while the stagnation behavior is due to low input signal [20].
So, as such leaky LMS is suggested in adaptive filter
literature [19], [21] to solve these problems, the diffusion
leaky LMS algorithm is proposed for distributed estimation
as well [20]. In [20], a variable Leaky LMS algorithm is also
presented in which the leaky factor is updated recursively
based on minimizing the square of the instantaneous error.
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Moreover, [22] proposed a leaky zero attracting DLMS
algorithm in which some sparsity regularizers are exploited to
enhance the performance in sparse parameter vector settings.

In different direction of research, some papers deal with the
correlated input cases for distributed estimation [23], [24].
The correlated input signal makes the algorithm converge
slowly. In [23], to increase the convergence rate in presence
of correlated input, the decorrelated method is presented
for the distributed estimation problem. In the decorrelation
method for system identification in [23], both the input
signal to the adaptive filter and the output of the system
are decorrelated by a transversal Finite Impulse Response
(FIR) filter. These decorrelation filters makes the algorithm
complex especially when it would be implemented in a
sensor network. In addition, [23] uses two convex-combined
decorrelated transversal filter which doubly complicates the
scheme. Moreover, in a recent work [24], a class of diffusion
Bayesian decorrelation least mean squares algorithms are
presented based on decorrelated observation models. Again,
the Bayesian nature of decorrelation method utilized in this
paper is complex to implement in a sensor network in which
the size and limited computational complexity is a requisite.

In this paper, due to the property of limited convergence
rate of leaky LMS in presence of correlated input signal,
the focus will be on improving the convergence rate of
diffusion leaky LMS using the decorrelation method. The
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real-life application of this work is highlighted when there
are implications such as acoustic echo cancellers when there
is some correlated input signal. The contribution of our paper
is twofold. First, since the performance of the diffusion leaky
LMS is dependent on the leaky factor, an optimized closed-
form leaky factor is derived which is calculated during the
iterations of the algorithm. Unlike the variable diffusion leaky
LMS presented in [20] which is recursive and is just based on
the instantaneous error, it has a closed-form formula and is
derived based on minimizing the disturbance term. Second
contribution is to devise a simple decorrelation method
based on Hiden Markov Model (HMM) rather than Auto-
Regressive (AR) model used in [23]. HMM modeling has
a well-established history in the statistical signal processing
community [25], [26], in speech processing [26], [27], and
in other applications such as in power systems [28]. In this
paper, a two-state first-order HMM model to ensure that
the decorrelation algorithm is of low complexity, both in
its derivation and implementation is employed. The HMM
decorrelator is a one-tap FIR filter (which is shown in Fig. 1)
which is derived mathematically based on decorrelation
conditions. Simulation results show the effectiveness of the
proposed algorithm in both using optimized leaky factor and
also HMM decorrelator.

The rest of the paper is organized as follows. Section II
introduces the problem and the model employed in the paper.
Section III introduces the diffusion leaky LMS. In Section IV,
the proposed improved diffusion leaky LMS algorithm is
derived and explained. The simulation results are presented
in Section V. Finally, conclusions are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A network with N nodes is assumed. Each node observes an
scalar measurement dk,i which is equal to

dk,i = uTk,iω
o
+ vk,i, (1)

where k is the index of the node, i is the time index, ωo is
a L × 1 unknown vector where L is the size of unknown
vector, uk,i is a L× 1 known regression vector, and vk,i is the
measurement noise. All the N sensors of the network collect
the measurements and try to collaboratively estimate the
unknown vector ωo. In Adapt-then-combine (ATC) diffusion
algorithms, each node firstly updates its local estimate based
on a local cost function. In diffusion LMS algorithms, the cost
function is aMSE function as JLoc(ω) =

∑
l∈Nk

al,kE{||dl,i−
uTl,iω

o
||
2
}, where Nk is the neighborhood set of node k , and

al,k is the combination coefficients in the adaptation step [1].
The adaptation step of ATC diffusion LMS is [1]

φk,i = ωk,i + µ
∑
l∈Nk

al,kuTl,i(dl,i − uTl,iωk,i), (2)

where ωk,i is the estimation of node k at the end of index i,
φk,i is the intermediate estimation of node k at time index i
and µ is the step size. After adaptation, each node sends its
local updated estimate to its neighborhoods. Then, each node
combines the received local estimates from its neighborhoods

FIGURE 1. Block diagram of 1-tap decorrelator.

which are φ̃l,i and may be different in comparison to true
intermediate estimations φl,i. So, in the combination step,
we have

ωk,i+1 =

∑
l∈Nk

cl,k φ̃l,i, (3)

where clk is the combination coefficients in the combination
step [1]. After Combination step, by receiving new mea-
surements, the diffusion LMS algorithm go ahead until final
convergence. In the next section, the diffusion leaky LMS
algorithm is introduced.

III. THE DIFFUSION LEAKY LMS ALGORITHM
Leaky LMS is a well known adaptive filter algorithm which
has advantages of numerical stability over classical LMS
algorithm. It is generalized to diffusion Leaky LMS to
estimate the unknown vector in a collaborative network. The
only difference between Diffusion Leaky LMS (DL-LMS)
and DLMS is in the adaptation step which is

φk,i = (1 − µγk,i)ωk,i + µ
∑
l∈Nk

al,kuTl,i(dl,i − uTl,iωk,i),

(4)

where γk,i is the leaky factor which has the role of tradeoff
between the final MSE and convergence rate. In the next
section, the proposed algorithm is introduced.

IV. THE PROPOSED HMM DECORRELATION DIFFUSION
LEAKY LMS WITH OPTIMIZED LEAKY FACTOR
In this paper, two improvements to diffusion leaky LMS
is suggested. Firstly, it is suggested to use an optimized
value for the leaky factor based on minimum disturbance
principle. Minmum disturbance principle is a well known
principle in adaptive filtering theory which means that the
adaptive filter design should obey a minimum disturbance
principle to gradually find the optimum Wiener filter
solution of adaptive filter [29]. This principle is used for
robust distributed estimation against impulsive noise in [11].
Secondly, an HMM model for correlation of input signals
of local leaky LMS adaptive filters is used. Then, a low
complexity decorrelation diffusion leaky LMS algorithm is
presented. These two modifications are introduced in the two
next subsections.
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A. OPTIMIZED LEAKY FACTOR
To optimally design the leaky factor, minimum disturbance
principle is used. Nominating the difference of estimation in
successive iterations as 1� ≜ ωk,i+1 − ωk,i, then we have:

1� = ωk,i+1 − ωk,i =

∑
l∈Nk

cl,k φ̃l,i − ωk,i

=

∑
l∈Nk

cl,k
[
(1 − µγ )ωl,i + µpl

]
− ωk,i

= (1 − µγ )
∑
l∈N−

k

cl,kωl,i

+ µ
∑
l∈Nk

cl,kpl + ckk (1 − µγ )ωk,i − ωk,i, (5)

whereN−

k is the neighborhood of node k excluding k’th node,
and bk ≜

∑
l∈Nk

cl,kuTl,i(dl,i − uTl,iωk,i). So, following (5),
we have

1� = (1 − µγ )dk + hk + gkωk,i, (6)

where

gk ≜ ckk (1 − µγ ) − 1, (7)

and

dk ≜
∑
l∈N−

k

cl,kωl,i, (8)

and

hk ≜ µ
∑
l∈Nk

cl,kpl . (9)

Hence, to find the optimum leaky factor γopt based on
minimization of disturbance term which is defined as to
||1�||

21 [11], [29], the quadratic disturbance cost function
can be written as

f(γ ) = ||1�||
2

= ||(1 − µγ )dk + hk + gkωk,i||
2

= (1 − µγ )2||dk ||2 + g2k ||ωk,i||
2
+ ||hk ||2

+ (1 − µγ )dTk hk + gk (1 − µγ )dTk ωk,i + gkhTk ωk,i

+ (1 − µγ )hTk dk + gkωT
k,ihk

+ gk (1 − µγ )ωT
k,idk . (10)

The quadratic function f(γ ) is reduced to

f(γ ) = ākγ 2
+ b̄kγ + c̄k , (11)

where we have

āk = µ2
||dk ||2 + c2kkµ

2
||ωk,i||

2
+ 2ckkµ2dTk ωk,i, (12)

and

b̄k = −2µ||dk ||2 + 2µckk ||ωk,i||
2
− µhTk dk

− 2µc2kk ||ωk,i||
2
+ 2µdTk ωk,i − 2µckkdTk ωk,i

− 2µckkhTk ωk,i − 2µckkωT
k,idk , (13)

1The well known quadratic form of disturbance makes the mathematical
derivations tractable.

and

c̄k = ||dk ||2 + (ckk − 1)2||ωk,i||
2
+ ||hk ||2

+ 2dTk hk + (ckk − 1)[dTk ωk,i

+ hTk ωk,i + ωT
k,i(dk + hk )]. (14)

Therefore, if āk ≥ 0, the minimum of a scalar quadratic
function of (11) is equal to

γopt = −
b̄k
2āk

. (15)

Since the leaky factor is a positive relatively small constant,
in practice, a fixed γ0 is used if γopt < 0 and a maximum γmax
if γopt > γmax.
For the minimum disturbance, replace (15) in (11). Then,

the minimum disturbance equals to

Dmin =
b̄2k
2āk

+ c̄k . (16)

B. HMM DECORRELATION
In [23], an AR model is used for correlation model of input
signal which is actually the regression vector with respect to
time index i. What meant of correlation of the input signal
is that successive samples of the input signal are correlated
random variables. At least, two consecutive samples are
correlated. The process of decorrelation is relatively complex
and need a two decorrelated filters for decorrelating the input
signal and decorrelating the output of the measurements.
So, in this paper, a first order HMM model for modeling
the correlation of input signal is used and then use a low
complex one tap decorrelating filter instead. In fact, only
correlation between two consecutive samples of the input
signal is considered.

At first, the adaptation step of decorrelated diffusion leaky
LMS is written as

φk,i = (1 − µγk,i)ωk,i + µ
∑
l∈Nk

al,k ūTl,i(d̄l,i − ūTl,iωk,i),

(17)

where d̄k,i is the decorrelated version of dk,i, and ūk,i
is the decorrelated version of uk,i. The block diagram of
decorrelated leaky LMS used in the diffusion algorithm is
shown in Fig. 1. The type of decorrelation used in this scheme
is decorrelation using HMM model which is denoted by
HMM-decorrelation and explained in the sequel.

Secondly the first order two state HMM model [30], [31]
is introduced. The trellis diagram and state diagram of this
HMMmodel are shown in Fig. 2 and Fig. 3. In fact, there may
be used higher order HMM models or HMM models with
more than two states which is quite versatile in real-world
applications such as in speech processing. But, the objective
of the presented work is to suggest a decorrelation step as
simple as possible. So, a two-state first order HMM model
is used for correlation in which only correlation between
successive samples is considered. If the index k in uk,i is
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FIGURE 2. Block diagram of HMM-decorrelated leaky LMS used in the
diffusion algorithm.

FIGURE 3. Trellis diagram of the two state Marvov model.

FIGURE 4. State diagram of the two state Markov model.

removed for simplicity and assuming the stream of input
signal as ui, the input signal occurs at two states. Then, for
distribution of ui, we have{

ui ∼ N (0, σ 2
0 ) si = 0,

ui ∼ N (0, σ 2
1 ) si = 1,

(18)

where σ 2
1 is the variance of state 1, and σ 2

0 is the variance
in state 0. Also, for the correlation coefficient between
successive samples in each state, assume a fixed correlation
coefficient r =

E(uiui+1)
σiσi+1

, where σi is the standard deviation
of sample ui. The transition probabilities between two states
are defined as prk = p{si+1 = 1|si = r} for r, k = 0, 1. The
probability of a state is defined as pr = p{si = r}. Then, the
state probability vector is defined as 5i

= [p0, 1 − p0]T and
is obtained from 5i

= 5iP, where P = [pkr ] is the transition
probability matrix. To decorrelate an input signal which has a
first order two state Markov model, a variable one tap filter is
used. So, if the decorrelated output of the filter is zi = ūi, then,
we have zi = ui − aiui−1 and zi+1 = ui+1 − ai+1ui. To have
uncorrelatedness between zi and zi+1, then E{zizi+1} = 0.

We can write:

E{zizi+1} = E{(ui − aiui−1)(ui+1 − ai+1ui)}

= E(uiui+1) − E{ai+1u2i } − E{aiui−1ui+1}

+ E{aiai+1uiui−1} (19)

Since the uncorrelatedness between ui−1 and ui+1 is assumed,
from (19), the following formula is achieved by assuming the
decorrelation condition:

E(uiui+1) − ai+1E(u2i ) + aiai+1E(uiui−1). (20)

Now, E(uiui+1) is calculated as

p{si = 0}E{uiui+1|si = 0} + p{si = 1}E{uiui+1|si = 1}

= p0E{uiui+1|si = 0} + (1 − p0)E{uiui+1|si = 1}. (21)

To calculate E{uiui+1|si = 0}, it can be written as

p0E(uiui+1|sisi+1 = 00) + (1 − p0)E(uiui+1|sisi+1 = 01).

(22)

Then, from (21) and (22), we can reach to

E(uiui+1) = p0
[
p0E(uiui+1|sisi+1 = 00)

+ p̄0E(uiui+1|sisi+1 = 01)
]

+ p̄0
[
p0E(uiui+1|sisi+1 = 10)

+ p̄0E(uiui+1|sisi+1 = 11)
]
, (23)

where p̄0 = 1 − p0. Since E(uiui+1|sisi+1 = 00) = rσ 2
0 ,

E(uiui+1|sisi+1 = 01) = rσ1σ0, E(uiui+1|sisi+1 = 10) =

rσ1σ0, and E(uiui+1|sisi+1 = 11) = rσ 2
1 , then, (23) can be

written as:

E(uiui+1) = rp20σ
2
0 + 2p0p̄0rσ1σ0 + rp̄2oσ

2
1 ≜ A. (24)

Also, in (20), we have

E(u2i ) = p0σ 2
0 + p̄0σ 2

1 ≜ B. (25)

Also, similarly, following the stationarity of the input signal,
we have E(uiui−1) = A. So, the decorrelation condition
in (20) reduces to

A− ai+1B+ aiai+1A = 0, (26)

which results to a recursive equation for updating the time
varying filter coefficient ai as

ai+1 =
A

B− Aai
. (27)

Therefore, the final low complexity one tap decorrelation
filter is as

zi = ūi = ui − aiui−1, (28)

where ai is obtained via (27).
The one-tap decorrelator used in simulations is depicted in

Fig. 1.
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FIGURE 5. The network used in the simulations.

FIGURE 6. NMSD versus iteration number for conventional and optimized
DL-LMS algorithm in comparison to variable DL-LMS (without
decorrelation).

V. SIMULATION RESULTS
In this section, the performance of the proposed HMM-
Decorrelated Diffusion Leaky LMS (HMM-Decorrelated-
DL-LMS) is investigated. The two versions of the proposed
algorithmwhich are conventional (with constant leaky factor)
and optimized (with optimized leaky factor) are implemented
and discussed. Three experiments are performed. In the
first experiment, the DL-LMS with optimized leaky factor
is implemented and compared to conventional DL-LMS
with constant leaky factor and variable DL-LMS [20].
In the second experiment, the HMM-Decorrelated DL-LMS
is examined and compared with other algorithms. In the
third experiment, the proposed HMM-decorrelated DL-LMS
algorithm is compared with AR-decorrelated DNLMS.

The network has N = 16 sensors and the topology is
the same as was used in [32] and depicted in Fig. 4. In all
experiments, the input signals which in fact are the regression
vectors are derived from the two state first order HMMmodel
described in Section. IV-B. The parameters are selected as

FIGURE 7. MSD versus iteration number for performance comparison of
proposed HMM-decorrelated DL-LMS algorithm in comparison to other
algorithms.

FIGURE 8. MSD versus iteration number for performance comparison of
proposed HMM decorrelation without optimized leaky factor and an AR
decorrelation.

p01 = p10 = 0.2, p00 = p11 = 0.8, r = 0.5, σ1 = 1, and
σ0 = 0.2. The measurement noise is assumed to be White
Gaussian Noise (WGN) with zero mean and variance equal to
σ 2
v = 0.05. The step sizes are all selected as µ = 0.02. The

performance metric is defined as Normalized Mean Square
Deviation (NMSD), which is defined as

NMSD(dB) = 20 log10(
||ω − ωo||2

||ωo||2
), (29)

which is averaged over R = 50 Monte Carlo simulation
runs with random noise, random input signals, and random
parameter vector. The size of parameter vector is set as
L = 50. The unknown parameter vector ωo is drawn from
a WGN with zero mean and unit variance. For simulating
the optimized leaky factor, It is assumed that γ0 = 0.2 and
γmax = 0.5.

In the first experiment, the DL-LMS with uncorrelated
input signal and with different leaky factors equal to γ = 0.4,
γ = 0.3, and γ = 0.2 is simulated. Also, the DL-LMS
with optimized leaky factor and the variable DL-LMS [20]
is simulated as the competing algorithm. The NMSD versus
iteration number is depicted in Fig. 5. It demonstrates the
superiority of the proposed DL-LMS with optimized leaky
factor over other algorithms in terms of achieving less final
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FIGURE 9. MSD versus iteration number for performance comparison of
proposed HMM decorrelation with optimized leaky factor and an AR
decorrelation.

MSD. In fact, the optimized leaky factor has about 10dB less
final NMSD in comparison to the case of γ = 0.2.
In the second experiment, the performance of HMM-

Decorrelated algorithms in presence of correlated input signal
are investigated. Hence, in this experiment, the decorrelation
modification to the algorithm is only considered. In this
experiment, the simulated algorithms are the proposed
HMM-Decorrelated DL-LMS, HMM-Decorrelated DLMS,
classical DLMSwithHMMcorrelation (nominated as HMM-
correlated DLMS), classical DL-LMSwith HMMcorrelation
with γ = 0.2 (nominated as HMM-correlated DL-LMS),
classical DLMS with no correlation (nominated as DLMS),
and classical DL-DLMS with no correlation with γ = 0.2.
The NMSD versus iteration number is shown in Fig. 6.
Some points are deduced. First, the DLMS has better
performance than DL-LMS in terms of final NMSD. Second,
The HMM-decorrelation speeds up the convergence both
in DLMS and DL-LMS with price of higher final NMSD.
Third, HMM decorrelated DL-DLMS is better than HMM
correlated DL-DLMS around 5dB.

In the third experiment, the HMM-decorrelated DL-
LMS is compared with AR-decorrelated NLMS and also
by versions that do not use decorrelations in the case of
not using the optimized leaky factor. The NMSD versus
iteration number is depicted in Fig. 7. It demonstrates that
AR-decorrelation NLMS algorithm has better performance
of 10dB, but with higher complexity of using a decorrelation
filter of length Mdec = 5 instead of Mdec = 1 used in the
proposed algorithm.

In Fig. 5, only modification of using the optimized leaky
factor is used. In Figs. 6 and 7, only modification of decor-
relation in the proposed algorithm is used. Now, in the final
sketch of Fig. 8, bothmodifications of decorrelation and using
optimized leaky factor are considered. The Fig. 8 shows a low
improvement when both using decorrelation and optimized
leaky factor in comparison to when using decorrelation
without optimizing leaky factor. This improvement is around
2-3dB less finalMSD. It shows that using the optimized leaky
factor has low influence on the performance when there are
correlation in the input signal.

VI. CONCLUSION AND FUTURE WORK
In this paper, the main concentration was on diffusion leaky
LMS algorithm as a distributed estimation algorithm with
good numerical stability. This algorithm has a leaky factor
that controls the speed of convergence and final achieved
MSD. The leakage factor is optimally calculated based on
minimizing the disturbance of the algorithm in one iteration.
Thanks to quadratic nature of disturbance the optimized
leaky factor is calculated in closed form. In addition, the
performance of this algorithm is deteriorated in terms of
convergence speed when the input signal is correlated in
time. The existing decorrelationmethods are computationally
complex specially when intended to be used in a sensor
network. So, a statistical HMMmodel for correlation in time
is presented and it is used in a low complex one tap filter
for decorrelation. Again, the coefficient of the one-tap filter
is calculated in closed form. Moreover, simulation results
show the effectiveness of optimized DL-LMS algorithm
in comparison to variable DL-LMS algorithm and also
show the effectiveness of speeding up the convergence
when using the HMM-decorrelated DL-LMS algorithm in
comparison to not using the decorrelation step when there
exists HMM correlation. For the future work, to speed up
the convergence rate further, one can combine the leaky
LMS with proportionate algorithms. Also, a prediction filter
introduced in [33], could be used for the decorrelation step.
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