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ABSTRACT Soft growing robots, are a type of robots that are designed to move and adapt to their
environment in a similar way to how plants grow and move with potential applications where they could
be used to navigate through tight spaces, dangerous terrain, and hard-to-reach areas. This research explores
the application of deep reinforcement Q-learning algorithm for facilitating the navigation of the soft growing
robots in cluttered environments. The proposed algorithm utilizes the flexibility of the soft robot to adapt and
incorporate the interaction between the robot and the environment into the decision-making process. Results
from simulations show that the proposed algorithm improves the soft robot’s ability to navigate effectively
and efficiently in confined spaces. This study presents a promising approach to addressing the challenges
faced by growing robots in particular and soft robots general in planning obstacle-aware paths in real-world
scenarios.

INDEX TERMS Soft robotics, growing robots, reinforcement learning, deep Q learning.

I. INTRODUCTION
The exploration of confined spaces, such as those encoun-
tered inMinimally Invasive Surgeries (MIS) or the inspection
of archaeological sites, presents significant challenges for
traditional rigid robot designs [1], [2]. Consequently, there is
a critical need for innovative materials and locomotion sys-
tems in robotics to navigate these challenging environments
effectively. Drawing inspiration from biological systems
like elephant trunks, octopus tentacles, and snakes, the
development of soft continuum robots featuring continuous
bending backbones has facilitated non-destructive navigation
in congested spaces [3], [4], [5]. However, the limited lengths
of traditional continuum robots restrict their capacity to
explore more distant spaces [6].
Addressing this limitation, the concept of growth mobil-

ity, inspired by the way plants grow, has emerged as
a groundbreaking approach in robotics. Growing robots,
emulating the biological growth of plants, can extend their
lengths, volumes, or knowledge, gradually adapting to their
environment [7]. These robots, made of soft materials or
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equipped with flexible joints, can extend to reach faraway
spaces while maintaining compliance in confined settings.
Prior efforts in designing long, flexible robots suitable for
tight spaces include the ?Active Hose? by Tsukagoshi et
al., a multi-degree-of-freedom robot designed for search and
rescue applications [8]. Isaki et al. developed a flexible,
extended cable with a camera for exploration in narrow
areas [9], and the Slime Scope, a pneumatically driven
soft arm, was created for use in rubble environments [10].
However, these designs often require moving the entire robot
body, leading to significant friction with the environment.

Recent advancements in plant-inspired robotics have led
to the development of two novel types of growing robots
capable of extending their body lengths by addingmaterials at
their tips. Sadeghi et al. proposed a plant root-like robot with
a 3D printer-like head at its tip, enabling efficient steering
by varying material deposition speeds [11], [12]. However,
the growth speed is environment-dependent. In contrast,
Hawkes et al. developed a vine-like growing robot using a
‘‘tip-eversion’’ mechanism [13], [14]. This pneumatically-
driven robot, made from thin-walled polyethylene tubing, can
extend for tens of meters and navigate slippery or sticky
environments. Steering is achieved through environmental
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interaction or by using Series Pneumatic Artificial Muscles
(SPAM) for controlled movements [4], [15]. The unique
combination of lengthening capacity, length-to-diameter
ratio, and a compliant body allows vine-like robots to
effectively navigate through distant, cluttered environments,
as demonstrated in [16] and [17].
The very features that make vine-like robots so versatile

also introduce complex challenges in motion planning. One
of the critical aspects of vine robots is their irreversible
growth process. Once a segment of the robot has extended
or turned in a particular direction, retracting or reversing
this action is not feasible. This irreversible nature of growth
necessitates highly accurate and forward-thinking motion
planning. In their recent work, [18] have pioneered the use
of a Model Predictive Control (MPC) approach in the context
of vine robot navigation, incorporating the kinematics of a
vine robot as the predictive model, enabling advanced motion
planning and obstacle avoidance. However, the development
of an accurate kinematic model for vine-growing robots poses
significant challenges.

This research introduces a new application of deep rein-
forcement learning, specifically Deep Q Networks (DQN),
to enhance the navigational capabilities of soft growing
robots, as depicted in Figure 1. Our algorithm capitalizes on
the inherent flexibility of soft robots, seamlessly integrating
environmental interactions into the decision-making process.
This approach is particularly geared towards enabling navi-
gation through densely cluttered spaces, a task that presents
significant challenges for conventional robotic systems.

FIGURE 1. Enhancement of Movement Skills in the Vine-Growing Robot
Through Deep Reinforcement Learning: This process involves the robot’s
adaptive learning from its interactions with the environment.

The findings from our simulations indicate a marked
improvement in the ability of soft robots to exploit obstacles
effectively to reach challenging goals, leveraging the DQN
framework. This advancement addresses a critical obstacle in
soft robotics, significantly enhancing the operational perfor-
mance of soft growing robots in real-life scenarios, especially
those characterized by complex, obstacle-rich environments.
By equipping these robots with the capability to plan and
execute obstacle-aware paths more effectively, this research

lays the groundwork for their enhanced utilization in diverse,
real-world applications.

The paper is organized as follows: Section II introduces
the kinematic model of the vine growing robot, including the
interaction model with obstacles. In Section III details the
proposed DQN reinforcement learning algorithm, including
the observation, action and reward definitions. In Section IV,
we present the simulation results to asses the performance
of our DQN approach for planning safe paths for growing
robots. Finally, Section V concludes the paper, summarizes
our main contributions, and outlines potential directions for
future work.

II. MODELING OF VINE ROBOTS
In this research, we focus on the vine-growing robot recently
developed by [16]. Using an eversion mechanism [19], the
robot can elongate its tip up to tens of meters. The robot’s
body is made of a thin-walled polyethylene tube, initially
inverted, as depicted in Figure 2. The robot’s length can
be increased by applying air pressure to its chamber, which
permits the tip to move away from its base. The eversion
mechanism allows the vine robot to navigate easily through
adhesive environments without getting stuck. To control the
robot’s bending, three serial Pneumatic Actuator Muscles
(sPAM) are installed around its circumference, and air
pressure is applied to these actuators. The arrangement
of these sPAM actuators enables 360◦ steering, achieved
by manipulating the input pressure for each actuator,
as described in [16].

FIGURE 2. Operational Mechanics of the Growing Vine Robot. (a) The
application of air pressure to the robot’s central tube aids in extending
the tip, as shown in (b). The steering mechanism, depicted in (c),
is achieved by altering the air pressure in one or more of the soft
pneumatic artificial muscles (sPAMs) surrounding the vine robot.

This section is dedicated to exploring the connection
between actuation parameters and the position of the robot’s
tip, as delineated by the kinematic model. Additionally,
it will illustrate the method of integrating the robot body’s
interaction with obstacles into the kinematics. This integra-
tion will be achieved by resolving a nonlinear constrained
optimization problem that symbolizes this interaction.
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A. KINEMATICS OF VINE ROBOTS
Given the inherent characteristics of soft growing robots,
particularly their lightweight construction and the typically
slow-paced nature of their operational movements, the
primary focus in research and application tends to be on
statics and kinematics, rather than dynamics. The forward
kinematics of the vine robot are formulated predominantly
under the guiding principle of the constant-curvature assump-
tion, as detailed in the seminal work of Jones andWalker [20].
This robot is conceptualized as a single-section, extensible
entity exhibiting continuum-like characteristics, endowed
with dual degrees of freedom for curvature and bending,
along with an additional degree for axial extension.

The spatial orientation and positioning of the robot,
denoted as Tbr , are intrinsically linked to its configurational
state, represented by q ∈ R3. This state vector q encompasses
the pivotal elements defining the robot’s structure: the
length of the robot (s), the curvature (κ), and the angle of
the curvature plane (φ), all of which are comprehensively
illustrated in Figure 3. The pose Tbr is derived from these
parameters, offering a precise mathematical representation of
the robot?s positioning and orientation in space.

A =


cos2 φ(cos κs− 1)+ 1 sinφ cosφ(cos κs− 1)
sinφ cosφ(cos κs− 1) cos2 φ(1− cos κs)+ cos κs

cosφ sin κs sinφ sin κs
0 0

− cosφ sin κs cosφ(cos κs−1)
κ

− sinφ sin κs sinφ(cos κs−1)
κ

cos κs sin κs
κ

0 1

 .

(1)

The robot’s tip position p = [x, y, z]T ∈ R3 in Cartesian
space can be stated from Eq. (1) as,

x =
cosφ(cos κs− 1)

κ
,

y =
sinφ(cos κs− 1)

κ
,

z =
sin κs

κ
(2)

In the context of this research, we have adopted the
simplifying assumption of a planar environment, denoted
mathematically as φ = 0. This assumption is primarily for
the sake of analytical and computational simplicity, allowing
us to focus on the core aspects of the algorithm and control
strategy without the additional complexity introduced by a
three-dimensional environment. However, it is important to
note that the extension of our model and methodologies to a
spatial, three-dimensional environment is straightforward.

The kinematic formulation encapsulated in Eq. (2) is
key for understanding the vine robot’s intrinsic behavior
and practical application in autonomous navigation. This
model is integral to the training regimen of the Deep
Q-Network (DQN) agent, a critical component in enabling

FIGURE 3. Schematic of vine-like growing robot and its configuration
parameters. The robot is characterized by its length s, curvature κ =

θ
s ,

and angle of robot plane φ.

the vine robot to accurately navigate towards designated tar-
get positions, particularly in scenarios involving interaction
with its surrounding environment.

Central to the operational mechanics of the vine robot is
the actuation lengths, denoted by l = [s, l1, l2, l3]. These
lengths represent the tangible actuation space, encompassing
both the core robot length and the lengths of the soft
Pneumatic Artificial Muscles (sPAMs). Notably, utilizing
shape parameters within this framework does more than
merely dictate the robot’s movements; it effectively general-
izes the control problem. This generalization ensures that the
control strategies developed are not limited to this specific
vine robot but apply to a broader spectrum of continuum-like
robots adhering to the constant-curvature model previously
discussed.

B. INTERACTION MODELING
When a vine robot makes contact with an obstacle, it adapts
its form to accommodate this interaction. Predicting and
understanding this shape adaptation is essential for refining
control algorithms and ensuring smooth, efficient navigation.

In order to integrate the influence of obstacles into
the change of the robot’s shape, we implemented the
strain energy minimization principle as emphasized in [21].
In general, the approach involves treating a single-section
continuum robot of length s as a flexible beam formed of
N sub-segments. Each segment is subjected independently to
bending deformation caused by the external torque resulting
the actuation and the interaction with the environment as
depicted in Figure 4. Consequently, the robot assumes a
configuration that optimizes its strain energy at a state of
static equilibrium. This optimization leads to a curvature
alignment denoted as κ ∈ RN across the segmented length of
the vine robot’s body, divided intoN sections. This alignment
serves as the central objective, encapsulated by the following
key objective function with the aim of finding the set of
curvatures κ ∈ RN for the sub-segments.

argmin
κ

(
γ1

N−1∑
i=0

(κi − κt )2 + γ2

N−2∑
i=0

(κi+1 − κi)2
)

(3)
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FIGURE 4. Effect of a point obstacle on the continuum robot shape.
On the left the robot has no interaction with the obstacle and the robot
curvature is the same to all segments. On the right, the robot has collided
with a point obstacle making the robot curvature not consistent along it’s
backbone.

trim=5cm 4cm 9cm 1cm,clip In the specified equation, the
formulation is strategically divided into two principal terms,
each addressing a distinct aspect of the vine robot’s curvature
control. The first term is designed to minimize the deviation
between the curvature of each sub-segment of the robot and
a predefined target curvature, κ . This target curvature is
established under the assumption of obstacle-free conditions,
serving as a benchmark for the desired trajectory of the robot
in an unobstructed environment.

Simultaneously, the second term in the equation is tasked
with a different objective: it aims to reduce the disparity
in curvature between adjacent segments of the robot. This
is a critical consideration, as it adheres to the principle of
minimizing strain energy, thereby preserving the integrity of
the robot’s continuous backbone structure. The necessity to
maintain a smooth transition between segments is paramount
in ensuring the robot’s efficient and effective movement,
particularly in scenarios involving complex navigation paths.

The incorporation of the factors γ1 and γ2 in this equation
plays a vital role. These weighting factors are employed
to establish a balance between the dual objectives of the
equation.

To avoid the growing robot from colliding with the
obstacle, the optimization problem in Eq. (3) is subjected to
the constraint that the Cartesian coordinates (xi, yi) of the tip
of each sub segment i is within a safe distance rr from the
center of the obstacle at the location (xo, yo) with radius ro as
follow, assuming the obstacle location is known

dio ≥ ro + rr , ∀i = 0, 1, . . . ,N − 1 (4)

where dio =
√
(xi − xo)2 + (yi − yo)2 is the Euclidean

distance from the segment i of the robot and the obstacle
location.

While the constant curvature model serves as the foun-
dational assumption in our kinematic modeling of the vine
robot, it’s important to recognize that interactions with envi-
ronmental obstacles can significantly alter the robot’s shape,
thereby challenging this assumption. In scenarios where
the robot comes into contact with an obstacle, its behavior
diverges from that of a single-segment, constant curvature
entity. Instead, the robot begins to exhibit characteristics akin
to a multi-segmented structure, displaying varying curvatures
along its length.

III. DQN REINFORCEMENT LEARNING ALGORITHM
This section elaborates on the Reinforcement Learning (RL)
algorithm employed to train the growing robot. The primary
objective is to enable the robot to efficiently navigate towards
a specified goal within its environment, while skillfully
navigating around and interacting with obstacles. The RL
agent operates by observing the current state x ∈ R9 of the
growing robot, which is defined within the observation space
as:

x = [s κ ṡ κ̇ xg yg xo yo d]T (5)

In this state vector x, s and κ represent the robot’s
length and curvature, respectively, and ṡ and κ̇ are the
corresponding time derivatives of these quantities. These
variables are crucial for the RL agent to understand and
predict the robot’s physical configuration and movement
dynamics. To maintain awareness of the goal and obstacle
locations within the environment, the coordinates (xg, yg) for
the goal and (xo, yo) for the obstacle are included in the
observation space. Additionally, the Euclidean distance d is
calculated and tracked. This distance, defined between the
robot’s tip (x, y) as derived in Eq. (2) and the goal position,
is given by:

d =
√
(x − xg)2 + (y− yg)2 (6)

In order to ensure the generalizability of the RL model
to different goal locations, the position of the goal is varied
randomly during the training process, with a probability
of 0.2 for changing in each training iteration. This random-
ization strategy is designed to expose the growing robot to a
diverse set of scenarios, thereby enhancing its ability to adapt
and perform effectively in a wide range of environmental
conditions and goal configurations.

The reinforcement learning agent in this study is designed
to manage the movement of a growing robot by sampling an
action vector a, defined as follows:

a = [ṡ κ̇] (7)

Here, ṡ represents the robot’s growth speed, and κ̇ indicates
the rate of change in the robot’s curvature. By incorporating
these specific actuation variables, the proposed algorithm
demonstrates versatility and adaptability across a broad range
of continuum-like robotic systems. This flexibility is crucial
as it ensures the applicability of the goal-reaching algorithms
irrespective of the underlying actuation mechanism, whether
it be cable-driven or pneumatically driven systems.

In the domain of Q-learning, a crucial aspect is the repre-
sentation of actuation in discrete values. This discretization
ensures that each actuation component of the robot operates
within a predefined set of actions, effectively covering the
entire operational range. Specifically, in our model:

1) The rate of change of curvature, κ̇ , is restricted to three
discrete values, [κl 0 κr ] rad/s. These values correspond
to the robot bending to the left, remaining stationary (no
bending), and bending to the right, respectively.
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2) The growth speed, ṡ, is either set to elongate the robot
at a constant rate of sm m/s or to halt its elongation,
denoted as ṡ = 0.

Consequently, the action space for the robot is defined as
a set of all possible combinations of these discrete values:

a =
{[

κl
0

]
,

[
κl
sm

]
,

[
0
0

]
,

[
0
sm

]
,

[
κr
0

]
,

[
κr
sm

]}
This discrete action space encapsulates all the possible

movements of the robot within its operational constraints,
allowing for a structured approach in the Q-learning algo-
rithm to optimize the robot’s behavior for achieving specific
goals. At the onset of each training episode, the RL algorithm
initializes with predetermined parameters κ0 and s0. The
algorithm initially adopts a strategy of exploration, where
actions a are chosen randomly based on an exploration
probability ϵ, as delineated in Algorithm 1. This exploratory
phase is crucial for the agent to acquire diverse experiences
and insights into the environment’s dynamics.

As training progresses, the algorithm gradually shifts its
focus towards exploitation, increasingly selecting actions that
are anticipated to yield the highest cumulative reward. The
formulation for calculating the cumulative reward Rk at each
step k is expressed as:

Rk = rk + γ rk+1 + γ 2rk+2 + . . .+ γ n−krn = rk + Rk+1
(8)

In this equation, rk represents the immediate reward
assigned at each step k , and γ is the discount factor, which
balances the importance of immediate and future rewards.

The computation of the immediate reward rk in our
proposed method is designed to incentivize goal-oriented
behavior. Specifically, a high reward of +1000 is assigned
if the robot’s tip is within a maximum distance of dmax =

0.1 from the goal, leading to the termination of the training
episode. Conversely, if the robot’s tip is farther from the
goal, the reward is inversely proportional to this distance d ,
as defined in Eq. (6). The reward function is thus formulated
as:

rk = 1−
(

ln(1+ dk )
ln(1+ dmax)

)
(9)

This reward structure ensures that the agent is motivated
to minimize the distance to the goal, effectively guiding its
learning process towards efficient and goal-directed actions.

During both the training and testing phases of our
approach, the position of the obstacle is assumed to be
fixed. This static positioning of the obstacle simplifies the
learning and evaluation process, allowing the reinforcement
learning agent to focus on understanding and adapting to
a consistent environmental factor. However, it’s noteworthy
that our approach possesses the inherent capability to handle
dynamic obstacles as well. This adaptability stems from the
inclusion of the goal position in the agent’s observation space.
Since the agent is already equipped to process and respond

FIGURE 5. Illustration of the DQN Agent Architecture: This diagram
depicts the agent as it observes state s and executes action a. The
process of transforming the observed state into an actionable decision is
facilitated through a feed-forward neural network, which serves as the
core mechanism for mapping observations to corresponding actions.

Algorithm 1 Action Sampling
P ← P0
for episode = 1 to N do

for k = 1 toM do
with probability ϵ select random action ak , other-

wise ak = maxaQ(s, a)
(sk+1, rk ) = step(sk , ak ) ▷ Simulate the system
Pk = (sk , ak , sk+1, rk )

Algorithm 2 Learning Q-Value
θ ← θ0 ▷ Initialize network weights
while No termination signal recieved do

Sample random minibatch of (s, a, r, s′) from P.
Set target = r + γ maxa′ Qθ (s′, a′)
Set prediction = Qθ (s′, a′)
L = 1

2

[
target− prediction

]2
θ ← θ − α

∂L
∂θ

▷ Update network weights

to changes in the goal’s location, extending this adaptability
to accommodate moving obstacles is a feasible and logical
progression.

The deep Q-learning algorithm [22] is utilized in this
research to train the agent to reach the desired goal while
maximizing the accumulative reward of Eq. (8). The RL agent
learns to select the best possible action a at every state s as
described in Algorithm 2 and Figure 5. This is represented
by a policy π (s)

π(s) = max
a
Q(s, a) (10)

where Q(s, a) is approximated in Q-learning algorithm as

Q(s, a)← Q(s, a)+ α

(
r + γ max

a′
Q(s′, a′)− Q(s, a)

)
(11)

where s′ is the next state while a′ is the next action.
Meanwhile, α is the learning rate.

In conventional Q-learning [23], where the state space is
small, the Q value is represented as a table of state and the
corresponding Q of each action in that state. However, in this
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navigation problem, the state space is enormous. Thus, a deep
neural network is used to approximate the Q-table asQθ (s, a),
where θ is the deep neural network that is trained as follows:

θ ← θ − α
∂L
∂θ

(12)

where L is the loss:

L =
1
2

[
target− prediction

]2
=

1
2

[
r + γ max

a′
Q(s′, a′)− Q(s, a)

]2
(13)

IV. RESULTS AND DISCUSSION
A comprehensive series of numerical experiments designed
to evaluate the effectiveness of the DQN-based method for
obstacle-aware navigation in growing robots. Initially, the
focus was on analyzing the interaction model. This model
crucially predicts how the morphology of the vine robot
alters in response to encounters with obstacles. In Figure 6,
we illustrate the initial phase of the robot’s navigation
sequence, wherein it begins in a configuration that is free
from any collision with the obstacle, depicted in transparent
red. Subsequently, as the robot navigates through its environ-
ment, there is an incremental increase in its bending motion,
applying constant κ̇ . This progression continues until the
point of collision with the obstacle. Upon this interaction,
the robot’s shape undergoes a transformation, conforming to
the parameters set out by the interaction model discussed in
Section II. Such an analysis is vital for understanding the
adaptive behavior of the robot under varying environmental
constraints.

FIGURE 6. The vine growing robot interacting with an obstacle after
applying constant actuation of κ̇ .

In this study, we configured the replay memory to
accommodate a maximum of 20,000 steps, as delineated
in Algorithm 1. This memory utilizes a First-In-First-Out
(FIFO) strategy for data replacement, ensuring a continual
update of experiences for the learning agent. The training
protocol, detailed in Algorithm 2, comprised an extensive
series of 200,000 episodes (N ), with each episode constrained
to a maximum of 100 steps (kmax). This comprehensive
approach is designed to provide the agent with a wide array
of scenarios for robust training.

The learning thread, initiating after a prelude of
20 episodes, facilitates the accumulation of initial experi-
ences in the replay memory, essential for effective learning.
A batch size of 64 was chosen for the random selection of
experiences from the memory pool (denoted as P), balancing
the computational efficiency and diversity in experience
sampling.

The exploration rate of the network was initially set
to 1.0, promoting a purely exploratory approach at the
onset of the learning phase. Subsequently, this rate was
decremented by 0.05 following each episode, culminating
at zero. Such a gradual decrement facilitates a strategic
shift from exploration to exploitation, enabling the agent to
progressively rely on learned behaviors over random actions.

For optimization, the ADAMS optimizer [24] was
employed, renowned for its efficacy in handling large datasets
and complex variable interactions. Finally, the discount factor
and learning rate were set at 0.5 and 0.1, respectively.

A. FIXED GOAL, OBSTACLE-FREE
In the initial phase, the training process of the proposed
DQN-based navigation system was evaluated in a goal-
reaching scenario. This scenario was characterized by a fixed
goal position set in an environment free of obstacles. Figure 7
presents the learning progression when the goal is set at
coordinates (1, 3), with the vine robot starting from initial
parameters s0 = 1 meter and κ0 = 0.01 m−1.

FIGURE 7. Evaluation of the Proposed DQN Goal-Seeking Algorithm: This
figure illustrates the learning performance of the algorithm, showcasing
two key metrics. On the left, the graph displays the number of steps
required by the agent to reach the goal. On the right, the graph depicts
the accumulated reward achieved by the agent.

The left side of Figure 7 illustrates a notable decrease in
the number of steps required for the robot to successfully
complete the reaching phase. This reduction indicates an
improvement in the efficiency of the robot’s path-finding as
the training progresses. On the right side, the figure depicts an
increase in the average accumulated reward over the course
of the training steps.

It is important to note the observable fluctuations in both
the number of steps and the average reward, particularly in the
early stages of training. These fluctuations can be attributed
to the high exploration rate ϵ initially set in the training
process. At this stage, the robot is more inclined to make
random decisions, exploring a broader range of policies. This
exploratory approach is crucial for the robot to discover and
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learn from diverse situations, even though it may temporarily
deviate from the policy that maximizes expected rewards.
As training progresses and the exploration rate decreases,
the robot increasingly adopts strategies that focus on reward
maximization, leading to more consistent and goal-oriented
behavior.

Figure 8 evaluates the DQN algorithm post-training,
focusing on its ability to direct the robot towards a specified
goal using the learned DQN model. The upper section of the
figure graphically represents the decrease in error distance,
which is the spatial discrepancy between the robot’s tip
and the designated goal. The lower section of the figure
depicts the discrete control actions executed by the robot
during its journey to the goal. These actions are a direct
result of the decisions made by the DQN agent based on the
trained model. A key observation from the results is that after
38 steps, equivalent to 3.8 seconds, the robot successfully
reaches the goal, where the DQN agent applying zero control
actions.

FIGURE 8. (Top) The decay of the error between the robot’s tip and the
target location of the trained DQN. (Bottom) The set of discrete action
commands executed by the vine robot to reach the goal.

B. VARYING GOAL, OBSTACLE-FREE
To assess the generalization capabilities of the proposed
DQN model, particularly in navigating towards a goal with
varying location within the environment, we incorporated a
goal-changing strategy during the training phase. This strat-
egy involved altering the goal’s location with a predefined
probability of 10%, thus presenting the agent with diverse
navigation challenges. The environment was kept free of
obstacles for this phase of training to simplify the evaluation
process and focus on the agent’s ability to adapt to changing
goals.

Figure 9 illustrates the training progress of the DQN
agent under this variable goal location condition. Notably,
the figure demonstrates a decreasing trend in the number of
steps required for the agent to reach the goals as the episodes
progress. Concurrently, there is an observable increase in
the accumulated rewards over the episodes, indicating an
improvement in the agent’s efficiency and goal-reaching
capability.

FIGURE 9. The learning performance of the DQN algorithm in an
obstacle-free goal changing environment.

FIGURE 10. Normalized error distribution among the working
environment of the growing robot.

FIGURE 11. The training progress in terms of the number of steps and the
accumulated rewards of the DQN agent for commanding the vine robot to
reach a varying goal while considering the interaction with obstacles.

FIGURE 12. The histogram of the DQN agent performance in terms of the
number of steps and the accumulated rewards in the varying goal
obstacle-aware scenario.

The observed fluctuations in both the number of steps and
the accumulated rewards can be attributed to the dynamic
nature of the goal locations. Despite these variations in goal
locations, the DQN model exhibits a notable robustness over
the episodes. During the testing phase, the DQN agent was
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tasked with directing the vine robot to reach various goals,
with the goal locations (xo, yo) sequentially altered within the
environment, adhering to the ranges xo ∈ [0, 4] and yo ∈
[−4, 4]. Figure 10 presents a heat map illustrating the nor-
malized error distribution across the working environment.
The visualization indicates minimal errors in goal-reaching
accuracy across diverse goal locations, with the exception of
areas near the edges. This observation of increased error at the
periphery could potentially be attributed to the constrained
size of the simulated vine robot, which was limited to five
meters.

C. VARYING GOAL, OBSTACLE-AWARE
In the final series of experiments, the DQN agent underwent
extensive training, consisting of 2 million steps, within an
environment that included a fixed obstacle with a radius of
ro = 0.5 meters, located at coordinates (1, 2). Concurrently,
the goal’s position was dynamically altered throughout
the training, with a 10% probability of being randomly
relocated within the environmental boundaries. Figure 11
illustrates the agent’s progressive learning curve, showcasing
an efficient reduction in the number of steps required to reach
the goal while simultaneously maximizing the accumulated
rewards.

This training efficacy was further analyzed under two
distinct learning rate scenarios, α1 = 0.01 and α2 =

0.001, as demonstrated in Figure 11. The comparative
analysis suggests that a lower learning rate tends to
enhance the training performance, potentially leading to a
more precise and refined learning outcome. However, it’s
important to note that this improved performance might
come at the cost of increased computational resources.
This trade-off between learning rate and computational
demand is a crucial consideration in the optimization of the
DQN training process, particularly in complex environments
where obstacle navigation and dynamic goal-seeking are key
factors.

During the testing phase, the proficiency of the DQN
agent was rigorously evaluated through a series of 100 trials,
wherein it was tasked to navigate to randomly set goals
within a maximum limit of 200 time steps. The performance
outcomes of these trials are comprehensively visualized in
the histograms presented in Figure 12, focusing on two key
metrics: the number of steps taken and the accumulated
rewards.

The data illustrates that in approximately 75% of the
trials, the robot successfully accrued positive rewards ranging
between 500 and 1000. This result indicates a high level
of efficiency in reaching the goals. Additionally, it was
observed that the majority of these successful trials were
completed within 50 steps, further underscoring the agent’s
effectiveness.

However, it is noteworthy that in about 25% of the trials,
the robot failed to reach the goal within the stipulated
200 steps. This failure could be attributed to a couple of
factors: Firstly, the random goal locations might occasion-
ally be generated within the obstacle’s space, rendering
them physically inaccessible. Secondly, the goals may be
positioned at distant locations in the environment, posing a
challenge for the robot to reach them within the 200-step
limit.

To mitigate this issue and decrease the failure rate,
a couple of strategies could be implemented: One approach
would be to modify the goal generation algorithm to
ensure that goals are not placed within or too close to the
obstacle’s location. Alternatively, extending the time limit
beyond 200 steps could provide the robot with additional
leeway to reach more distantly placed goals. Either of these
adjustments could enhance the overall success rate of the
DQN agent in effectively reaching the goals across a variety
of environmental conditions.

Figure 13 depicts a specific testing scenario for the DQN
agent, illustrating a strategic navigation task involving the
vine robot, marked with red indicators, and an obstacle,
represented by a blue circle. This scenario demonstrates the
robot’s ability to exploit the presence of the obstacle in

FIGURE 13. The trained DQN agent successfully commands the vine growing robot to reach the goal (represented in a black cross) while considering the
interaction with the obstacle located at (1, 2).
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order to reach a goal that is otherwise challenging to access.
The figure sequentially portrays the robot’s movement across
different time steps, highlighting its adaptive navigation
strategy.

A key observation from this scenario is the alteration in
the robot’s shape upon encountering the obstacle, deviating
from the constant curvature model initially assumed. This
deviation is not just a consequence of the robot’s interaction
with the obstacle but is also strategically advantageous. The
vine robot’s inherent compliance, a fundamental character-
istic of soft robotics, is effectively utilized here to navigate
around the obstacle. This flexibility allows the robot to mold
its path and shape in response to environmental constraints,
showcasing an advanced level of adaptability.

The scenario illustrated in Figure 13 exemplifies the
practical benefits of the robot’s compliance in real-world
applications. It demonstrates the robot’s capacity to dynami-
cally adjust its form and trajectory in complex environments,
leveraging obstacles not as hindrances, but as aids in
navigating towards difficult-to-reach goals. This ability to
intelligently interact with and utilize environmental fea-
tures underscores the sophistication and potential of the
DQN-guided navigation strategy in soft robotics.

V. CONCLUSION
In this research a Deep Q Network (DQN)-based navigation
approach is implemented for a soft vine-growing robot
resulting in significant insights into the capabilities and
adaptability of this technique in environments with obstacles.
Through a series of meticulously designed experiments,
the study has demonstrated the proficiency of the trained
DQN agent in guiding the robot to effectively reach
designated goals, even in scenarios with challenging obstacle
placements.

Particularly notable is the robot’s ability to navigate around
and utilize obstacles as part of its pathfinding strategy. This
scenario illustrated the robot’s sophisticated interaction with
the environment, where it skillfully adapted its shape in
response to obstacles, deviating from the constant curvature
model. This adaptability, facilitated by the robot’s inherent
compliance, proved to be advantageous in navigating through
and leveraging the environment to reach difficult goals.

The methodology implemented in this study adopts a
discrete set of actions to accomplish the navigation task of
the vine growing robot. This approach is characterized by
its simplicity and ease of implementation, as it allows the
robot to choose from a predefined set of actions at each step.
However, this discrete action space may limit the robot’s
ability to perform fine-grained movements, which can be
crucial in tasks requiring high precision.

As a natural progression of this research, it is essential
to explore and analyze how this discrete action space
approach compares with continuous space learning tech-
niques. Continuous action spaces, as employed in algorithms
like Asynchronous Advantage Actor-Critic (A3C) [25] and
Deep Deterministic Policy Gradient (DDPG) [26], offer a

broader range of potential actions at each step. This can lead
to more nuanced and precise control strategies, potentially
enhancing the robot’s performance in complex tasks.
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