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ABSTRACT The traditional parallel solving methods of ordinary differential equations (ODE) are mainly
classified into task-parallelism, data-parallelism, and instruction-level parallelism. Based on the RIDC
(revisionist integral deferred correction) algorithm, a hybrid solver dispatched on both CPU and GPU is
proposed, which realizes computing in a pipeline form and a remarkable parallelism is obtained both inside
a single equation and among many different equations. The proposed framework can make full use of the
multi-core advantage of GPU, which is conducive to load balancing within computing nodes. The efficiency
and accuracy of the framework are verified in several experiments.

INDEX TERMS ODE, hybrid solution, RIDC, parallel solver.

I. INTRODUCTION
The traditional parallel solving methods often implying
a sequential integrator in time, decoupling of differential
equations, or the parallel evaluation of the right-hand
side, primarily encounter several challenges: firstly, time-
integration is inherently sequential due to causality which is
inefficient; secondly, although parallel simulation hardware
devices and parallel programming languages have developed
rapidly, the multi-core utilization of CPU and GPU is
still inefficient which highly depends on the initial value
problem (IVP) and the employed parallel-in-time method;
thirdly, the sequential nature of time integration does
not match the existing parallel underlying support. When
solving ODEs, there is an input and output dependency
between the models, which determines the sequence of the
solution process. Therefore, the current parallel simulation
performance mainly depends on the degree of parallelism
algorithms, while the algorithm software does not proceed
with parallel optimization or provide an interface for parallel
design, which leads to the low utilization of CPU and GPU.

Basically, there are two ways to improve the paral-
lelism: 1. decoupling between models. After decoupling, the
parallelism between systems or modules can be achieved
under the conditions of convergence and stability constraints;
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2. parallelism at the solver level, which uses some numerical
algorithms and hardware architecture features to achieve
parallelism at the data or time domain level. In this paper,
we focus on the latter method to design and implement an
ODE solver. The solver is based on the RIDC (revisionist
integral deferred correction) algorithm, which realizes com-
puting in a pipeline form and a remarkable parallelism. It is
the first work implementing RIDC algorithm on GPU side in
a pipeline form and achieving a pretty good result comparing
with the existing methods, such as Ong’s RIDC, Julia’s RK4,
and PCR in [29].

In the following sections, we will give an introduction
to the related ODE solving algorithm (section II), followed
by the GPU parallel solution status in section III and the
software package status in section IV. Then in section V and
section VI, we introduce our pipeline based ODE solving
framework and the principle of RIDC Algorithm. Finally,
several experiments are used to verify our framework’s
accuracy and efficiency in section VII and achieve some
conclusions in section VIII.

II. BACKGROUND
With the limit of the hardware manufacturing process, the
processor’s clock frequency is close to the bottleneck and
multi-core processor has become the ‘‘horizontal expansion’’
standard of today’s computing chips. The task division and
solution for multi-core processor has naturally become a hot
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issue in the current real-time computing field [1]. As a result,
the time-domain parallel integration method has been given
attention again. In the traditional partial differential equation-
solving process, the time domain method is usually not used
for parallelization, but when the parallelization in space is
saturated, the time domain method provides a direction for
further parallelization. However, due to the limitation of
causality in time, later solutions in time are influenced by
earlier solutions. Therefore, time-domain parallel algorithms
are quite different from spatially-parallel algorithms, which
usually require iteration in the time dimension.

Regarding the initial value problem (ODE-IVP) in paral-
lelism in the time domain, it can be roughly divided into
the following three methods proposed by Burrage, et al. [2]:
the first is ‘‘problem domain parallelism’’. The ODE solving
problems are divided into a series of sub-problems that can be
executed in parallel and the coupling among sub-problems is
realized through an iterative process. Such methods mainly
include the waveform relaxation method proposed by Vande-
walle, et al. [3]; the second is ‘‘step parallelism’’. The time
domain is decomposed into multiple sub-time domains. Such
methods include the Parareal method proposed by Lions,
Gander, et al. [4], [5] by alternately applying coarse-grained
sequential solvers and fine-grained parallel solvers; the third
is ‘‘method parallelism’’ which integrates in each integration
step (multiple functions are evaluated at the same time).
This method is typically used in small-scale parallelism
and is limited by the specific calculation. For example,
the multi-order Runge-Kutta method is parallelized within
each integration step and such solutions mainly include the
methods proposed by Miranker, Enenkel, Ketcheson, et al.
[6], [7], [8]. A prediction-correction framework can also
be used to generate method-parallel temporal integrators,
including the parallel extrapolation method proposed by
Kappeller, et al. [9] and the RIDC integrator proposed by
Christieb, et al. [10], [11]. Ong et al. [12] explored how
time-integration methods based on deferred correction can
be effective solvers on modern computer architectures and
demonstrate their performance.

Specifically, the spectral deferred correction (SDC) pro-
posed by Dutt, et al. [13] iteratively corrects the approximate
solution by solving the integral formula of the error equation.
This integral formula form overcomes the stability problems
of traditional differential delay correction methods. SDC
is a sequential method while revisionist integral deferred
correction (RIDC) is a formalized variant of SDC which
achieves the purpose of parallel correction by pipeline-
continuous computation. Unlike SDC using Gauss-Lobatto
nodes, RIDC uses evenly spaced nodes to minimize memory
footprint and allows embedding of higher-order integrators.
The basic idea of SDC and RIDC methods is to convert the
original initial value problem (IVP) into solving the related
error initial value problem and then gradually correct the
numerical error in the original IVP solution; parallelization
is reflected in solving the original IVP and the related error
IVPs at the same time, that is, the calculation of each order’s

error correction is parallel. However, the majority of previous
efforts have been CPU-oriented, not fully leveraging the
potential of GPU. Our work explores the application of ODE
solving methods on the GPU side, attempting to harness the
computational power of GPU.

III. GPU PARALLEL SOLUTION STATUS
In traditional parallel ODE solvers, the algorithms are either
CPU thread-oriented or incorporate GPU resources into the
computational process, which has several drawbacks in the
following two aspects:

1. Problem-solving areas are limited. Traditional methods
of working out ODEs with homogeneous properties are
only applicable to large-scale and homogeneous model
instances(in the form of y′(t) = f (t, y)), such as group behav-
ior evolution, distributed training simulations, etc., which
can be viewed as a kind of Monte Carlo simulation method.
However, many simulation models have different internal
mathematical descriptions, especially for complex products
in industrial areas such as automobiles, which include various
sub-models of engines, hydraulics, transmissions, brakes, etc.
Therefore, it is hard to build an overall spatial discrete parallel
solution algorithm.

2. GPU usage is not high enough. With a whole task
parallelism approach, when the number of homogeneous
ODE equations is small, the portion of the model that can
be run in parallel occupies only a fraction of the stream
processors on the GPU, leading to a low workload. In current
multi-resolution parallelism schemes, computational tasks
are completely CPU dependent and GPU sits idle, which
is unable to provide reasonable computational power. All
these methods result in an unbalanced load on the computing
resources within the computation nodes. For implicit solu-
tions of particularly complex ODEs, the internal computation
process involves fixed-point iterations. If the computation
resources of the GPU cannot be effectively utilized, the
computation of each global time step will consume a lot of
CPU time, which slows down the simulation and reduces
simulation efficiency.

Generally, there are two kinds of possible GPU-based
parallel ODE solving techniques:

One direction is parallelism-across-the-task, such as,
dispatching multiple instances of the same ODE equation
to streaming multiprocessors on different GPUs. Except for
different initial values, all these multiprocessors share the
same computing logic and other parameter configurations.
This parallel process relies on the SIMD feature of the GPU
and requires all operations to be fully isomorphic to execute
in parallel.

The technique mentioned above can be further divided into
two specific implementations when solving equations in the
form of y′(t) = f (t, y): the first one is framework as Fig.1 [14]
shows, solving each ODE through a GPU thread (WorkItem),
and lots of ODEs are organized through warps(WorkGroups);
the other one is exhibited in Fig.2 [15] rearranging the ODEs
by the same equations so that each thread has the same
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FIGURE 1. Each WorkItem corresponds to ODEs.

FIGURE 2. Each WorkItem corresponds to an equation.

instructions, includingM sets of different ODE equations and
each set contains N homogeneous equations. There are N
groups of parameters and each group contains M different
parameters. In the actual calculation process, N can be
allocated to different work groups for execution according to
the size of N. The second implementation leads to a more
fine-grained task division.

Another direction is the data-parallelism, which belongs to
the approach of time-domain parallel solution of IVP [16],
[17]. This approach uses the iterative multi-resolution idea
by estimating the initial low-resolution values in a serialized
manner at first, and then performing the high-resolution cor-
rections in parallel. This process is repeated until a reasonable

accuracy is reached. Until now, this kind of parallelism is
still limited to a single system of ODE equations and is
suitable mainly for small-scale computations. Due to the
combination of serial and parallel processing steps, it is
mainly implemented on CPUs in a multi-threaded manner,
no GPU version has been proposed. Based on this situation,
a method that can make good use of CPU and GPU resources
is needed.

IV. SOFTWARE PACKAGE STATUS
When developing quality promising software, it is essential
to make adaptations to both algorithm and program code.
However, in order to ensure versatility and excessive pursuit
of flexibility, current software libraries often separate the
relationship between the two that should be integrated,
which makes it difficult to integrate new parallel algorithms.
Therefore, parallel ODE solving tools still can be improved
in the following technique aspects.

A. STORAGE MANAGEMENT AND DATA ORGANIZATION
Currently, the most widely adopted open-source C/C++

software package is SUNDIALS [18], [19]. Other commonly
used libraries include Boost Odeint [20], GNU scientific
library [21], DifferentialEquations.jl [22] and so on. Odeint
is a collection of advanced numerical algorithms to solve
initial-value problems of ordinary differential equations. It is
written in C++ using modern programming techniques to
provide high generality at optimal performance. Its main
advantage over other ODE libraries is a strict separation of the
numerical algorithms from the underlying arithmetical com-
putations. This creates the possibility to use Odeint on GPUs
or HPC clusters, or to combine Odeint with custom data types
as well as other numerical libraries [23]. GNU provides a
wide range of mathematical routines such as random number
generators, special functions and least-squares fitting. There
are over 1000 functions in total with an extensive test suite.
Besides, it does not restrict scientific cooperation. Differen-
tialEquations.jl is a package for solving differential equations
in Julia and offers a unified user interface to solve and analyze
various forms of differential equations while not sacrificing
features or performance. Among these software packages,
only SUNDIALS provides the basic memory management
interface [24], but the specific memory management is left to
the user or third-party software. To fully leverage the parallel
hardware, data needs to be closely arranged and organized
in the form of vectors, which can make the most of the
SIMD capability on the GPU side and the multi-threading
capability on the CPU side. The CPU cache can also be used
more effectively. There are two specific parallel application
methods for these solvers: firstly, for large-scale systems,
the solution of the equation system for dense matrices or
the iterative solution for sparse matrices is dispatched to
the GPU side. This kind of application generally adopts
the form of directly integrating existing matrix calculation
toolkits, such as cuSOLVER, ArrayFire, etc. It does not
require much modification to the existing solution software
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and is easy to implement. Secondly, for homogeneous small
model clusters (such as multi-dynamic systems distributed
on spatial grid nodes), it is necessary to recombine the state
variables scattered on the storage into a tightly arranged form
to adapt to the memory access mode on the GPU side, which
requires enhancing the memory management capabilities of
existing solvers, including the ability to move data blocks as
needed and eliminate the gap between the storage locations
of similar state variables, that is, the power to integrate
dynamic memory distribution. This integration is critical to
the performance of GPU, and different implementations can
lead to a performance gap more than 100 times in ODE
solving [25]. The known solution tools have not achieved
active memory management capabilities and required users
to statically plan during initialization. Once the equation
system is changed, the memory layout must be re-modified,
which limits the multi-task parallel solution application in
the pipeline mode. Our proposed memory management has
several advantages: firstly, when faced with multi-instance
ODE problems such as equations y′(t) = f (t, y) in the form
of the same function f with different parameters, because
of ODEs’ same solution logic, they have the similar state
variables and Jacobi matrix. In order to make adjacent threads
have access to adjacent state variables and Jacobi matrix,
memory management is required; secondly, in dynamic
pipeline mode, right-hand side (RHS) expression is solved
on CPU side and Jacobi matrix is solved on GPU side. GPU
utilization will be higher in the case of multi-threading and
multi-instance since we put the same dimension equations
together; thirdly, CUDA’s unified memory’s function is
limited on Windows comparing with Linux. It’s necessary to
conduct memory management in our work.

B. JUST-IN-TIME COMPILATION
Just-in-time compilation technique is widely used in script-
ing languages or bytecode languages to improve runtime
efficiency, such as python, Java, and so on. Currently,
just-in-time compilation technique is mature enough and
its performance is comparable to that of the native code
compiled in advance. This gives the opportunity to improve
the performance of ODE parallel solution for the following
three reasons: firstly, the basic description form of a
differential equation is a mathematical expression, and unary
or binary arithmetic operations constitute its main function.
Compared with C/C++ language, it does not require the
optimizations of complex control flow and procedure calls,
and can be directly translated intomachine code. The function
can be dynamically created inmemory, which is convenient to
call at any time; secondly, the SIMD instruction optimization
for the CPU needs to be done manually at the bottom of the
program. However, due to the simple arithmetic operation
characteristics of mathematical expressions, this instruction
optimization can be done automatically through just-in-time
compilation, and the efficiency of dynamically generating
and executing code is even higher than that generated by local

compilation; thirdly, when faced with a large homogeneous
ODE cluster, just-in-time compilation can generate code in
OpenMP, CUDA or OpenCL form as needed, and adaptively
allocate tasks to the CPU or GPU according to the size of the
vector. Based on this, we proposed a high performance text
based ODE solver with Just-In-time compiling and coupled
CPU-GPU computing properties in [26].

C. DYNAMIC BINDING
A direct result of just-in-time compilation is the ease of
implementing dynamic binding, which is very important for
reducing the implementation complexity of some parallel
algorithms. When using mainstream C/C++ solving tools,
it is necessary to convert the RHS expressions and Jacobi
expressions (such as using implicit arithmetic) into C
language. Then, they are called by the solver in the form
of function overloading or function pointer. This method
belongs to static binding, that is, each time the solution object
is changed, then these functions must be reimplemented and
recompiled. Although this method brings convenience to
programmers and it can flexibly combine solving algorithms
by various means such as interface or inheritance according
to specific problems, this flexibility is only reflected in the
design phase, not in the runtime phase, and even seriously
violates the software design concept of separating data and
business logic at runtime, which brings difficulties to the
dynamic adaptation of parallel algorithms. For example, the
IMEX algorithm needs to switch between explicit/implicit
integration algorithms according to the current rigidity
characteristics of the system, and these two integration
algorithms must be specified at the coding stage and bound
together with the program’s running logic. If the simulation
has been run for a long time, it is found that the accuracy
of the existing integration algorithm is deficient and needs
to be switched to higher precision, or the computing power
of the current computing node is insufficient and needs to be
switched to a low-precision algorithm. The only solution is
to stop the current simulation and restart after modifying the
code. This dynamic binding is different from Python, mainly
reflected in the expression evaluation function pointer can
be combined with different numerical algorithms as needed.
If combined with the task graph [27], more flexible load
balancing can also be achieved.

According to the shortcomings mentioned in parts 2 and 3,
and the open-source package, such as SUNDIALS, exhibits
a lack of attention to parallel optimization, we propose
a framework that combines parallelism-across-the-task and
parallelism-across-the-method approach. This framework has
the advantages of remarkable scalability, flexibility, load bal-
ancing, and run-time configurability, making it particularly
suitable for simulation environments containing hundreds or
thousands of large ODEs.

V. PIPELINE SOLVING FRAMEWORK
We design and implement a pipeline-based simulation model
solving task assignment framework for CPU and GPU target
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FIGURE 3. Pipeline solving framework.

machines to solve ordinary differential equations in parallel.
This parallelism is reflected in two aspects: firstly, the RIDC
algorithm is used to perform the internal parallel solution
of a single equation system in the form of multiple threads;
secondly, the solution process between the equations is also
parallel which is similar to the traditional isomorphic multi-
instance equation. Different from the GPU solution in the
group form, this framework also supports the parallel solution
of the heterogeneous form of ODEs which can harness the
computation power of the GPU. This framework also has the
ability to dynamically allocate computing resource targets.
For a single ODE system, the solution forms include three
modes: CPU single thread, CPU multi-threading, or GPU
multi-threading. When CPU is used to solve the problem, the
corresponding relationship between the number of threads
and the solution accuracy can be either one-to-one or one-
to-many, that is, the solution task within a thread can
correspond to multiple rounds of correction within the RIDC
algorithm; when using GPU to solve the equations, in order
to maximize the parallel ability inside the warps, a one-to-
one relationship is adopted between the solving accuracy
and the thread. In addition, the internal implementation
technique of this framework adopts the iterative mode in
the form of prediction-correction which can better support
the parallelism of many iterative methods in the calculation
process, such as RIDC, Parareal, etc. Especially for those
solving algorithms that require low-precision succession
and high-precision parallelism, the CPU and GPU hybrid

operation mode has the advantage of load balancing and can
also obtain a better speedup ratio.

The core idea of this framework is to dynamically
generate ODE solution tasks and schedule them to the
corresponding hardware according to the solution settings.
As shown in Fig.3, the framework consists of four main
components: task generator, scheduler, synchronizer and
memory pool. When a new ODE solution requirement arises,
the task generator builds the data structure and just-in-
time compilation (currently only for GPU code) routines
according to the solution parameters and puts the task into
the task queue in the ODE task pool. The scheduler dispatches
tasks in a queue to the CPUorGPUor both of them, according
to the different queue settings. For solving tasks that require
both CPU and GPU, the synchronizer is responsible for data
exchange between CPU and GPU. At the same time, the GPU
is further divided into several sub-devices (corresponding to
stream in CUDA). Each sub-device is only responsible for
the solution of one ODE system or the parallel correction
calculation process within one ODE system. On the CPU
side, the solution task of any ODE system can be assigned
to one or more threads (cores), depending on the specific
solution configuration with greater flexibility. The memory
pool contains two allocation methods: for individual ODEs,
allocate a contiguous piece of memory for its state variables
and Jacobi matrices, and support memory alignment to better
adapt to hardware data access patterns; for multi-instance
ODEs, contiguous memory is allocated for all instance state
variables, and another contiguous memory is allocated for
these Jacobi matrices to provide better support for data
transmission and collaboration between CPU and GPU.

There are three types of tasks supported by this framework:
the first is small-scale single ODE system. Each equation
system corresponds to different models, that is, the solving
tasks are different; the second is an isomorphic type of ODE
system cluster which means multiple different instances of
the samemodel. This type can harness the parallel advantages
of GPU; the third type is a large and complex ODE system
(tens of thousands of state variables), and the solution in this
situation requires the use of multiple stream processors of the
GPU.

VI. RIDC ALGORITHM
The basic principles of RIDC are as follows:

A. ERROR INITIAL VALUE
The initial value problem of ordinary differential equa-
tions (ODE-IVP) is generally expressed by the following
definition: {

y′ (t) = f (t, y) , t ∈ [0,T ]
y (0) = y0

(1)

where y (t) ∈ CN , f :
[
R × CN

]
→ CN .

Denote the (unknown) exact solution of IVP(1) as u (0)=

y (0) and the approximate solution as u (t). The error of
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the approximate solution is e (t) = y (t) − u (t). Residuals
(sometimes called defects) are defined as r (t) = u′ (t) −

f (t, u), then the time derivative of the error satisfies

e′ (t) = y′ (t) − u′ (t) = f (t, u+ e) − f (t, u) − r (t) (2)

According to e (0) = u (0)− y (0) = 0, the above equation
represents the IVP of the correlation error. For the sake of
stability, the error IVP is written in the integral form [6],(

e+

∫ t

0
r (τ ) dτ

)′

= f (t, u+ e) − f (t, u) (3)

Noting that if the error equation (3) is solved numerically,
the corrected approximation u + e is still an approximation,
we employ a more general notation that will allow us to
iteratively correct the solution until the desired accuracy is
achieved. Denoting the initial approximation as u[0], the p−th
approximation is expressed as u[p] and its error is e[p]. Then
the error equation can be rewritten as(

e[p] +

∫ t

0
r [p] (τ ) dτ

)′

= f
(
t, u[p] + e[p]

)
− f

(
t, u[p]

)
(4)

Among which, r [p] = u[p](t)′ − f
(
t, u[p]

)
.

B. DISCRETIZATION
Using algebraic methods, equation (4) can be explicitly
discretized in the first order, and the solution is in the form
of

u[p+1]
n+1 = u[p+1]

n + 1tf
(
tn, u[p+1]

n

)
− 1tf

(
tn, u[p]n

)
+

∫ tn+1

tn
f
(
τ, u[p]

)
dτ (5)

Similarly, the first-order implicit discretization of (4) is as
following:

u[p+1]
n+1 = u[p+1]

n + 1tf
(
tn+1, u

[p+1]
n+1

)
− 1tf

(
tn+1, u

[p]
n+1

)
+

∫ tn+1

tn
f
(
τ, u[p]

)
dτ (6)

In the semi-discretized forms (5) and (6), a sufficiently
accurate orthogonal matrix is required to approximate the
current integral [6]. If a first-order predictor is used to
compute an approximate solution to (1) and a first-order
corrector such as (5) and (6) is used, the integral can be
approximated with the following formula:

∫ tn+1

tn
f
(
τ, u[p]

)
dτ ≈



p+1∑
υ=0

αpυ f
(
tn+1−υ , u[p]

n+1−υ

)
, n≥p

p+1∑
υ=0

αpυ f
(
tυ , u[p]

υ

)
, n < p

(7)

FIGURE 4. Node dependencies of each other.

where, αpυ are the orthogonal weights.

αpυ =



∫ tn+1

tn

p+1∏
i=0,i̸=υ

t − tn+1−i

tn+1−υ − tn+1−i
dt, n ≥ p

∫ tn+1

tn

p+1∏
i=0,i̸=υ

t − ti
tυ − ti

dt, n < p

(8)

C. CONVERGENCE
Regarding the convergence of the RIDC algorithm, this paper
gives a conclusion without proof and the detailed proof can
be found in the literature [17].
Theorem 1: Assuming that in formula (1) f (t, y) and

y (t) are smooth enough. RIDC algorithm under k >

M + 1 uniformly distributed nodes embeds in the r0 order
Runge-Kutta method as a prediction step and embeds
ri (1 ≤ i ≤ q) order Runge-Kutta algorithm as correction step
respectively. Then the local truncation error isO

(
hSM+1

)
, and

h is the step size. Among which, SM =

M∑
j=0

ri.

It can be seen that when all the stages of the p-order RIDC
algorithm are computed using first-order Euler integrators,
the final truncation error is O (hp).

D. CPU ALGORITHM
In order to avoid the Runge phenomenon caused by
non-equidistant node integration during high-precision solu-
tion, the solution method implemented in this paper also
supports the integration of non-equidistant node forms
such as Gauss-Lobatt, so the space optimization form with
the minimum memory footprint is not adopted in the
initialization process. For the N-order accuracy requirements,
the calculation dependencies between the correction nodes of
each order are shown in Fig.4.

Each node solution in the higher order correction process
depends on a specific number of node values inside the
lower order, and the specific number of dependencies
varies according to the solution accuracy. Fig.5 shows the
initialization process of the fourth-order precision solution
in the form of equidistant nodes. Starting from step 12, four

38000 VOLUME 12, 2024



R. Cao et al.: Pipeline-Based ODE Solving Framework

FIGURE 5. Node calculation sequence.

threads begin to execute parallel in the form of pipelines, and
the final solution result of each time step is determined by the
correction thread corresponding to the output of I = 3.
From the basic calculation process in Fig.5, it can be known

that if there are k solving nodes and the solution accuracy
is p order, p cores are used to solve in parallel, then the
ratio of the calculation between the RIDC algorithm and the
first-order algorithm is r = 1 +M2/k . Where M = p− 1 is
the number of iterative corrections. From this, it can be
calculated that the theoretical solution time ratio between the
fourth-order RIDC embedded Euler and the first-order Euler
is 1 + 9/k . As k increases, RIDC algorithm’s calculation
time approaches the first-order Euler time. However, with the
augment of k , the solution error caused by extrapolation also
increases. Generally, k can be taken as the value of 20∼30
times M , which not only improves the efficiency, but also
ensures a certain accuracy.

The CPU parallel solution algorithm is as following:
The CPU solution algorithm supports a flexible thread

allocation mode, which can be either single-thread sequential
or multi-thread parallel. The maximum parallel number of
threads solution is equal to the order of the solution precision.
Using the maximum parallel mode can reduce the calculation
time, and thewall time of single-step progress is close to other
serial algorithms with the same order.

E. GPU ALGORITHM
In the GPU solution algorithm, according to the choice of

explicit and implicit algorithms, the process contains multiple
calls of different kernel functions. For the sake of brevity, it is
not reflected in Algorithm 2. The parallel mode inside the
GPU is subdivided into two cases: firstly, for the non-Newton
iteration part in the explicit algorithm and the implicit
algorithm, the parallel number of GPU threads is consistent
with the solution precision order, and the calculation process
is completed by a single CUDA stream; secondly, for the
Newton iteration part in the implicit solution, since different
linear equations need to be solved at the same time, it is
necessary to assign the solution of each equation to a different
stream. Go to the first parallel mode again, after all streams
are executed.

Algorithm 1 CPU Parallel Solution
Require:

Solution form (explicit or implicit), ODE function
pointer, Jacobi matrix function pointer (needed for
implicit solution), solution precision (order) ORDER,
number of parallel threads NT, initial value of state
variable X0, start and end time, step size.

Ensure:
State variable value X corresponding to the current step.

Initialization:
1: Initialize a static thread pool with NT threads.
2: Calculate the number of iterations required for the given

step size and total time, and store it in a variable
NUM_STEPS.

3: for i = 1 to ORDER do
4: if i == 1 then
5: Predict state variables X from step 1 to step

(ORDER - 1) * (ORDER - 1).
6: else
7: Correct state variables X from step 1 to step (i - 1)

* (ORDER - 1).
8: end if
9: end for
10: Initialize current step number STEP to 1.
11: while STEP <= NUM_STEPS do

CPU threads solve in parallel:
12: Assign thread 1 with prediction task (order 1).
13: Assign each thread in the pool with some specific

correction task (order > 1) in an interleaved fashion.

14: for each thread in the pool do
15: if order == 1 then
16: Predict state variables X from current step to step

current + ORDER - 1.
17: else
18: Correct state variables X from current step to step

current + ORDER - 1.
19: end if
20: end for
21: Wait for all threads to complete computation.
22: for each thread in the pool do
23: Left shift state variables X in memory by ORDER -

1 positions.
24: end for
25: Output state variables X of current time step.
26: Increase current step number STEP.
27: end while
28: Perform shutdown routine, clean up thread pool and other

resources.

F. MULTIPLE INSTANCE ALGORITHM
The design of the current solver is based on ODE system.

No matter whether it is a heterogeneous equation system
or multiple different instances of a homogeneous equation
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Algorithm 2 GPU Parallel Solution
Require:

Solution form (explicit or implicit), ODE global function
pointer, Jacobi matrix global function pointer (needed
for implicit solution), solution precision (order) ORDER,
initial value of state variable X0, start and end time, step
size.

Ensure:
State variable value X corresponding to the current step.

Initialization:
1: dispatch one CPU thread in the dynamic thread pool as a

worker
2: initialize host and device memory needed(include global

and local device memory)
3: copy state variables X0 to device memory
4: create GPU streams(one stream for explicit solver,

or ORDER streams for implicit solver)
Solve in parallel:
5: for each GPU thread in the warps(warps number =

ORDER) do
6: if thread id == 1 then
7: predict initial value of state variables X by explicit

solver
8: if implicit solver then
9: call NewTon-Raphson method to get a refined

value in an iterative manner
10: end if
11: loop from current step to current + ORDER -1 step
12: else
13: predict initial value of state variables X by explicit

solver and quadrature marix
14: if implicit solver then
15: call NewTon-Raphson method to get a refined

value in an iterative manner
16: end if
17: loop from current step to current + ORDER -1 step
18: end if
19: end for
20: __syncthreads()
21: for each thread in the warps do
22: left shift state variables X in the memory with ORDER

-1 position
23: end for
24: __syncthreads()
25: output state variables X of current time step

system, it always corresponds to one solver instance. There-
fore, different from the traditional GPU solution method,
this solver can support CPU and GPU parallel solution or
hybrid solution of large-scale heterogeneous ODEs, and the
specific number of parallel solutions is only limited by the
hardware resource tolerance of CPU and GPU. The following
table shows the GPU parallel scheduling pseudo code for
multiple heterogeneous equation groups. Each thread in the

Algorithm 3 GPU Parallel Solving of Heterogeneous ODE
or Multi-Instance ODE
1: initialize static thread pool with NT threads
2: for each thread in the thread pool do
3: assign each thread a GPU ODE solver
4: initialize GPU ODE solver
5: end for
6: parallel executing GPU solver
7: callback on each global step
8: readpool.wait()

CPU thread pool is responsible for the GPU solution process
scheduling of a specific ODE equation group, and calls back
at the global time step to complete the output of state variables
or other forms of data interaction between models.

VII. EXPERIMENT
In order to verify the accuracy and efficiency of our proposed
pipeline framework, we design several experiments to test
the model performance. The experiments are conducted on
Visual Studio 2019, Intel(R) Core(TM) i9-10900K CPU
and NVIDIA GeForce RTX 3080 GPU. First, we use the
following equations (9) to verify the framework’s precision:

dx
dt

= rx

x(0) = x0
(9)

We can obtain the ordinary differential equation of the
above formula by mathematical method as x(t) = x0ert .
To simplify the calculation, assuming that r = 1, x0 = 1, then
the equation can be simplified as x(t) = et . The experiment
is based on the fourth-order Euler algorithm and fourth-
order Runge-Kutta method, and we compare the results with
the mathematical solution. The start time and end time is
set to 0.0 and 10.0, the step size is 0.1. The results in our
experiments and the average error is 0.00% which indicates
the accuracy of our program.

In the second experiment, we use 32 groups of two
equations with 1000, 10000 and 100000 sampling point,
comparing explicit Fourth-order Euler and Fourth-order
Runger-Kutta on the CPU side, Julia’s RK4 and CPU version
RIDC in [28] with explicit Euler algorithm on the GPU side,
the equations are as eq.10 shows, then set the equations
number to 10 and conduct the same experiment. The results
are shown in TABLE 1 and 2 respectively.

y′ [0]

= sin(π ∗ X [0]) ∗ cos(sqrt(10 ∗ X [1])) ∗ sin(0.3 ∗ π∗

X [1])/cos(−5 ∗ X [0]) ∗ sin(π ∗ X [1]) ∗ cos(sqrt(−0.2∗

X [1])) ∗ sin(0.1 ∗ π ∗ X [0])/cos(0.3 ∗ X [0])

y′ [1]

= −sin(0.1 ∗ π ∗ X [1])/cos(−5 ∗ X [0]) ∗ sin(π ∗ X [0])

∗ cos(sqrt(10 ∗ X [1])) ∗ sin(0.2 ∗ π ∗ X [1])/cos(−3∗

X [0]) ∗ sin(0.2 ∗ π ∗ X [0]) ∗ cos(sqrt(3 ∗ X [1])) (10)
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TABLE 1. 32 groups of two equations on CPU and GPU explicit algorithm time comparison(Time: s).

TABLE 2. 32 groups of ten equations on CPU and GPU explicit algorithm time comparison(Time: s).

TABLE 3. 32 groups of two equations on CPU and GPU implicit algorithm
time comparison(Time: s).

TABLE 4. 32 groups of ten equations on CPU and GPU implicit algorithm
time comparison(Time: s).

FIGURE 6. Mass spring-damper system.

From TABLE 1 and TABLE 2, it can be seen that the
two equations time-to-solution rank is Julia’s RK4 > our
GPU version > Ong’s RIDC; when comes to 10 equations,
the time-to-solution rank is Julia’s RK4 > Ong’s RIDC
> our GPU version, which indicates our proposed ODE
solving framework is efficient. Therefore, in the case of
multi-instance, the GPU version has advantages, which is
especially suitable for solving calculations in the aspect of
population evolution, such as emergence problems,molecular
chemical reactions and so on.

Then in the third experiment, since RK4 is not a implicit
algorithm, when conducting implicit algorithm test, it is
excluded, and Ong’s RIDC is 4th order. Changing explicit
Euler algorithm to implicit Euler algorithm in the program
and do the same test, results are shown in TABLE 3 and 4.

We also simulated a mass spring-damper system(a kind
of multi-rigid-body system) which is shown in Fig.6. Use
ki,i ∈ {1,N + 1} as the spring constant, complying with
500 ∼ 800 uniform distribution, ci,i ∈ {1,N +1} denotes the
damping coefficient from 200 ∼ 400 uniform distribution
and mi,i ∈ {1,N + 1} represents the mass ranging from
50 ∼ 100. In our program, N represents the number of

TABLE 5. Different thread applied in mass spring-damper system.

the rigid bodies. The experiment is compared with [29] in
TABLE 5 and the equations(equals to the stream size) are as
follows. The global memory is set to ORDER ∗ ORDER ∗

ORDER ∗ N .We need to solve both displacement di and
velocity vi of each element, and impose zero initial conditions
for both the displacements and the velocities.

ḋi = vi

v̇i =
Ki
Mi

(di − di−1) −
Ki+1

Mi+1
(di+1 − di)

+
Ci
Mi

(vi − vi−1) −
Ci+1

Mi+1
(vi+1 − vi)) + fi (11)

where,

fi =

{
f (t), i = 1
0, i > 1

(12)

and f (t) = sin( 2πT ).
Through the above experiments, it can be found that the

framework designed in this paper can significantly improve
the solution efficiency of ordinary differential equations. For
explicit Euler algorithm, GPU solution time is close to CPU
single thread solution; for the implicit Euler algorithm, the
GPU solution time is less than the CPU single thread solution.
With the increase of the number of equations and the order
of the solution, the effect of the framework is improved
more significantly. In addition, the number of CPU cores
is generally only 16, while the number of GPU cores is
over ten thousand, which is hundred times of CPU cores.
Therefore, it is believed that the pipeline-based simulation
model solving task allocation framework for CPU and GPU
target machines can greatly improve the solving efficiency of
ordinary differential equations.
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VIII. CONCLUSION
In this paper, a pipeline solving framework for CPU and
GPU target machine is designed and implemented, which can
effectively reduce the solving time and improve the solving
efficiency. Especially when faced with complex simulation
systems, it can take full use of the multi-core advantage
of GPU. Through several experiments, the efficiency and
accuracy of the framework are verified. In the future, we will
further improve the computing efficiency and concurrency
capabilities of the framework by computing the pre-allocation
of streams and conducting device memory data exchange
methods among equation groups.
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