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ABSTRACT The superior performance of an electric vehicles (EVs) is dependent on the related energy
management controller (EMC). The current study devoted to develop various EMCs such PID, intelligent,
hybrid and supervisory strategy to enhance the performance of EVs under real-time driving conditions. Also,
the work integrates the various novel methodologies to develop EV model, efficiency maps and real-time
driving cycle (DC). In this instance, a mathematical model of an EV with BLDC motor is developed using
MATLAB/Simulink. Further, the efficiency maps for the motor and controller with different EMC’s are
generated using the innovative experimental approach. Then, the developed efficiency maps are incorporated
intomodel-in-loop (MIL)-based EV test platform to analyze the performance of various EMCs. Additionally,
to validate the EVmodel, a real time DC has been developed for different types of road conditions, including
urban, rural, and highway. Subsequently, the developedDC is integratedwithMIL-based EV test platform for
analysis of energy consumption and battery discharge behavior under real-time conditions. From the results,
the proposed supervisory controller (68.4%) exhibits minimal SOC drop than the PID (21.5%), intelligent
(44.9%) and hybrid (59.1%) controllers. As well, the energy consumption (EC) of the various EMCs is 85.63,
60.14, 44.67 and 33.4 Wh/km. In the case of regenerative efficiency of the developed EMCs under real-time
driving conditions are −27.73, −41.64, −58.28 and −77.6 Wh respectively. The overall outcome of this
work demonstrates that the proposed supervisory controller achieves a considerable improvement in battery
consumption as well as a reduction in EC as compared to PID, intelligent, and hybrid controllers.

INDEX TERMS Electric vehicles, energy management controllers, adaptive supervisory self-learning
strategy, real-time driving cycle, efficiency maps.

ABBREVIATIONS
ASSC Adaptive Supervisory Self-Learning

Controller.
BLDC Motor Brushless Direct Current Motor.
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BMP Battery Motoring Power.
BRP Battery Regenerative Power.
DC Driving Cycle.
DOE Design of Experiments.
DOF Degree of Freedom.
EC Energy Consumption.
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EMC Energy Management Controller.
EMs Electric Motors.
EMS Energy Management System.
EOT End of Trip.
EV Electric Vehicle.
FLC Fuzzy Logic Controller.
GHG Green House Gas Emission.
GPS Global Positioning System.
GVM Grass Vehicle Mass.
GVW Grass Vehicle Weight.
HEV Hybrid Electric Vehicles.
HIL Hardware In Loop.
IM Induction Motor.
MANFIS Multi Adaptive Neuro Fuzzy Inference Sys-

tem.
MBC Model Based Calibration.
MEP Motor Electric Power.
MIL Model In Loop.
MMP Motor Mechanical Power.
MRP Motor Regenerative Power.
Ms Motor Speed.
Mt Motor Torque.
NN Neural Network.
OBD On-Board Diagnosis.
PID Proportional Integral Derivative.
SOC State of Charge.
SR Motor Switched Reluctance Motor.
Ws Wheel Speed.
Wt Wheel Torque

I. INTRODUCTION
The adoption of electric transportation is a significant solu-
tion for reducing air pollution and greenhouse gas (GHG)
emissions. Advancing towards a more ecological automotive
industry is also critical in dealing with the world’s ever-
increasing need of fossil fuels, despite their scarcity [1].
An Electric Vehicles (EVs) and Hybrid Electric Vehicles
(HEVs) have been identified as crucial remedies for present
environmental issues. An EVs are battery-powered vehicles
and it provide several benefits such as no pollutants, high
efficiency, and effortless driving experience with minimal
environmental noise [2]. However, there is potential for fur-
ther advancements in EV technology, including in the fields
of driving range extension, battery and motor technology.
Therefore, the development of EVs and the examination of
their performance are significant interest to both the auto-
motive sector and the research community [3]. In addition,
to evaluate EV performance and optimize EM, battery, con-
troller, and converter characteristics, the power required for
propulsion and accessories must be assessed under real-world
operating circumstances. However, the actual operation of
the vehicle is highly unpredictable, as it is influenced by a
variety of factors including energy consumption (EC), road
conditions, temperature, road grade, driving behavior, etc [4],
[5]. As a consequence, EC evaluations of EV are com-
monly conducted using the standardized driving cycle (DC)

mandated by legislation. Diverse DCs are utilized globally,
including new european driving cycle (NEDC), worldwide
harmonized light vehicles test cycle (WLTC), federal test
procedure (FTP), Indian modified driving cycle (IMDC),
US06, etc [6], [7]. In [8] studied the effect of temperature
on EC using the urban dynamometer driving cycle (UDDC)
and NEDC, and the optimal EC for UDDC and NEDC were
identified to be 1.547 kWh and 1.648 kWh, respectively.
Then, in [9] investigated the influence of gearbox on the EC
of EVs and discovered that dual and continuously variable
gearbox systems save much more energy than single gear
transmission. Even so, the energy consumption of EVs is
majorly influenced by component sizing, operating regions
of powertrain components (motor & battery), state of charge
(SOC), driving range, etc. To address these issues, an optimal
modelling environment is required to improve the vehicle per-
formance and EC under various real-time driving conditions.
As well, to ensure the effectiveness of vehicle modelling and
validation procedures, critical design and control decisions
must be considered. In particular, efficient modelling, sim-
ulation, and analysis of the EV powertrain components are
required [10]. The primary components of an EV propulsion
system are an electric motor (EM), battery, controller, and
power converters. In EV propulsion system various types of
EM are used such as Brushless Direct Current (BLDC)motor,
Permanent Magnet Synchronous Motor (PMSM), Switched
Reluctance Motor (SRM) and Induction Motor (IM). The
performance of EVs is significantly influenced by the choice
of the EM and its associated controller. The selection of
the suitable motor and controller is critical to maximizing
the performance and energy consumption of an EV, taking
into account performance needs, energy efficiency objectives,
economic concerns, and the desired driving experience [11],
[12]. In this study, the BLDC motor has been chosen due to
its favorable characteristics such as high starting torque, high
efficiency, and high-power density. So, the development of
an optimal energy management system (EMS) is a universal
concern, particularly for EVs, to optimally distribute power
demand without losing drivability and performance.

Today, there are several EMS techniques for enhancing
the performance of EVs under different real-time conditions,
such as proportional integral and derivative (PID) control,
direct torque control (DTC), model predictive control (MPC),
field-oriented control (FOC), fuzzy logic control (FLC),
hybrid control, etc. Therefore, these controllers may be char-
acterized by their capacity to accomplish one or multiple
goals, such as minimizing energy consumption, optimizing
dynamic responsiveness, enhancing drivability, etc. The DTC
provides greater torque control and is thought to be a superior
control approach for BLDCmotors used in EVs. On the other
hand, it has several flaws, such as torque and current ripples
in low-speed conditions. As a result, it is difficult to achieve
a maximal vehicle performance and minimal energy con-
sumption under real-time driving conditions [13], [14], [15].
To accomplish high performance and maintain the battery
SOC in a depleting phase around the desirable value, DTC
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and FOC techniques are integrated into BLDC motors for
EV propulsion. When these two controllers are used, EVs
operating in a variety of driving conditions exhibit poor EC
and regenerative braking efficiency results [16]. So, the MPC
approach is used to minimize the EC of EV under real-time
driving conditions. It is used to forecast future behaviour
EV and identify the optimum operating condition. As well,
the capability to manage numerous dynamic constraints in
realtime. Anyway, due to the EV system’s high complex-
ity, the MPC technique fails to achieve appropriate battery
discharge limits under real-time driving circumstances [17],
[18]. This technique is challenging to implement in real-time
systems due to its high iterative and computational costs;
also, it necessitates prior knowledge of future driving actions.
The PID approach is gaining significant interest for the
implementation of optimum EMS in real-world driving sce-
narios because to its dependability, short processing time,
and efficient use of memory resources in real-time sys-
tems. It dynamically adjusts the control signals to improve
the efficiency and driving range of the EV under various
conditions. In [8], the PI variables have been optimized
using the particle swarm optimization (PSO) and genetic
algorithm (GA), which led to an enhancement in the transient
response under real-time driving circumstances. Awell-tuned
PID controller can facilitate smoother transitions between
different driving conditions, optimizing energy recuperation
during regenerative braking and enhancing battery efficiency.
In comparison to conventional vector control methods such
as DTC and FOC, the PID controller demonstrates the capa-
bility to minimize EC and enhance the operational range
of EVs during dynamic situations. The optimization of PID
parameters and energy conservation in unpredictable circum-
stances is achieved in [19] via battery SOC feedback and
vehicle velocity. In terms of vehicle performance, PID control
ensures precise tracking of desired speed and torque, result-
ing in smooth acceleration and deceleration under real-time
driving conditions. However, it can struggle in dealing with
nonlinearities and uncertainties in the EV system, which can
affect battery state of charge (SOC) estimation accuracy. Due
to these reasons, the tuning of the PID parameters is difficult
at various transient conditions. As a result, the designers have
adopted intelligent controllers such as fuzzy logic controller
(FLC), neural network (NN) to enhance the performance of
the EV under unpredictable conditions [20], [21]. From the
literature, to regulate the nonlinear operations of the EVs,
the FLC employs a rule base and membership functions that
integrate the input and output variables at different condi-
tions. The optimal calibration of the membership functions
and rule base will give more accurate responses under various
dynamic conditions. Consequently, a FLC is more effective
than a PID controller in terms of various characteristics such
as EC, SOC, regen-efficiency, etc under varying speed and
load conditions [22]. However, the non-linear behaviour of
battery usage introduces numerous uncertainties into the bat-
tery SOC feedback system. Hence, it is critical to adjust the

FLC settings to improve EV performance, which has yet to
be addressed by researchers.

To address the uncertainties in battery state-of-charge
(SOC) while driving in real-time, a novel hybrid learning
approach is suggested [23]. It is an integration of FLC and
PID technique that govern the EV’s varied transient error
responses under diverse scenarios. The FLC duty is to modify
the PID parameters based on the most suitable rules and
membership functions. The combination of FLC and PID
controllers is referred to as a revolutionary hybrid strategy
for reducing EC and improving battery performance under
variety of transient conditions. It offers the advantage of
both accuracy and robustness, which can result in improved
battery health and lifespan. In addition, the hybrid tech-
nique is utilized to improve EV performance under various
road circumstances (Urban, Rural, and Highway) by using
battery SOC, vehicle speed, driving behaviour, and current
flow direction (i.e., regeneration) as feedback [24]. However,
a variety of hybrid control techniques have been implemented
in research studies to manage nonlinear systems whose con-
trol parameters are unknown and which operate under limited
conditions. With the data-driven nature of these approaches,
it is challenging to establish a suitable mathematical model
for nonlinear systems in the context of real-time driving
situations. Besides, NN is a sort of control mechanism that
has the capability to adapt and learn via the adjustment of neu-
ron weights, sizes, relationships between neuron layers, and
activation functions [25]. But, the precision of neural network
control is contingent upon both the quality and quantity of the
data used for training. Also, it exhibits longer time for data
training and provide questionable control outside the training
domain. It is noted that relying only on a single learning
approach might lead to negative outcomes to some extent.
Therefore, integrating several control strategies (FLC, NN),
known as hybridization, have more promise for achieving
greater efficiency in real-time conditions [26]. In this context,
an Adaptive Supervisory Self-Learning Controller (ASSC)
is a hybrid learning control approach that combines the rea-
soning mechanism of FLC with the self-learning capability
of NN. The NN improves the output decisions of the fuzzy
inference system by defining the optimummembership func-
tions on the basis of the training data. This integration aims
to improve the performance and minimize the EC of EVs in
real-time scenarios. By employing the ASSC approach, the
variations of speed, torque and unfavorable chattering conse-
quences under different conditions are reduced quickly. The
implementation of a supervisory control technique improves
the dynamic behaviour of the EV in terms battery SOC, EC,
battery C-rate, regenerative efficiency, etc [27]. Therefore,
ASSC is a more effective control strategy than FLC and NN
for controlling battery SOC fluctuations under real-time con-
ditions. The implementation of a non-linear ASSC strategy
have the potential to enhance the utilisation profile of the
battery SOC in EVs, hence extending their operational range.
The ASSC approach is implement with BLDC motor used
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in EV applications under real-time conditions. In this study,
the entire procedure of design and performance assessment
is conducted using the model-in-the-loop (MIL) simulation.
In MIL simulation, it is generally more efficient and com-
putationally straightforward to define a system behaviour
using a mapped experimental response technique rather than
relying on numerical representations to depict the behaviour
of the BLDC motor, controller, and battery systems. Using a
model-based calibration technique, an efficient BLDC motor
and controller maps (lookup) have been developed. This
process includes the following stages: design of experiments
(DOE), model fitting, optimization, and lookup table genera-
tion. During the process of map (lookup table) generation, the
use of experimental design allows for a systematic examina-
tion of the impact of BLDC motor and controller behaviour
under various conditions, while minimizing the number of
test cases required. This use of Design of Experiments (DOE)
effectively decreases the complexity, time, and expense asso-
ciated with the map development process. As the field of
EVs continues to evolve, advancements in control strategies
will play a pivotal role in achieving greater energy efficiency,
prolonged battery life, and enhanced driving experiences.

In the present context, vehicles manufacturers have rec-
ognized that an efficient EMS is required for the effective
performance outcomes of EVs under real-time driving condi-
tions. The importance for sophisticated EMS that improve the
energy efficacy of EVs in real-world conditions is addressed
in this research. Numerous studies have been carried out
on numerical simulation of EV performance characteristics
with various EMS approaches under real-time driving con-
ditions. Particularly, the estimation of accurate driving range
by evaluating the EC of EVs is the key factor for eradicating
driver anxiety. Moreover, it is substantially more difficult
to identify the optimal discharge path for EVs owing to
variations in driving actions, road grade, travel distance, and
initial SOC. To address the issue of battery utilisation in
EVs, this study aims to provide an advanced self-learning
control strategy that can effectively achieve real-time opti-
mum energy management. This study aims to bridge the gap
between theoretical advancements and practical implemen-
tation by evaluating the optimal EMS effectiveness within
an BLDC motor equipped EV under real-world driving con-
ditions. According to the extensive literature review on EV
performance with different control methods, no publica-
tion thoroughly examines the performance characteristics of
EVs with various energy management approaches. In this
context, the objective of this study is to develop a math-
ematical model of an EV through integrating the mapped
BLDC motor and controller efficiency with various EMS
techniques. This study also develops different energy man-
agement strategies such as PID, FLC, hybrid, and adaptive
supervisory self-learning controllers for minimize the EC
and extend the range of EV under different operating con-
ditions. Compared to traditional approaches such as PID,
FLC and hybrid, the ASSC approach improves the dynamic
behaviour of the EV in terms battery SOC, EC, battery C-

rate, regenerative efficiency, etc. Further, the novelty of the
present work is the development of a real-time driving cycle
across a variety of road conditions, including urban, rural,
and highway to examine the effectiveness of EVs in real-time
operating conditions. In addition, this research employs an
innovative methodology to develop DC and efficiency maps
of the controller and BLDCmotor under real-time conditions.
Then, the developed DC and efficiency maps are loaded
into the EV model to verify different performance param-
eters as EC, regeneration efficiency, motor power, Battery
SOC, battery current, C-rate, etc with various energymanage-
ment controllers (EMC) under real-time operating conditions.
Subsequently, the different energy management controllers
(PID, Fuzzy, hybrid and ASSC) are compared with numerous
performance parameters to assure the energy management
real-time performance superiority. The proposed adaptive
supervisory self-learning controller is anticipated to yield
improved battery utilisation, therefore ultimately enhancing
the real-time operational performance of electric vehicles.
With the specified objectives, this study will deliver read-
ers with knowledge and a critical perspective regarding the
design and development of an effective energy management
controller for electric vehicles. Finally, this work provides
assistance in critical areas and proposes potential areas for
future research concentration.

II. PROPOSED METHODOLOGY
This methodology examines the performance of EV with
different energy management controllers by integration of
efficiency maps and real-time driving cycle under different
operating conditions. In this study, the entire procedure of
design and performance assessment is conducted using the
model-in-the-loop (MIL) simulation. The workflow and pro-
posed methodology of the present study have been organized
in accordance with the four aspects illustrated in Fig 1.
First, an EV model is developed with BLDC Motor via
the MATALAB/Simulink software, employing the reference
parameters of the Ather 450 plus vehicle. The specification
details of the developed EV model are presented in Table 1.
The present study employs the backward-facing modelling
approach to construct the electric vehicle configuration.
The generic structure for backward-facing model consists
of sub-models related to longitudinal block, transmission
block, battery block, mapped motor and controller block.
To validate the performance of the EVs, various efficiency
maps (motor and controller) of energy management con-
trollers (PID, FLZ, Hybrid and ASSC) and a real-time driving
cycle are installed in EV model. Secondly, under real-time
operating conditions, this study develops different energy
management controllers, including PID, FLZ, Hybrid, and
ASSC, to ensure the battery utilisation path and increase the
driving range of electric vehicles. The motor and controller
behavioral maps (lookup tables) are developed experimen-
tally with different energy management controllers using the
point-by-point model-based calibration technique under tran-
sient situations. Next, this work developed a real-time DC
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FIGURE 1. Proposed methodology of the present research.

TABLE 1. Technical specifications of the developed electric vehicle.

across a variety of road conditions, including urban, rural,
and highway to examine the performance of various energy
management controllers in real-time operating conditions.
Further, the developed efficiency maps and DC are loaded

in EV model to verify the performance with EC, regenera-
tion efficiency, motor power, Battery SOC, battery current,
C-rate, etc. However, the battery utilisation characteristics
vary based on the travel distance and the starting battery
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SOC. Utilizing the various energy management controllers to
optimize sudden energy distribution ensures the battery util-
isation path remains unchanged during real-time operation,
thereby extending the vehicle’s driving range. Finally, the
different energy management controllers are compared with
numerous performance parameters to assure the energy man-
agement real-time performance superiority. The proposed
ASSC approach is anticipated to yield improved battery
utilisation, therefore ultimately enhancing the real-time oper-
ational performance of electric vehicles.

III. DEVELOPMENT OF ELECTRIC VEHICLE MODEL TO
VALIDATE THE PERFORMANCE OF THE PROPOSED
CONTROL SYSTEM
In this article, a backward-facing EV model has been
designed and tested on the Matlab-Simulink platform using
a BLDC motor EV configuration. Fig 2 shows a simplified
schematic architecture of the potential EV configuration.
The Simulink model comprises five main functional blocks,
which have been derived from the physical components
arranged in the EV system: longitudinal block, transmission
block, battery block, mapped motor and controller block.
The architecture of the developed Simulink function block
for simulating the EV model is depicted in Fig 2. In this
section, the relevance andmathematical relationships of vehi-
cle dynamics, battery, motor, and controller are examined to
increase the accuracy of EC and driving range estimates.

A. LONGITUDINAL VEHICLE DYNAMICS MODEL
Vehicle modelling begins with an examination of the dynam-
ics and the impact of numerous parameters on its perfor-
mance. To calculate these parameters, the forces acting on
the vehicle must be specified. The model has only one degree
of freedom (DOF) (longitudinal motion) therefore lateral
and vertical motions are neglected [28]. In essential pow-
ertrain modelling, the assessment of the EV performance is
conducted by considering its longitudinal vehicle dynam-
ics. An aerodynamic force, acceleration force, rolling force,
and gradient forces are considered as longitudinal resistive
forces [29]. The driving cycle is a critical input to the
longitudinal vehicle dynamics block. Then, it involves a com-
prehensive consideration of various resistive forces exerted
on the vehicle during its longitudinal motion. These encom-
pass rolling forces (Equation 1), arising from the interaction
between the tires and the road surface; aerodynamic forces
(Equation 2), influenced by the vehicle’s shape and speed;
gradient forces (Equation 3), stemming from inclines or
declines in the terrain; and acceleration forces (Equation 4),
reflective of changes in velocity. After that, the estimation of
the total tractive force is illustrated in Equation 5. Finally,
the output of the longitudinal vehicle dynamic block is wheel
speed and torque, as specified in equations (6) and (7).

Fr = Crf ∗ GVW ∗ Cos(θ (1)

Fa = 0.5 ∗ ρ ∗ Af ∗Cd∗V 2 (2)

Fg = Sin (θ) ∗GVW (3)

Facc = a∗GVM (4)

Ft = Fr + Fa+ Fg+ Fa (5)

Wt = Ft∗Rw (6)

Ws =
V ∗ 60

2 ∗ π∗Rw
(7)

where, GVW -grass vehicle weight, GVM-grass vehicle
mass, Crf-co-efficient of rolling resistance, Fr-rolling force,
Fa-aerodynamic force, Fg-gradient force, Facc-acceleration
force, Ft-total tractive force, Cd-drag co-efficient, Af- frontal
area, a-acceleration, ρ- density, Wt-wheel torque, Ws- wheel
speed, Rw-wheel radius and V-velocity (rpm).

B. TRANSMISSION MODEL
To meet a wide range of EV tractive needs, efficient
power electronics-controlled BLDCmotor in EVs substitutes
multi-speed with gearless or single-speed gear transmis-
sion [30]. In this study, the transmission model is based on
single speed transmission with gear ratio of 7.8:1. Based
on the inputs from the longitudinal model (wheel speed and
torque), it estimates the motor speed and torque and sent to
BLDC motor model. The outputs of the transmission model
are presented in equation (8) and equation (9).

Mt =
Wt

GR ∗ Teff
(8)

Ms = Ws ∗ GR (9)

where, GR-gear ratio, Mt- Motor speed, Ms- Motor speed
(rpm), Teff- Transmission efficiency.

C. MAPPED BLDC MOTOR AND CONTROLLER MODEL
The performance parameters of EVs including accelera-
tion, maximal speed, passing capability and gradeability are
dependent operating range of BLDC motor and controller.
The incorporation of a mathematically modelled BLDC
motor and controller into EV simulation introduces an extra
computational obstacle and represents the complex dynamic
characteristics of the transient BLDC motor [31]. Hence, the
optimal response behavior maps are constructed utilizing the
steady state empirical model of BLDC motor and controller
behavior. Further elaboration on the process of map construc-
tion and experimentation will be presented in the subsequent
section. Based on this contemplation, the developed BLDC
motor and controller efficiency maps with different EMS’s
(PID, FLZ, Hybrid and ASSC) are used in the EV simulation
model. Further, based on the inputs from the transmission
model (Mt & Ms), the mapped BLDC motor model estimate
the motor mechanical power (MMP) (equation (10)) and
motor electrical power (MEP) (equation (11)) under different
real-time operating conditions. The MEP is calculated by
the integration of various energy management controllers
BLDCmotor efficiency maps. As well, the motor model esti-
mates themotor regenerative power (MRP) (equation (12)) by
the inclusion of different controllers’ regenerative efficiency
maps under numerous operating conditions. Then, to analyze
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the performance of mapped controller under real-time condi-
tions, the outputs of the motor block (MEP & MRP) are sent
to the controller block.

MMP =
2 ∗ π ∗Ms ∗Mt

60
(10)

MEP = MMP > 0 ÷Meff = f (S,T > 0) (11)

MRP = MMP < 0 ∗Meff = f (S,T < 0) (12)

were, Meff-Motor efficiency, S-Motor Speed, T-Motor
Torque. The controller block regulates the operations of the
BLDC motor and battery. The controller block determines
any modifications in the operation of the vehicle related with
the demand energy based on the signals received from the
motor model block. Based on the inputs (MEP & MRP)
from the motor block, the controller block estimates the bat-
tery motoring power (BMP) and battery regenerative power
(BRP) by the integration of various motor controller and
regenerative controller efficiency maps. The functions of the
expressions are shown in equations 13 and 14. Finally, the
outputs of the mapped controller block (BMP & BRP) are
sent to the battery bock to estimate the EC and regenera-
tive efficiency of different control algorithms under real-time
operating conditions. In section IV contains comprehensive
information about the proposed control algorithms.

BMP = MEP÷MCeff = f (S,T > 0) (13)

BRP = MRP ∗MCeff = f (S,T < 0) (14)

where, MCeff- Motor controller efficiency, BMP- Battery
motoring power, BRP- Battery regenerative power.

D. BATTERY PACK MODEL
The battery is a complex and nonlinear system, making
the modeling of its function challenging. Its functioning is
affected by SOC, temperature, aging, and internal resistance.
The parameters related to battery performance need to be
evaluated for understanding its variations and limitations
under real-time driving conditions [32]. As a result, to sim-
plify the battery model, the influence of battery aging and
temperature is not studied in this work. The lithium-ion bat-
tery is often used as an energy source in EVs because of
its unique characteristics such as high voltage potential, high
energy density and lightweight with minimal self-discharge.
Based on the inputs (BMP & BRP) from the controller
block, the battery model predicts the E/km, battery current,
driving range, SOC, C-rate, and regeneration efficiency with
different energy management controllers (PID, FLC, hybrid
and ASSC) under real-time driving cycle. The magnitude
and direction of battery current in EVs are varying based
on the position of the accelerator and brake pedal. Then,
battery SOC acts as a direct indicator of the total available
energy in the battery during the trips which is a key factor
to evaluate the remaining driving range of EVs. Moreover,
the total driving range of EVs is directly correlated with
the amount of energy consumed and recovered during accel-
eration and barking, which is primarily depending on the

atmospheric conditions and characteristics of road segments,
vehicle physical parameters, speed and acceleration. Finally,
the functional equations of the energy consumption per km
(E/km) and SOC are presented in equation (15) & (16).

E
km

=

∫
BMP > 0 ÷

(
distance ∗ 3.6 ∗ 106

)
(15)

SOC = ISOC −

(∫
Bc÷ 3600 ∗ Bcap

)
(16)

where, BMP- Battery motoring power, ISOC- Initial SOC,
Bc- Battery current, Bcap- Battery Capacity.

IV. DESIGN AND DEVELOPMENT OF EFFICIENT CONTROL
SYSTEMS TO EVALUATE PERFORMANCE OF ELECTRIC
VEHICLE
An efficient energy management controller improves the
range and efficiency of EVs while minimizing EC under a
variety of operating conditions. This research investigates dif-
ferent kinds of energy management controllers, such as PID,
fuzzy, hybrid, and supervisory techniques, for improving
EV performance under real-time driving conditions. These
controllers have the ability to accurately predict the battery
utilization path while minimizing EC and improving regen-
eration efficiency under a variety of dynamic circumstances.
These controllers are constructed and tested (steady state
experimentation) under a variety of dynamic conditions in
order to generate efficiency maps for the motor and con-
troller. An efficiency maps are generated for the motor and
controller in real-time using various energymanagement con-
trollers. In subsequent sections, the experimental procedure
and development of the control system for BLDC motor are
detailed.

A. PID CONTROLLER
The PID Controller is the most often utilized controller for
controlling industrial operations and EV BLDCmotor speed.
It uses a closed loop system to continually check the output
and change the input values to get the desired output with little
to no volatility in the values despite the different disturbances.
The PID controller removes the incorrect response caused by
the discrepancy between the feedback and reference speeds.
This erroneous response is multiplied by the proportional
(Kp), integral (Ki), and derivative (Kd) sections of the con-
troller and then summed to estimate the final controller
output [33]. This output regulates the duty cycle of the PWM
pulses necessary for the BLDC motor to run in a continu-
ous loop. The continuous output control signal (u(t)) of the
PID controller is represented in equation (17). However, the
selection of PID settings has an effect on the efficiency of the
EV BLDC motor. It leads to improve the EC and decrease
regenerative efficiency under real-time operating conditions.
As a result, estimating PID settings is essential for the smooth
operation of an EV BLDC motor. In this proposed work, the
PID parameters are chosen using the Ziegler Nichols method.
The Ziegler Nichols method is used to fine-tune the P, I, PI,
and PID controllers when the BLDC motor dynamics are
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available or not precisely known [34]. The Ziegler Nichols
rules are used to predicted the PID controller gains based on
the various transient responses of the EV BLDC motor. The
proportional controller is connected to the BLDC motor in
a closed loop system. This method begins by zeroing the Ki
and Kd gains and the Kp value is then increased from zero to
the utmost value until the system exhibits stable oscillations.
The maximal value of Kp is denoted by Kcr (Kcr-Critical
value of Kp), whereas the period of oscillations is denoted
by Tcr (Tcr-Critical period of oscillations). The PID tuning
parameters are determined based on the optimal tuning of the
Kcr and Tcr values and the tuning methodology of the Ziegler
Nichols approach are depicted in Fig 3.

U (t) = Kp ∗ e (t) + Ki ∗
∫
e (t) dt + Kd∗

d
dt
e(t) (17)

Further, the MATLAB/Simulink is utilized to construct the
mathematical model of the EV BLDC motor with PID con-
troller during steady-state experimentation. The EV BLDC
motor is operated in accordance with the optimal experi-
mental design to estimate the various output parameters for
the purpose of generating efficiency maps. The findings lead
to the development of an EV BLDC motor and controller
PID approach efficiency map under various dynamic condi-
tions. Finally, to analyze a variety of performance parameters,
including battery SOC, EC, motor power, and regenerative
efficiency, the developed PID controller efficiency maps has
been integrated into an EV simulation model. The simulation
findings indicate that the PID controller fails to achieve min-
imum EC, SOC drop, and maximum regenerative efficiency
as a consequence of the intricate nature of the EV system.

B. INTELLIGENT CONTROLLER
The intelligent controller is generally acknowledged as an
appropriate controller for complex linear and nonlinear EV
systems. It is used to manage a large variety of input and
output variables, resulting in efficient and acceptable out-
comes. The detailed design and development processes of
the intelligent controller is discussed in [35]. Further, this
work combines the developed intelligent controller with a
steady-state EV BLDC motor experiment to generate intel-
ligent controller efficiency maps under real-time driving
situations. With the intelligent control approach, the EV
BLDC motor and controller efficiency maps are developed
under various real-time operating conditions. Subsequently,
the developed efficiency maps are loaded into EV simulation
model to estimate the EC and regenerative efficiency with
real-time driving cycle. The intelligent controller control rule
tuning is challenging due to the complexity of real-time EV
operation. So, the intelligent controller exhibits a sub-optimal
result with the EV simulation model. However, the findings
reveal that the intelligent controller has a lower EC, battery
SOC drop, and a higher regeneration efficiency than the
PID controller. Finally, the intelligent controller improves the
performance of the EVs than PID controller under real-time
driving condition.

C. HYBRID CONTROLLER
The process for developing and enhancing intelligent con-
trollers in real-time is typically complex since many elements
must be altered, such as MFs, control rules, input and output
gains, and so on. Also, the selection of appropriate PID
controller parameters is of utmost significance, and vari-
ous methodologies are proposed for the estimation of PID
controller advantages. Despite the fact that adjusting the
controller gains can improve the performance of the PID
controller. As a consequence, a self-tuning hybrid controller
is implemented to modify the PID gains in response to the
static and dynamic speed of the EV BLDC motor. It is the
combination of PID and intelligent controller. The gains of
the PID controller are adjusted in real-time by means of an
intelligent controller. The detailed design and development
processes of the hybrid controller is discussed in [35]. Hence,
the output control signal of the hybrid controller can be
described by the subsequent equation (18):

UPID = Kp2 ∗ e (t) + Ki2 ∗

∫
e (t) dt + Kd2∗

d
dt
e(t) (18)

where Kp2, Ki2 and Kd2 are the modified gains of the PID
controller. Based on the optimal tuning of PID gains though
the fuzzy rules, the self-learning controller is developed
under real-time conditions. Then, in an effort to analyze and
generate efficiency maps in real-time, the developed hybrid
controller is integrated into an EV BLDC motor steady state
experiment. The EV BLDC motor and controller maps are
produced using a hybrid technique in steady state testing
under varied dynamic situations. Afterwards, the developed
efficiency maps are plugged into an EV simulation to exam-
ine performance characteristics of vehicle through a real-time
driving cycle. According to the data, the self-learning con-
troller outperforms the PID and intelligent controllers in
terms of battery SOC, EC, and energy recovery. However,
the tuning rules and gains in a self-learning controller under
real-time operational circumstances is tricky. So, this work
presented an adaptive supervisory self-learning controller to
improve vehicle performance with low EC and maximum
energy recovery under various dynamic circumstances. The
subsequent section provides a comprehensive explanation of
the supervisory self-learning controller.

D. ADAPTIVE SUPERVISORY SELF-LEARNING
CONTROLLER
This research integrates NN and FLC into an adaptive super-
visory self-learning controller for EV analysis in a variety
of real-time scenarios. The integration of FLC and NN
produced an innovative method that consolidated the ben-
efits of both techniques, resulting in significant progress
in nonlinear mapping, modeling, and learning. In EVs, the
optimization of controller parameters has become a chal-
lenging task due to recent developments in BLDC motors.
As a result, to maximize the efficiency of BLDC motors in
EVs, controller developers must adopt some sophisticated
self-learning control strategies. The versatility of the ASSC
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renders it suitable for implementation in an extensive range
of control applications. The internal architecture of the ASSC
approach is presented in Fig 4. The detailed design and
development procedures of the ASSC approach is discussed
in [35]. The schematic representation of proposed energy
management controllers in rea-time is presented in Fig 5.
The developed ASSC controller is integrated into an EV
BLDC motor steady state experiment. The investigations
are conducted in accordance with the DoE’s design plan.
Subsequently, the ASSC method is employed to generate
efficiency maps for the EV BLDC motor and controller
across a range of dynamic conditions. Next, the developed
efficiency maps are loaded into EV simulation model for
the investigation of vehicle performance characteristics with
real-time driving cycle. The results obtained from the EV
simulation model utilizing the ASSC approach indicate that
various performance parameters, including battery state of
charge, energy recovery, battery current, battery power, and
motor power, reveal optimal performance across a range of
real-time driving conditions. Finally, the adaptive supervisory
self-learning controller shows optimal performance results
than PID, FLC and hybrid controller under real-time driving
conditions. In a subsequent section, the experimental setup
and efficiency map development process for the EV BLDC
motor and controller are detailed.

V. DEVELOPMENT OF CONTROLLER AND MOTOR
OPERATING MAP UNDER VARIOUS REAL-TIME
OPERATING CONDITIONS
This section outlines the experimental setup of an optimal
BLDC motor and controller efficiency maps, which will be
used to build the Simulink EV simulation model within the
MATLAB software.

A. EXPERIMENTAL SETUP FOR MAP DEVELOPMENT
In this study, a 4.5 kW BLDC motor is employed to generate
efficiency maps for various energy management controllers
(PID, FLC, Hybrid & ASSC) under real-time driving con-
ditions. The BLDC motor is securely placed in the testbed,
as illustrated in Fig 6, and the eddy current dynamometer of
12 kW is safely connected to the shaft of the BLDC motor.
From Fig 6, The stepdown transformer receives a 230 V
AC power and converts it to 60 V AC since the BLDC
motor works at 60 V DC. The technical specifications of the
BLDC motor are presented in Table 2. The reduced voltage
is subsequently sent to the rectifier, which converts 60 V AC
to 60 V DC to power the BLDC motor. In this case, a 400 V
capacitor is used to stabilize the BLDC motor’s DC voltage
under fluctuating load and speed situations. To verify the
effectiveness of the various energy management controllers,
the 60 V DC output is directly linked to the BLDC motor’s
drive or inverter. The controllers (PID, FLC, Hybrid&ASSC)
mentioned above have been developed in real-time using
MATLAB/Simulink and are linked to the STM32 microcon-
troller or DAC in an encrypted way via USB. Following that,
the STM32 microcontroller is connected to the drive/inverter

through a serial port (RS 232) to broadcast and receive
information under diverse operating situations. Moreover,
the dynamometer control interface allows for manual load
regulation of a BLDC motor under different speed condi-
tions. At that time, in different real-world situations, the
BLDC motor drive/inverter receives control signals from the
developed energy management controllers such as PID, FLC,
hybrid and ASSC. Based on the control signals from various
EMC’s, the BLDC motor and drive operates under different
operating conditions. Finally, the output responses (current
& voltage) of the controller and motor are estimated based
on the feedback data received from the real-time system.
Finally, the efficiency maps of the controller/drive and motor
are generated using various energy management controllers
such as PID, fuzzy, hybrid, and supervisory approaches
based on the experimental predicted output responses of the
motor and controller under various dynamic scenarios. The
detailed procedure ofmap development is discussed in further
section.

B. OPTIMAL ENERGY EFFICIENT RESPONSE MAPS UNDER
VARIOUS DYNAMIC OPERATING CONDITIONS
In this work, the Model Based Calibration (MBC) tech-
nique is used to develop motor and controller efficiency
maps with various EMCs for the EV simulation model. The
MBC technique stepwise process entails DoE, modeling,
optimization, and map production. The MBC methodology
in MATLAB is a complex strategy that is utilized in this
research to investigate the influence of certain variables on
future outputs. A one-stage model approach is employed in
this study to generate motor and controller efficiency maps
for PID, intelligent, hybrid and supervisory controllers under
real-time operating conditions. The behavior of the motor
and controller is heavily influenced by its operating and
control parameters. Torque and speed are the operational
parameters for the motor, while energy management con-
trollers (control algorithms such as PID, FLC, and so on)
are the control parameters. To achieve the optimum BLDC
motor and controller response maps, the control parameters
(control algorithms) must be optimized at various dynamic
circumstances. Experimental motor response behaviors are
captured using the DoE technique in order to create the
model. An experimental control and operational parameter
ranges are shown in Table 3. The design plan had been
created in collaboration with the DoE (50 test conditions)
employing the I-optimal technique. The tests are carried out
in accordance with the design plan, and the Sobol-series DoE
is utilized to gather the motor and controller data for various
EMC’s based on the test circumstances. The gathered data is
processed through data transformation such that it roughly
matches a normal distribution, which increases the model
forecasting capability’s efficiency. In this research, a Gaus-
sian elimination technique is employed to generate the motor
and controller empirical model behaviors under dynamic situ-
ations. With the empirical models of the motor and controller,
the optimal efficiency maps for different EMCs of BLDC
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FIGURE 2. Schematic representation of EV simulation model and EV powertrain configuration.

FIGURE 3. Tuning methodology of PID controller gains using ziegler nichols approach.

motor and controller are developed under real-time operating
conditions. Figure 7 (a-d) depicts the developed BLDCmotor
and controller efficiency maps with different energy manage-
ment strategies such as PID, FLC, hybrid andASSC approach
under real-time Condition, which will be utilized in vehicle
modeling. Finally, to examine the performance characteristics
of the vehicle, the developed controller and motor efficiency
maps are loaded into EV simulation model.

VI. SIMULATION AND VALIDATION OF THE DEVELOPED
MOTOR AND CONTROLLER MAPS WITH THE
REAL-WORLD DRIVING CYCLE
The driving cycle source is required to estimate the EC and
battery discharge behavior in the simulation. In this study,
a real-time DC is developed for all types of road conditions,
including urban, rural, and highway. Fig 8 depicts the exper-
imental methodology for developing real-time DC under
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FIGURE 4. Internal architecture of the proposed supervisory controller.

FIGURE 5. Schematic representation of a proposed energy management controller for the development of BLDC motor efficiency map.

FIGURE 6. Experimental setup for BLDC motor and controller efficiency map development with different strategies.

various road conditions such as urban, rural, and highway.
This research discusses the real-time DC design and devel-
opment process as well as route selection, trip timing and
experimental methodology. The selection of a driving route

is the first and most important procedure in the development
of a driving cycle [30], [36]. Based on the knowledge of local
road and traffic conditions, the driving route is chosen in
Vellore, India as shown in Fig 9. The selected driving route
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FIGURE 7. (a): BLDC motor and controller efficiency maps for PID controller under real-time conditions. (b): BLDC motor and controller efficiency maps
for fuzzy logic controller under real-time conditions.
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FIGURE 7. (Continued.) (c): BLDC motor and controller efficiency maps for hybrid controller under real-time conditions. (d): BLDC Motor and Controller
Efficiency maps for adaptive supervisory self-learning controller under real-time conditions.

includes all three different type roads conditions, including
rural, highway, and urban. The overall length of the driv-

ing route is approximately 33.45 km. Further, the electric
two-wheeler is employed to develop a real-time driving cycle
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TABLE 2. Technical specifications of BLDC motor used in EVs.

TABLE 3. Range of the operating parameters under different dynamic
conditions.

under various road conditions. The selected vehicle specifica-
tions are stated in Table 1. The selected EV is equipped with
a microcontroller and mobile phone GPS. The data obtained
from themicrocontroller includes real-time vehicle speed and
performance parameters of battery and motor under different
real-time conditions. Along with that, the data obtained from
the mobile GPS such as vehicle speed, and position of vehicle
with X, Y and Z direction in the predefined driving route.
The aforementioned acquired data are stored in the micro-
controller memory during driving journey and EOT stored
data is transfer to workstation for the performance analysis.
Subsequently, based on the acquired data, a real-time DC is
developed with several driving routes such as urban, rural,
and highway. The profile of the developed real-time driving
cycle is shown in Fig 10. Further, the developed real-time
driving cycle is integrated with the EV simulation model to
estimate performance parameters such as power, C-rate, EC,

battery discharge behavior, regeneration efficiency, and so
on. Finally, this study combines real-time DC and efficiency
maps with an EV simulation model to investigate the per-
formance of the motor and battery under real-time driving
conditions.

VII. RESULT AND DISCUSSION
This study incorporates real-time DC and various energy
management controller efficiency maps into an EV simula-
tion model in order to verify the effectiveness of the vehicle.
In this section, under real-time operating conditions, the EV’s
numerous performance characteristics, such as motor power,
battery power, battery current, C-rate, EC and regeneration
efficiency are analyzed and compared with different energy
management controllers. Aswell, to understand the variations
and limitations of the EVs under real-time operating condi-
tions, it is necessary to analyze the parameters associatedwith
battery and motor performance.

A. MOTOR POWER
The motor power is influenced by the desired speed and
torque of the EVs under various driving conditions. In this
section four different types of energymanagement controllers
are used to analyse the motor power fluctuations under real-
time conditions. Figure 11 depicts the fluctuations in motor
power using various energy management controllers such as
PID, intelligent, hybrid, and ASSC during various driving
conditions such as urban, rural, and highway. From the figure,
the average motor power of the PID, intelligent, hybrid and
supervisory controllers with different driving conditions are
5.8, 4.2, 3.1 and 2.2 kW respectively. From the results, the
supervisory controller exhibits minimal power variation than
the PID, intelligent and hybrid controllers. Also, the motor
power of conventional controllers reaches its optimum under
diverse road conditions as a result of the absence of real-time
parameter adjustment. So, the supervisory controller will
minimize the EC and improve the driving range of Evs under
various road conditions. Further, the maximal motor power of
the PID, intelligent, hybrid and supervisory controllers with
different road (urban, rural and highway) conditions are 11.2,
9.1, 7.3 and 6.9 kW respectively. Hence, the conventional
controllers such as PID, intelligent, and hybrid exhibit greater
motor power fluctuations than the proposed supervisory con-
trollers under diverse driving routes. With a conventional
controller, battery discharge rate and energy consumption
increase due to significant changes in motor power, and driv-
ing range decreases. likewise, the self-learning capabilities
of the proposed controller effectively mitigated the real-time
power variation of the motor. Eventually, the proposed super-
visory controller provides optimal performance outcomes in
terms of energy consumption, battery discharge rate, and
regeneration efficiency under real-time driving conditions.

B. BATTERY POWER
The maximum velocity of an EVs is described as the quantity
of power produced by the battery at a specific time period
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FIGURE 8. Methodology for development of real-time driving cycle under different road conditions.

FIGURE 9. Selected driving route for development of real-time driving cycle under urban rural and highway conditions.

during propulsion. The battery power is varied based on
the discharge rate and temperature under different dynamic

conditions. Figure 12 represents the fluctuations in battery
power using various energy management controllers such as
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FIGURE 10. Real-time driving cycle profile under different road conditions.

PID, intelligent, hybrid, and ASSC during various driving
conditions such as urban, rural, and highway. According to
the graph, the proposed supervisory controller exhibits less
battery power fluctuations under urban, rural and highway
road conditions than other conventional controllers. The aver-
age battery power of various energy management controllers
(PID, intelligent, hybrid and ASSC) with urban, rural and
highway conditions are 7.5, 5.7, 3.7 and 2.1 kW respectively.
Due to the maximum battery powers of the conventional
controllers, the battery discharge behavior will be affected
under real-time driving situations. As a result, the vehicle
energy consumption will increase and its operational range
will reduce. In this instance, Due to the minimum volatility in
battery power, the suggested supervisory controller will help
to reduce EC and increase driving range under various driving
conditions. Further, the maximum battery powers of the PID,
intelligent, hybrid, and supervisory controllers in urban, rural,
and highway conditions are 16.3, 11.8, 8.3, and 7.2 kW,
respectively. The PID controller has the highest battery power
variations; as a result of this fluctuation, the battery discharge
rate and EC rise, and the vehicle performance decreases.
Aswell, the intelligent and hybrid controllers revealmore bat-
tery power deviations than the supervisory controller under
various driving conditions. The proposed supervisory con-
troller gives acceptable results than the other conventional
controllers under different driving routes. As a result, the pro-
posed controller will aid in reducing battery power deviation
and thus enhance the EC and driving range of EVs under a
variety of real-time driving conditions.

C. BATTERY CURRENT
The magnitude and direction of battery current in EVs are
varying based on the accelerator and brake pedal position.
Figure 13 represents the fluctuations in battery current using
various energy management controllers such as PID, intelli-
gent, hybrid, and ASSC during various driving routes such
as urban, rural, and highway. According to the graph, the
average battery current of various energy management con-
trollers in urban, rural, and highway conditions is 147, 97, 78,
and 55 A, respectively. Due to the high non-linear behaviour
of EVs under real-time road conditions, traditional controllers
(PID, intelligent, and hybrid) display greater battery current
than the suggested supervisory controller. The calibration and
tuning of real-time parameters with traditional controllers are
challenging due to the strong nonlinearity behaviour of EV
under real-time conditions. However, Due to its adaptive self-
learning capabilities, this suggested supervisory controller
would efficiently minimize average battery current fluctu-
ations under real-time driving conditions. As a result, it is
used to reduce energy consumption while increasing driv-
ing range under various road conditions. Further, in urban,
rural, and highway situations, the maximum battery cur-
rent aeration of PID, intelligent, hybrid, and supervisory
controllers is 319.6, 232.5, 176.8, and 139 A, respectively.
The higher battery current observed in PID, intelligent, and
hybrid controllers can be attributed to the absence of real-time
parameter adjustment. Because of that, the battery SOC
will discharge extremely rapidly, the EC will increase, and
the EV’s performance will degrade under various driving

40340 VOLUME 12, 2024



P. Saiteja et al.: Assessment of Adaptive Self-Learning-Based BLDC Motor EMC in EVs

FIGURE 11. Variations in motor power with different energy management controllers under varied driving
conditions.

conditions. Although, the proposed supervisory controller
depicts minimal variation in battery current across urban,
rural, and highway conditions. Accordingly, it is utilized
to enhance the battery discharge rate under various driving
conditions, as well as to reduce EC and increase operating
range. Simultaneously, the proposed supervisory controller
enhances battery power, current, SOC, EC, driving range, and
regenerative efficiency under a variety of real-time conditions
in comparison to other conventional controllers.

D. BATTERY DISCHARGE C-RATE
The C-rate is affected by the battery discharge rate under
various real-time driving circumstances. Figure 14 represents
the variations in C-rate using various energy management
controllers such as PID, intelligent, hybrid, and ASSC during
various driving routes such as urban, rural, and highway.

According to the graph, the maximum and average C-rates of
PID, intelligent, hybrid, and supervisory controllers are 4.47,
3.5, 2.48, 1.95, and 1.9, 1.4, 0.9, 0.4, respectively. The tradi-
tional controllers demonstrate a higher C-rate in urban, rural,
and highway driving conditions compared to the proposed
supervisory controller. Due to the higher C-rate of conven-
tional controller, the battery discharge characteristics will
deteriorate under real-time driving conditions. Also, a greater
C-rate diminishes battery life and reduces battery discharge
efficiency in urban, rural, and highway circumstances. More-
over, the higher C-rate will increase the temperature and
discharge rate of battery, due to this reason the battery losses
more energy under different driving route. This will result in
an increase in energy consumption and a decrease in driv-
ing range. However, compared to other conventional energy
management controllers, the suggested supervisory controller
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FIGURE 12. Variations in battery power with different energy management controllers under varied driving conditions.

demonstrates lower C-rate for urban, rural, and highway driv-
ing circumstances. Due to adaptive self-learning capabilities,
the proposed controller can tune the various control param-
eters in real-time. So, it can easily control the non-linear
behaviour systems (EVs) under different dynamic conditions.
In this context, Therefore, the supervisory controller will
enhance the battery life and discharge rate under real-time
operating conditions. As well, it will extend the operational
range of EVs in urban, rural, and highway environments
while decreasing their energy consumption. Eventually, it is
evident that the supervisory controller exhibits optimal per-
formance than other energy management controllers in terms
of C-rate, power, EC, performance, range, recovery energy,
etc under different driving conditions.

E. STATE OF CHARGE
Battery SOC acts as a direct indicator of the total avail-
able energy in the battery during the trips which is a key
factor to evaluate the remaining driving range of EVs.
Fig 15(a) represents the individual SOC variations of var-
ious energy management controllers with urban, rural and
highway driving conditions. The end-of-trip (EOT) SOC of
a PID controller in urban, rural, and highway environments
is 89.3, 56.7, and 21.5%, respectively. Next, the EOT for
intelligent and hybrid controllers under urban, rural and high-
way conditions are 92.2, 69.3, 44.9 and 94.1, 77.1 59.1%
respectively. Further, 95.3, 82.2 and 68.4% are the end-of-trip
SOC of proposed supervisory controller under urban, rural
and highway driving conditions. According to the results,
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FIGURE 13. Variations in battery current with different energy management controllers under varied driving conditions.

EOT SOC for urban driving conditions with various energy
management controllers is 89.3, 92.2, 94.1, and 95.3%. The
supervisory self-learning controller has the lowest SOC drop
(95.3%) compared to the other controllers. Due to high
non-linear behavior of EV in real-time, the traditional con-
trollers are fails to maintain desired SOC level under different
road conditions. So, the recommend supervisory controller
is appropriate for maintaining the acceptable levels of SOC

in urban conditions, while also lowering EC and increasing
driving range. Further, EOT SOC levels for rural driving con-
ditions with various energy management controllers is 56.7,
69.3, 77.1 and 82.2%. Due to its self-learning capabilities,
the supervisory controller maintains a lower SOC drop in
rural driving conditions than other conventional controllers.
The PID (56.7%), intelligent (69.3%) and hybrid (77.1%)
controllers have more SOC drop, because of this battery
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FIGURE 14. Variations in C-rate5 with different energy management controllers under varied driving conditions.

discharge rate will increase and it will improve the EC and
decrease the driving range of the vehicle. Moreover, the final
or highway EOT SOC of the various energy management
controllers are presented in Fig 15 (b). From the figure, the
final SOC drops of PID, intelligent, hybrid and supervisory
controllers are 21.5, 44.9, 59.1 and 68.4% respectively. At the
EOT (including urban, rural and highway), the conventional
controller’s (PID, intelligent and hybrid) trip SOC is drops
more than the supervisory self-learning controller. Therefore,
the suggested supervisory controller is intended to reduce
EC under various driving conditions by increasing the opera-
tional range of EVs. Finally, the efficient energy management
controller (PID, intelligent, hybrid and supervisory strategy)

will improve the performance of the EVs in terms of SOC,
EC, recover energy, etc under real-time driving conditions.

F. ENERGY CONSUMPTION AND REGENERATIVE
EFFICIENCY
The total driving range of EVs is directly correlated with
the amount of energy consumed and recovered during accel-
eration and barking, which is primarily depending on the
atmospheric conditions and characteristics of road seg-
ments, vehicle physical parameters, speed and acceleration.
Figure 16 depicts the total energy consumption per km
and regeneration efficiency for various EMCs in real-time.
The total energy consumption of PID, intelligent, hybrid
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FIGURE 15. (a): Individual SOC variations of various energy management controllers with urban, rural and highway driving conditions. (b): Final SOC
variations with different energy management controllers.
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FIGURE 16. Different energy management controllers energy consumption and regenerative efficiency.

TABLE 4. Output parameters of EV with different energy management controllers under real-time driving conditions.

TABLE 5. Comparison of current study EV performance results with previous literatures.

and supervisory controllers are 85.63, 60.14, 44.67 and
33.41Wh/km under different driving conditions. The super-

visory controller shows minimum EC (33.41 Wh/km) than
other convention controllers, due to its self-tuning capability
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TABLE 6. Advantages and disadvantages of different proposed control approach’s.

it will tune and optimize the control parameters in real-
time conditions. Due to non-linear behaviour of EVs, the
conventional controllers are fails to tune and optimize con-
trol parameters in real-time, so the overall EC will increase,
resulting in a reduction in the driving range of the vehi-
cle. Therefore, with the minimum EC (33.41 Wh/km) of
proposed controller, the driving range of EV will increase
under different dynamic road conditions. Further, Fig 16
shows the regenerative efficiencies of PID, intelligent, hybrid
and supervisory controllers are -27.73, -41.64, -58.28 and
-77.66 Wh respectively. From the results, the supervisory
controller (-77.66 Wh) recuperates the most regenerative
energy compared to other conventional controllers. More-
over, the hybrid controller (-58.28 Wh) also recovers sig-
nificant amount of energy than the PID (-27.73 Wh) and
intelligent controllers (-41.64Wh). Nevertheless, the conven-
tional controllers recover a minimal regenerative energy than
proposed controller under various real-time driving condi-
tions. Undoubtedly, the maximum recovery rate will enhance
the driving range of electric vehicles. Finally, according to an
analysis of a variety of performance characteristics pertaining
to various EMCs (PID, intelligent, hybrid and ASSC) under
diverse road conditions (urban, rural and highway), an effec-
tive energy management controller improves the vehicle’s
power, efficiency, SOC, energy consumption, regenerative
efficiency, etc.

VIII. CONCLUSION
The main objective of this research is to develop an effective
energy management controller for the energy optimization
of electric vehicles under various real-time driving condi-
tions. This research develops different EMCs such PID,
intelligent, hybrid and supervisory strategy to improve the
performance of EVs under real-time driving conditions. Also,
this study combines many unique methodologies to develop
an EV model, efficiency maps, and a real-time DC. In this
instance, amathematical model of an EVwith BLDCmotor is
developed using MATLAB/Simulink. Further, using a novel
experimental technique, the efficiency maps of the motor and
controller for various EMCs are developed. Then, the devel-
oped efficiency maps are incorporated into model-in-loop
(MIL)-based EV test platform to analyze the performance of
various EMCs. In addition, to validate the EV model, a real
time DC has been developed for different types of road con-
ditions, including urban, rural, and highway. Subsequently,
the developed DC is associated with a MIL-based EV test
platform for real-time examination of energy consumption
and battery discharge behavior. Finally, the EV model is
simulated with various EMC efficiency maps and real-time
DC to analyze motor power, battery power, C-rate, EC, SOC,
regenerative efficiency, etc. The validation and other inter-
pretation outcomes of this study endeavor are summarized
below.
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• To perform the EV simulation, the various energy man-
agement controller efficiency maps are successfully
developed under real-time condition. As well, to validate
the EV model the real-time driving cycle is developed
for all types of road conditions, including urban, rural,
and highway. In addition

• Based on the motor and battery performance character-
istics, the supervisory controller exhibits less variation
than other conventional controllers in urban, rural, and
highway driving conditions, as shown in Table 5.

• The current study’s findings are compared to previ-
ous literature using several EV performance parameters
under real-time driving scenarios. The current study
results show that several energy management controllers
(PID, FLC, Hybrid, and ASSC) outperform earlier lit-
eratures in terms of E/km, EOT-SOC, regeneration
efficiency, driving range, and battery depletion rate
under various real-time dynamic situations. The cur-
rent study has lower EC (33.4 Wh/km), lower SOC
drop (68.4%), restored peak regeneration efficiency
(77.66%), and a longer driving range (105.6 km) than
previous literature evaluations, as shown in Table (6).
Table 7 also summarizes the benefits and drawbacks of
various energy management control systems. Based on
broad findings, the current study results show that EV
performance and driving range may be improved under
real-time driving situations.

• The proposed supervisory self-learning controller
exhibits minimal EC (33.4 Wh/km) than the PID
(85.63 Wh/km), intelligent (60.14 Wh/km) and hybrid
(44.67 Wh/Km) controller under different real-time
operating conditions. So, it can improve the battery
utilization behaviour and operating range of EV under
dynamic conditions.

• The end-of-trip SOC drop of the proposed supervi-
sory controller (68.4%) is lower than PID (21.5%),
intelligent (44.9%) and hybrid (59.1) controller under
different road conditions. Hence, it can enhance the
battery efficiency and improve the performance of EV
under real-time conditions.

• The regenerative efficiency of the PID, intelligent,
hybrid and supervisory controllers are of the PID, intel-
ligent, hybrid and supervisory controllers are -27.73,
-41.64, -58.2 and -77.6 Wh under different road condi-
tions. It can be observed that the proposed supervisory
controller recovered more energy than the other con-
ventional controllers. Thus, it can improve the battery
consumption behaviour and driving range under real-
time conditions.

Through the proposed adaptive supervisory self-learning con-
troller, the present research enhances performance of EV
under real-time driving conditions. Also, it minimizes the EC
and improve the driving range under different road condi-
tions. However, the proposed controller is extremely reliant
on training information, and this data invariably affects the

controller’s performance. This could potentially be a limita-
tion of the suggested controller. To address this, advanced
controllers like the Multi Adaptive Neuro Fuzzy Inference
System (MANFIS) or specialized optimization techniques
could be utilized to train the data to achieve stable and effec-
tive performance of the proposed controller, which deserves
further investigation.
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