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ABSTRACT Contemporary smartphones integrate dedicated AI accelerators alongside CPUs and GPUs,
in response to the growing demand for deep learning applications. While existing software development
kits (SDKs) for these devices provide neural network optimization techniques, they often lack system-level
optimizations, specifically in distributing layers across heterogeneous processors. This paper introduces
a novel approach to enhance the throughput of deep learning applications through the utilization of
quantization and pipelining techniques. The proposed technique employs different quantization schemes
for activation data and filter weights to minimize accuracy drop. A genetic algorithm is employed to explore
the extensive design space of layer-wise mapping and pipelining, aiming to find the best pipelining solution.
To estimate performance of each solution candidate, the actual execution time of the application on the device
is measured, accounting for unique smartphone characteristics, such as dynamic voltage and frequency
scaling (DVFS) and OS scheduling. The impact of thermal throttling on throughput is also investigated
by running benchmark applications continuously for 10 minutes. Our technique is validated through
experiments conducted on Google Pixel 6 and Samsung Galaxy S22. Throughput enhancements, ranging
from ×5.4 to ×7.6 on Google Pixel 6 and ×35.5 to ×44.2 on Samsung Galaxy S22, are achieved, compared
to single-processor mappings for networks with floating-point parameters. It confirms that significant
performance improvements can be achieved through the proposed software optimization methodology on
contemporary smartphones with diverse constraints at the user level.

INDEX TERMS Mobile devices, heterogeneous processors, quantization, pipelining, design space
exploration.

I. INTRODUCTION
As the demand for deep learning applications continues to
rise, the emergence of embedded devices equipped with
heterogeneous processors facilitates the efficient execution of
deep learning(DL) tasks. Notable examples include advanced
AI hardware platforms like the NVIDIA Jetson AGX Xavier
board [1] and Google Coral Dev board [2], as well as modern
smartphones like the Google Pixel 6 [3] and Samsung Galaxy
S22 [4]. These devices incorporate dedicated AI accelerators
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alongside CPUs and GPUs. The accompanying software
development kits (SDKs) for these devices include libraries
designed for the efficient execution of AI applications. While
these libraries offer optimization techniques for the neural
network itself, such as quantization [5] and pruning [6], they
fall short in providing system-level optimization techniques.
There is a lack of methodologies to effectively distribute
layers across various heterogeneous processors.

A methodology has been proposed to maximize the
throughput of a single deep learning (DL) application using
both GPU and NPU, leveraging various types of paral-
lelism [7]. This approach is implemented on TensorRT, the
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software development kit (SDK) for NVIDIA Jetson boards.
It enhances throughput by partitioning the DL network
into multiple stages and mapping each stage to different
processors, enabling pipelined execution. The methodology
incorporates multithreading to boost the utilization of each
processing element by overlapping multiple executions of
the network. Their proposed parallelization method reflects
the limitations of the hardware platform and SDK: For
instance, the CPU is exclusively utilized for pre-processing
or post-processing tasks and is not involved in the network
body.

In this paper, we propose an optimization technique aimed
at enhancing the throughput of deep learning applications
on commercial smartphones equipped with AI accelerators.
Our focus is particularly on quantization and pipelining.
Unlike the aforementioned work, our methodology allows
each partitioned inference stage not only to be mapped to
the GPU and accelerator but also to CPUs, enabling a more
fine-grained inference pipelining. We account for the varying
processing speeds of each processor after quantization.
Importantly, our approach considers a unique characteristic
of smartphones: the operating system implements DVFS
(dynamic voltage and frequency scaling) or a specialized
thermal throttling scheme to prevent the temperature from
exceeding a certain range.

While previous research typically relies on profiling-based
heuristics for parallelizing deep learning networks, our
approach employs a genetic algorithm based on direct per-
formance measurements for layer-wise mapping exploration,
similar to [7]. We employ different quantization schemes for
activation data and filter weights to minimize the accuracy
drop caused by quantization. Since increasing processor
utilization may elevate the device temperature, it is likely
for smartphones to employ thermal throttling mechanisms
to limit temperature rise. We also investigate the impact of
thermal throttling on throughput performance by running
benchmark applications continuously for 10 minutes.

The effectiveness of our proposed technique is demon-
strated through validation with various deep learning net-
works on Google Pixel 6 and Samsung Galaxy S22. In com-
parison to single processor mappings for networks with
floating-point parameters, our method significantly enhances
the throughput of deep learning applications, ranging
from ×5.4 to ×7.6 for each network on Google Pixel 6 and
from ×35.5 to ×44.2 on Samsung Galaxy S22.
The main contributions of this study can be summarized as

follows:
• We propose a novel throughput enhancement technique
by leveraging both quantization and parallelization on
commercial smartphones equipped with AI accelerators,
CPUs, and GPUs.

• The performance evaluation is conducted through direct
measurements on the device, ensuring that the impact of
device-specific constraints imposed by each smartphone
is naturally considered in the proposed mapping explo-
ration method.

• We investigate how thermal throttling mechanisms may
impact the throughput performance for each device.

• Our approach yields substantial throughput improve-
ments on both Google Pixel 6 and Samsung Galaxy
S22 smartphones; we observe a wide variance in the
degree of improvement depending on the hardware
characteristics.

The remaining sections of the paper are organized as fol-
lows. Section II provides a review of quantization and pipelin-
ing techniques laying the foundation for the methodology
employed in our study. We present the hardware specification
details of two commercial smartphones used in experiments:
Galaxy S22 and Google Pixel 6, Section III provides a
review of related works on deep learning optimization for
smartphones with limited resources, Section IV explains
the proposed technique for throughput enhancement. After
presenting the experimental setup, results, and discussion in
Section V, we conclude the paper, presenting future research
topics in Section VI.

II. BACKGROUND
A. QUANTIZATION
Accelerators incorporated into commercial mobile devices
are typically fine-tuned for INT8 (8-bit integer) opera-
tions. To maximize the efficiency of these accelerators,
the conversion of FP32 (32-bit floating-point) networks to
INT8 networks through quantization becomes imperative.
Quantization, being a highly effective technique, is exten-
sively explored in deep learning optimization due to its
ability to significantly decrease memory requirements and
computation latency [8].
Due to challenges in efficiently deploying non-uniform

quantization schemes on processing elements, uniform
quantization has become the prevailing method. The uni-
form quantization process involves determining quantization
parameters, scales and zero-points. Equations (1) to (5)
illustrate the process of obtaining scales and zero-points
for quantization. Equation (1) maps FP32 values to INT8
values using scales and zero-points, truncating the fractional
part of FP32 with the round function. This function, which
can employ rounding, truncation, or adaptive rounding [11],
is predominantly used with adaptive rounding to reduce
accuracy drop. Equation (2) represents the formula for
calculating scales, where the numerator denotes the length of
the FP32 range, and the denominator indicates the length of
the INT8 range for scaling. The FP32 range, computed using
minimum and maximum values as in Equations (3) and (4),
varies based on whether the quantization is symmetric or
asymmetric. Equation (5) calculates zero-points, determining
the INT8 value corresponding to the FP32 0 value using the
minimum value of the FP32 range and scales. In this paper,N
is fixed at 8 since INT8 quantization is applied to bothweights
and activations.

XINT8 = ⌈
XFP32
S

+ Z⌋ (1)
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FIGURE 1. Comparative illustration of symmetric and asymmetric
quantization.

FIGURE 2. Comparative illustration of per-tensor and per-channel
quantization.

S =
β − α

2N − 1
(2)

α =

{
−max(|XFP32|), symmetric
min(XFP32), asymmetric

(3)

β =

{
max(|XFP32|), symmetric
max(XFP32), asymmetric

(4)

Z = −⌈
α

S
− 2N−1

⌋ (5)

Figure 1 illustrates the difference between symmetric
and asymmetric quantization schemes. The choice between
these schemes depends on the distribution of tensor values.
Asymmetric quantization holds an advantage over symmetric
quantization when the distribution is highly asymmetric. The
determination of the range can be applied to the entire tensor
or specific channels within it. In the per-channel quantization
scheme, depicted in Figure 2, quantization parameters are
determined differently for each channel.

Quantization methods can be broadly classified into
two categories: Quantization-Aware Training (QAT) and
Post-Training Quantization (PTQ). QAT involves retraining
the weights of pre-trained FP32 networks, taking into account
quantization considerations [9]. This approach often achieves

TABLE 1. Specifications of mobile devices used in this work.

higher accuracy than PTQ as the weights are optimized
for quantization. It comes with the drawback of significant
retraining overhead, and may not be feasible in the absence
of training data. On the other hand, PTQ uses pre-trained
FP32 networks as a starting point but performs quantization to
INT8 parameters without retraining, relying on a limited data
set for calibration [10]. While PTQ allows for a quick conver-
sion to an INT8 network, it tends to result in lower accuracy
than QAT. To address this limitation, various techniques have
been developed, including AdaRound(adaptive rounding)
[11], and cross-layer equalization and bias correction [12].
Cross-layer equalization leverages the scale-equivariance
property of activation functions to equalize the weight range
within the network for more effective use of representative
bits. Bias correction corrects biases in layer output values
introduced by quantization. Thanks to these methods, PTQ
is recognized for its ability to achieve 8-bit quantization with
accuracy close to floating-point precision in most cases [13].

B. HARDWARE CHARACTERIZATION
This study investigates the throughput improvement of
deep learning applications on commercial mobile devices,
specifically Google Pixel 6 and Samsung Galaxy S22.
These devices feature not only CPU and GPU but also an
AI accelerator. The detailed specifications for both mobile
devices are provided in Table 1. While the accelerator
efficiently processes operations, particularly convolutions,
in the quantized network at high speeds, certain operations
may be inefficient or may result in a slower overall network
execution when falling back to CPU. It is crucial to
thoroughly investigate the effective mapping of layers that
the accelerator can process to achieve optimal throughput
improvements.

Users are unable to customize settings, such as frequency
and thread mapping, in commercial mobile devices due
to restricted user permissions, which is a feature unlike
embedded boards. For instance, Dynamic Voltage and
Frequency Scaling (DVFS) governors on commercial mobile
devices automatically regulate the processor’s frequency
based on processor utilization. Users typically do not have the
authority to control the frequency on mobile devices. When
running deep learning applications with multi-threading on
the multi-core CPU, users cannot precisely specify which
core to utilize; this is determined by the OS scheduler based
on system conditions.

Thermal management plays a crucial role in mobile
devices. Methods like frequency throttling, core idle
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TABLE 2. Comparison with the related works on throughput enhancement. Acc. is an abbreviation for an accelerator.

injection, and core hotplug are employed to mitigate
temperature and control heat. As a result, system performance
gradually declines as the temperature increases. We need to
address these constraints for performance optimization.

III. RELATED WORK
Pipelining is the basic method to improve the throughput
performance of deep learning applications. On a simple
heterogeneous system that consists of a CPU and a GPU, the
throughput of a deep-learning application could be increased
by simply separating the execution of pre-/post-processing on
the CPU from the execution of compute-intensive inference
body on the GPU [14]. Further speed-up is achieved by
parallelizing pre-/post processing on the CPU and by using
FP16 quantization and low-rank optimization techniques for
the inference body on the GPU. But the inference body itself
was not pipelined in this approach.

Many studies have been carried out to improve throughput
in CPU-GPU systems. For instance, DeepX [15] partitions
layers of a network based on layer-wise profiling of
performance and energy consumption, compresses each
partitioned segment, and then maps them to CPUs and GPUs
to boost throughput. CNNdroid [16] improves processing
efficiency by allocating data-parallel and compute-intensive
layers such as convolution or fully connected layers to a GPU,
while distributing the remaining layers across multiple CPUs.
µLayer [17] utilizes quantization through QAT to optimize
the network itself. For each layer, the performance of CPUs
and GPUs is profiled. Based on this profiling information,
channel-wise partitioning of each layer and distribution to
CPUs and GPUs are performed, contributing to increased
throughput.

While some research efforts have explored AI acceler-
ators to improve throughput, these works predominantly
focus on embedded boards rather than commercial mobile
devices. They overlook the constraints imposed by the
unique characteristics of processors within the mobile
devices, as well as software factors such as OS schedulers
and DVFS governors. Some works assume the exclusive
use of GPUs and accelerators for the inference body,
neglecting the potential for exploiting more fine-grained
parallelism.

Kang et al. [18] attempted to pipeline a network in mobile
devices equipped with accelerators, but limited software

support for the accelerators hindered implementation on a
real device. In their study, they enhanced throughput by
utilizing CPUs and GPUs only by mapping layers onto
the processors and pipelining them. Even when utilizing
accelerators within mobile devices, Tan and Cao [19]
accelerated deep learning using only CPUs and accelerators
without considering GPUs. The use of CPUs is solely to map
some layers to the CPUs, not to improve performance, but
rather to reduce accuracy drops. J. Kwon et al. [20] proposed
to pipeline deep learning networks utilizing CPUs, GPUs,
and accelerators, configuring the pipeline with only two
stages. One stage is managed by the accelerators, while
the other stage is handled by the CPUs and/or GPUs. The
lack of separation between the CPUs and GPUs as distinct
stages constrains the granularity of pipelining, resulting in a
performance gain of only around 2 times.

Table 2 provides a summary of the comparison between the
proposed technique with related works. In contrast to most
works that assume layer profiling on all processing elements
can be done a priori, we do not make such an assumption
that is often infeasible particularly for commercial mobile
devices. Instead we estimate the performance by direct
measurement after running the pipelined network on the
mobile device.

The workmost closely related to ours is the work targetting
the NVIDIA Jetson board, considering both quantization
and pipelining [7], but there are notable distinctions. Their
approach lacked consideration for utilizing the CPU in the
pipelined execution of the inference body, and they did
not investigate the effects of thermal throttling in their
study. They exclusively relied on symmetric quantization
supported by TensorRT. Our work not only integrates
quantization and pipelining but also emphasizes the role
of CPU in the pipelined execution of the inference body.
Our methodology extends beyond the NVIDIA Jetson board
to commercial mobile devices, acknowledging the unique
constraints imposed by mobile processors and the influence
of software factors, including OS schedulers and DVFS
governors. By conducting experiments on devices like
Google Pixel 6 and Samsung Galaxy S22, we provide a
practical and relevant evaluation that includes the impact
of thermal throttling, contributing to a more comprehensive
understanding of deep learning application optimization on
commercial smartphones.
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FIGURE 3. Overview of execution of pipelined deep learning application.
Pipelining stages include not only pre-processing and post-processing but
also partitioned multiple stages of the inference body. .

TABLE 3. Quantized operator specification to reduce accuracy drop.

IV. PROPOSED METHODOLOGY
The proposed approach for enhancing the throughput perfor-
mance of a deep learning application comprises three key
steps. The initial step involves quantizing network parameters
pre-trained in FP32 to INT8, facilitating efficient utilization
of deep learning accelerators. After the quantization pro-
cess, we optimize the network by leveraging all available
processing elements. In scenarios where the architectural
structure of a deep learning network is non-linear, we serialize
the layer execution, referring to the execution order among
layers as determined by the associated SDK in the baseline
implementation.

As illustrated in Figure 3, we not only pipeline the
pre-/post-processing stages but also partition the inference
stage into multiple stages, mapping them to heterogeneous
processors for execution. The design space for pipelining
is too wide to explore exhaustively. We employ a genetic
algorithm as a meta-heuristic to find a solution close to
optimal. The last step involves examining the effect of
potential thermal throttling during continuous execution of
the application.

A. POST TRAINING QUANTIZATION
We employ different quantization schemes for activation data
and filter weights to minimize the accuracy drop caused
by PTQ. As shown in Table 3, quantization settings are
customized for each operator, incorporating combinations
of symmetric and asymmetric quantization, as well as
per-tensor and per-channel quantization. For activations,
we choose asymmetric per-tensor quantization. This decision
accounts for the varied distribution of FP32 values across
the entire activation, and per-tensor quantization helps reduce
quantization errors across the entire activation in comparison
to channel-wise quantization. Considering the typically
asymmetric distribution of activations, we permit the zero
point to take any value from −128 to 127. This ensures

that FP32 values are allocated with more representative bits,
thereby improving accuracy [21].

Symmetric per-channel quantization is applied to the
weights of filtering operators, including normal convolution
and depthwise convolution. This decision is guided by the
observed variation in weight distribution across channels for
these operators, making per-channel quantization effective in
minimizing quantization errors. We opt for symmetric quan-
tization due to their more symmetric tendency compared to
activations and to circumvent the computational inefficiency
associated with considering different zero points for each
channel during asymmetric quantization [21].

To execute quantization accurately, the data employed for
calibration in Post-Training Quantization (PTQ) undergoes
normalization and resizing. The calibration process involves
a selection of 1000 data points randomly chosen from the
training dataset, ensuring a robust representation for effective
calibration.

B. PRE-/POST-PROCESSING PIPELINING
To enable parallel execution of pre-processing and post-
processing stages in deep learning applications, we designate
them as separate pipelining stages. In the pre-processing
stage, operations such as loading images and resizing
are performed to prepare the input for inference. In the
post-processing stage, the output tensor obtained from
the inference is processed to generate the final output,
revealing the application-specific results. For pre-processing
and post-processing, 2 threads are allocated, as it is
observed that overall performance reaches a plateau beyond
2 threads. Allocating the minimum number of threads for
pre-processing helps mitigate competition with inference
threads on the CPU. The number of pre-processing and
post-processing threads is set to minimal. Pipelining the
pre-processing and post-processing stages enables them
to be executed concurrently with inference, significantly
contributing to increased throughput.

C. INFERENCE PIPELINING AND OPTIMAL MAPPING
SEARCH
The inference body is also divided into multiple pipeline
stages, each mapped to distinct processing elements within
the system. The primary challenge in inference pipelining lies
in determining where to partition the inference body and how
many stages to make. Achieving an optimal balance in the
execution time of all pipeline stages is crucial for maximizing
throughput performance. Suppose that the inference body
consists of N layers and the system has 3 processing elements.
The number of potential pipelining candidates becomes
3CN × 3!, which is too large to explore exhaustively. The
pipelining technique in our study involves only one-to-one
communication between processor stages, while optimization
in heterogeneous systems considers various communication
methods among processors.

The mapping exploration is conducted using a genetic
algorithm, similar to the method described in [7].
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FIGURE 4. Genetic algorithm loop to explore the optimal mapping.

FIGURE 5. Structure of the chromosome to represent mappings for
inference pipelining.

On commercial mobile devices, the operating frequency is
determined by the DVFS governor beyond user control. The
OS scheduler dictates the processor mapping, preventing
users from controlling the mapping to a specific core, result-
ing in noticeable execution time variability. Establishing an
accurate performance prediction model is challenging under
these constraints. The proposed genetic algorithm explores
the optimal mapping based on the measurement of actual
system behavior when processing deep learning applications
onmobile devices. This involves representing each pipelining
candidate as a chromosome and utilizing genetic operations
such as crossover and mutation to find chromosomes with
proximity to the optimal fitness value. Figure 4 illustrates this
search process.

Figure 5 describes the chromosome structure designed for
mapping optimization, accommodating a maximum of three
pipeline stages for the inference body. The first three genes
represent the number of layers assigned to each pipeline
stage while the next three genes specify the type of processor
to which each pipeline stage is mapped. In the example
provided in Figure 5, a chromosome is generated by the
genetic algorithm for a deep learning network comprising
75 layers. The first 25 network layers are mapped to the CPU
in the first stage. When the number of layers allocated to a
pipeline stage is 0, the processor is not used for mapping. This
chromosome implies a CPU-GPU pipelining without using
an accelerator. The GPU is assigned layers 26 to 75.

When mapped to the CPU, it operates with 4 threads,
taking into account the number of pre-processing and post-
processing threads as well as CPU configuration of mobile

devices. Two mobile devices used in this work have 8 CPU
cores. If the number of threads for inference exceeds 4,
more than two threads might run concurrently on the same
core, introducing competition and potentially leading to
performance degradation.

In the crossover process of these chromosomes, the genes
corresponding to the number of layer allocations (the first
three genes) and processor mapping (the last three genes)
for two chromosomes are exchanged. The number of layer
allocations or processor mappings in the mutation process is
randomly altered. Crossover occurred with a 90% probability
during chromosome generation, and mutation occurred
with an 80% probability. As the probabilities of crossover
and mutation increase, the likelihood of generating new
chromosomes at each iteration in the genetic algorithm rises,
while the convergence speed toward the optimal chromosome
may slow down due to the necessity of considering a
larger pool of candidates. We intentionally sacrifice some
convergence speed to thoroughly explore a diverse range
of chromosomes. This deliberate trade-off is chosen to
maximize the throughput of deep learning applications
by conducting a comprehensive examination of numerous
chromosomes. The decision to use high probabilities for
crossover and mutation aims to enhance the algorithm’s
ability to discover optimal mapping solutions.

The evaluation metric of the genetic algorithm is the
throughput of the deep learning application, measured on
an actual mobile device. The genetic algorithm is executed
on the host PC to find a suboptimal pipelining solution,
which is then transmitted to the mobile device. The mobile
device executes the actual deep learning application with
the requested mapping, and the measured throughput is
sent back to the host PC. The exploration is conducted
for a specified number of iterations as a hyper-parameter.
Termination occurs if the top-performing 20 chromosomes
remain unchanged for 10 consecutive iterations, allowing for
sufficient exploration while enabling early stopping in case of
convergence. All these processes are automated, facilitating
the exploration of optimal mapping using actual measured
data that accurately reflects the constraints within a mobile
device. The exploration is conducted before the deployment
of mapping solutions. After deployment, inference is per-
formed using the discovered solution, ensuring no impact on
runtime performance.

D. COMMUNICATION BETWEEN PIPELINED STAGES
In the optimization of mapping on heterogeneous systems,
it is necessary to account for communication overhead caused
by various communication patterns between processors,
such as one-to-many, many-to-one, and so forth [22].
In the proposed pipelining technique, each stage commu-
nicates with the next stage in a one-to-one communication
between processor stages. Our methodology proposes a
measurement-based mapping exploration solution. In the
measurement process, not only the processing time of each
processor but also the communication between processors
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TABLE 4. Benchmark object detection networks used in experiments.

is measured. This implies that communication overhead is
considered during the exploration process, providing a more
holistic assessment.

V. EXPERIMENTS
A. SETUP
To assess the performance of the proposed method, we mea-
sured the accuracy (average precision, AP) and throughput
(frames per second, FPS) of an object detection application
using 5,000 images in the validation set of the COCO2017
dataset. Quantization was conducted usingMMDetection and
MMRazor frameworks [23], [24] based on PyTorch and the
PTQ API provided by TensorFlow Lite [25]. The calibration
dataset comprises 1,000 randomly selected images from the
COCO2017 train set. Network pipelining was implemented
in TensorFlow Lite using the Coral library [2]. When pro-
cessing layers using the GPU or the accelerator, unsupported
operations are replaced with CPU execution by the deep
learning library as a fallback. The genetic algorithm was
implemented using the DEAP library [26].
Three object detection networks serve as benchmark

applications, as outlined in Table 4. The input image size
for each network is uniformly set to 640 × 640. In the
case of SSD MobileNetV2 FPN, MobileNet V2 is used
as the backbone with depthwise convolution operators and
Feature Pyramid Network is used as the detection head. The
maximum number of inference stages is limited to 3, aligning
with the three heterogeneous processors in the target system,
to avoid allocating more than one inference stage on the same
processing element. The number of chromosomes used in the
genetic algorithm is set to 32.

B. QUANTIZATION RESULTS
Different quantization schemes are applied to activation
and weight values. This decision is based on preliminary
experiments that compared the various combinations of
quantization schemes, using MMDetection and MMRazor
frameworks. While TensorFlow Lite allows for changing
per-tensor and per-channel configurations through its API,
there is no API support for modifying symmetric and asym-
metric configurations. We manually explore various possible
combinations as shown in Table 5. In this experiment,
SSD ResNet50 FPN was used. For activation, per-channel
quantization was not considered due to the lack of support
in the framework.

Table 5 reveals that asymmetric quantization of activation
leads to higher accuracy compared to symmetric quanti-
zation. This outcome can be attributed to the asymmetric
distribution of activation, allowing the zero-point to have

TABLE 5. Accuracy variation in SSD ResNet50 FPN by varying
quantization schemes.

TABLE 6. Accuracy comparison between FP32 and INT8 networks using
PTQ API provided by TensorFlow Lite.

FIGURE 6. Comparing memory sizes of FP32 and INT8 networks in TFLite
format.

INT8 values other than 0, providing a better representation
of FP32 values in INT8. With activation quantized as asym-
metrical per-tensor, weights exhibit comparable accuracy
levels when quantized as symmetrical or asymmetrical.
However, there is a noticeable difference between per-tensor
quantization and per-channel quantization. Hence, symmetric
per-channel quantization is selected for weights to minimize
the accuracy loss caused by quantization.

Table 6 presents the accuracy of each network after
quantization. It is noteworthy that the accuracy of SSD
MobileNet V1 FPN and SSDMobileNet V2 FPN is increased
even after quantization. Quantization leads to a loss in
accuracy due to precision reduction. In some cases, this loss
may be compensated by the normalization effect caused by
precision reduction, resulting in improved accuracy. In the
case of SSD ResNet50 FPN, there is a negligible decrease
in accuracy.

The weights of the networks used in TensorFlow Lite are
stored in the tflite format. Figure 6 shows the changes in
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FIGURE 7. Comparing relative FPS of FP32 and INT8 networks through
single processor inference mappings on Pixel 6.

FIGURE 8. Comparing relative FPS of FP32 and INT8 networks through
single processor inference mappings on Galaxy S22.

memory size before and after quantization. Each network
is converted to a tflite file that is 18%, 26.4%, and 25.9%
of the respective FP32 networks’ memory size. While a
reduction rate of about 25% is expected, SSD MobileNet
V1 FPN experiences a more substantial reduction in memory
size compared to other networks. This can be attributed
to Tensorflow Lite that optimizes the network extensively
during quantization.

Figures 7 and 8 depicts the comparison of relative FPS
between FP32 and INT8 networks after quantization. The
relative values are computed using the FPS of FP32 inference
mapping on the CPU as the reference. The network execution
comprises separate threads for pre-processing, inference,
and post-processing. Pre-processing and post-processing are
handled by the CPU, while the whole inference body is
executed on each processing element: CPU, GPU, or AI
accelerator.

On Pixel 6, comparing the throughput for each processor
type reveals a×4.8 to×5 improvement for CPU and a×3.3 to
×4 improvement for GPU. The improvement in FPS due to
quantization is less significant in the AI accelerator compared
to CPUs and GPUs, as the AI accelerator’s FPS remains high
even for FP32 networks. The AI accelerator in Pixel 6 is an

TABLE 7. Pipelining solutions obtained by the proposed technique based
on genetic algorithm.

TABLE 8. The search time and the proportion of explored design space to
obtain optimal pipelining solutions.

edge TPU, and software optimizations for FP32 networks
seem to be effective, providing better FP32 performance
than the other processors. The performance improvement
from quantization in the AI Accelerator on Pixel 6 ranges
from ×1.3 to ×1.5.

On Galaxy S22, quantization results in performance
improvements ranging from×3.5 to×4 for CPU and×2.5 to
×3.2 for GPU. Unlike the case of Pixel 6, a notable increase
ranging from × 10.9 to × 13.5 is observed in the AI
accelerator. This impressive performance is attributed to the
higher INT8 computation speed of the Qualcomm Hexagon
AI accelerator in Galaxy S22 compared to CPU and GPU.
The performance gap among processors has implications
for inference pipelining and optimal mapping searches,
leading to different execution mappings between the two
smartphones.

C. PIPELINING AND MAPPING EXPLORATION
Table 7 presents the results of the optimal mapping
exploration for each network obtained through the genetic
algorithm on Pixel 6 and Galaxy S22. The maximum number
of iterations is varied according to the number of layers in
each network, allowing for more extensive exploration with
a higher number of layers. The mapping of network layers is
performed by dividing them based on the order of processors’
mapping sequence, starting from the first layer and allocating
layers in ascending order.

Table 8 shows the search time and the explored design
space for finding optimal pipelining solutions. The search
time is derived from measurements, influenced primarily
by the performance of the mobile devices executing the
application rather than the host computer that runs the GA
algorithm. The searched solutions pertain to the distinct solu-
tions examined with previously explored chromosomes being
reused during exploration when regenerated. The explored
design space indicates the ratio of examined solutions to
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FIGURE 9. Device surface temperature variation trends when exploring optimal mapping solution on Pixel 6.

FIGURE 10. Device surface temperature variation trends when exploring optimal mapping solution on Galaxy S22.

all possible solutions for each network. The search time
varies depending on the performance of the mobile device
and network characteristics. Upon examining the explored
design space, it is observed that, with the exception of SDD
ResNet50 FPN on Galaxy S22, all solutions explored cover
less than 5% of the design space. This demonstrates that
the proposed method can find optimal pipelining solutions
efficiently.

Figures 9 and 10 illustrate the device surface temperatures
measured during the execution of the genetic algorithm
for optimal mapping exploration. The Android Hardware
Abstraction Layer (HAL) thermal service facilitated continu-
ous monitoring, starting one hour after the genetic algorithm
initiation and lasting for 10 minutes. Despite fluctuations tied
to the explored solutions, Pixel 6 maintained a temperature
of around 40 degrees, and Galaxy S22 hovered around
43 degrees. These temperatures align with the thermal
throttling range of commercial mobile devices. These results
highlight the occurrence of thermal throttling during the
mapping exploration, which in turn influenced the measured
throughput and decisions made by the genetic algorithm.
In short, thermal throttling is considered during mapping in
the proposed methodology.

Figures 11 and 12 compare the FPS results of mapping
solutions obtained through optimal mapping search with the
maximum values when mapping FP32 and INT8 networks
to a single type of processor on Pixel 6 and Galaxy S22,

FIGURE 11. Comparing relative FPS between single processor mappings
and optimal pipelined mapping on Pixel 6.

respectively. Relative FPS is calculated with reference to
the maximum FPS from single processor mappings of FP32
inference, processing 5,000 images; the maximum FPS for
single processor mappings of the FP32 network is achieved
when it is mapped to the accelerator in case of Pixel 6 and
to the GPU in case of Galaxy 22. On Pixel 6, FPS from
optimal pipelining mapping is ×3.3 to ×4.4 higher than
the maximum FPS of INT8 inference mapping to a single
processor and ×5.4 to ×7.6 higher than the maximum FPS
of FP32 inference. On Galaxy S22, compared to INT8 single
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FIGURE 12. Comparing relative FPS between single processor mappings
and optimal pipelined mapping on Galaxy S22.

processor mapping, FPS has improved from ×2.9 to ×4.1,
and compared to FP32 single processor mappings, FPS has
improved from ×35.5 to ×44.2 This indicates that dividing
the inference stage among multiple processors during net-
work execution can significantly increase throughput.

It is noteworthy that the sub-optimal mapping order
found by the genetic algorithm differs between the two
smartphones. For Pixel 6, the mapping order depends also
on the benchmark networks; organizing the pipeline in
the sequence of GPU-accelerator-CPU is optimal for SSD
MobileNet V1 FPN and SSD MobileNet V2 FPN while
the optimal order is found to be accelerator-GPU-CPU for
SSD ResNet 50 FPN. This variation in the exploration of
processor execution order for each network may be caused by
the operating mechanism of the genetic algorithm, evolving
chromosomes based on the processing order that shows
good throughput in the early iterations. CPU consistently
appears at the end of the execution order. This is attributed to
CPU fallback of GPU and accelerator occurring in the later
layers of the networks. Furthermore, a substantial number
of layers are mapped to CPU since the CPU performance
is comparable to GPU or AI accelerator in smartphones, as
shown in Figure 7.

On Galaxy S22, the mapping order is the same for all
networks. Another notable difference from Pixel 6 lies in the
number of mapped layers for each processing element, with
most layers mapped to the accelerator. This aligns with the
earlier observations of the accelerator performance for the
INT8 network after quantization in Figure 12.
These experiments confirm that the proposed approach

demonstrates adaptability in customizing the mapping strat-
egy based on the characteristics of the network and processors
in the system. This underscores the effectiveness of the
proposed method in optimizing network execution across
diverse processors.

D. COMPARISON WITH PROFILING-BASED MAPPING
SOLUTIONS
An experiment has been conducted to compare the proposed
technique with profiling-based methods that are widely

FIGURE 13. Comparing relative FPS of the profiling-based and the
proposed methods on Pixel 6.

FIGURE 14. Comparing relative FPS of the profiling-based and the
proposed methods on Galaxy S22.

adopted in many related works. Conducting individual layer
profiling on commercial mobile devices is impractical due to
the lack of support from Tensorflow Lite and chip vendors.
To overcome these constraints, we estimated the profiled
execution time for each layer by assuming that the execution
time is proportional to the computational demand, or the
number of required FLOPs.

We defined the processor’s performance based on the
single-processor inference mapping performance for each
network and derived mapping solutions accordingly. The
single-processor inference mapping performance has already
been demonstrated in Figures 7 and 8, and we used INT8
inference results as the processor performances. We defined
the computational demand for each layer based on the
required FLOPs of convolution layers within the network,
adjusting the workload according to the performance ratio
of each processor in Table 9. The exploration of mapping
solutions was conducted for all permutations of the three
processors, considering scenarios where all three types of
processors are used. We partitioned the network into three
parts and adjusted the number of layers in each partition
until a balance in the computational workload across the
three parts was achieved. Among the obtained mapping
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FIGURE 15. Device surface temperature variation trends when running deep learning networks on Pixel 6.

FIGURE 16. Throughput variations over 100 image intervals for processing 10,000 images on Pixel 6.

TABLE 9. The performance ratio of each processor based on INT8 single
processor mapping inference throughput.

solutions, we selected the one with the highest throughput
for comparison. The optimal solutions obtained by the
profiling-based method are displayed in Table 10

Figures 13 and 14 compare the throughput evaluation
results between the profiling-based method and the mapping
solutions found by our methodology. In Pixel 6, our approach
exhibited ×2.3 to ×4.4 higher throughput, while in Galaxy
S22, it showed ×1.5 to ×2 higher throughput. These results
signify that relying solely on processor performance-based
network partitioning methodologies does not guarantee
optimal pipelining performance. Our methodology, guided
by the empirical measurement-based genetic algorithm,
explores the design space, allowing us to consider various
factors such as communication, CPU fallback, and more,
beyond just processor performance, to find the optimal
mapping.

TABLE 10. Pipelining solutions obtained by the profiling-based method.

E. THERMAL THROTTLING IMPACT
The proposed method utilizes all processor elements within
the mobile devices and maximizes their utilization to
enhance pipelining performance. It will increase the device’s
temperature more rapidly compared to single processor
mappings. The thermal throttling mechanism adopted in the
device may have a significant impact on system performance.
It is essential to investigate the impact of thermal throttling
on throughput performance of the mobile devices. Thermal
throttling leads to a gradual decline in system performance,
eventually reaching a point of convergence.

Figures 15, 16, 17, and 18 depict the trends in device sur-
face temperature and throughput variations as the number of
processed images increases when applying our methodology
to each mobile device. To measure temperature, each device
was left at room temperature until it reached 33 degrees
Celsius, and the temperature change was recorded every
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FIGURE 17. Device surface temperature variation trends when running deep learning networks on Galaxy S22.

FIGURE 18. Throughput variations over 100 image intervals for processing 10,000 images on Galaxy S22.

5 seconds when the deep learning network continued to run
for 10 minutes after reaching 33 degrees Celsius. Throughput
variation was assessed by inputting 10,000 images into the
pipeline explored by the proposed method, calculating the
throughput for every 100 images, and measuring the FPS
relative to the maximum throughput of the FP32 network.

As shown in Figure 15, the temperature of Pixel 6 steadily
increases initially, subsequently begins to decrease, and
stabilizes below a certain level after about 300 seconds.
Figure 16 shows the throughput variation that initially
demonstrates high throughput, gradually decreases, and
eventually stabilizes. The stabilized performance persists at
a level surpassing both the maximum throughput of the FP32
network and the maximum throughput of the INT8 network.

In the case of Galaxy S22, as depicted in Figures 17 and 18,
the temperature rises significantly higher than in Pixel 6.
When using CPU or GPU alone for inference processing,
thermal throttling could be observed, causing the device to
operate under 40 degrees Celsius. When the accelerator is
used for pipelined processing, the temperature increases to
much a higher level although the rate of temperature increase
gradually diminishes. Examining the FPS variation graph in
Figure 18, it appears that thermal throttling is also applied to
the accelerator to stabilize the FPS performance eventually.
The stabilized performance is still significantly higher than
themaximumFPS performance of the FP32 network onGPU.

Thermal throttling decreases the throughput performance
over time during the execution of the deep learning appli-
cation, eventually stabilizing the performance. The thermal
throttling mechanism exhibits a wide variation between
devices and even among processing elements in the same
device. Despite thermal throttling induced by temperature
rise, the proposed technique significantly boosts the FPS
performance over the baseline single processor execution.
If we can manage the DVFS policy for each processing
element at the user level, it could be an interesting future
research topic to consider the voltage and frequency settings
as well as the mapping of layers for sustainable throughput
maximization.

VI. CONCLUSION
In this paper, a novel methodology is introduced to optimize
the throughput of deep learning applications on commercial
smartphones that integrate dedicated AI accelerators along-
side CPUs and GPUs. The proposed technique involves quan-
tizing network parameters from FP32 to INT8, partitioning
and mapping the deep learning networks across different
processors and employing pipelining to enhance throughput.

Exploring the mapping design space, facilitated by a
genetic algorithm, is a distinctive feature of our study,
allowing us to identify the best mapping solutions tailored
to the unique characteristics of each commercial smartphone.
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This adaptive approach, combined with the precise mea-
surement of actual execution times, considering dynamic
voltage and frequency scaling (DVFS) and OS scheduling,
represents a significant departure from conventional profiling
methods. The impact of thermal throttling on throughput is
investigated while exploring optimal mapping solutions and
running benchmark applications continuously for 10minutes.
With this proposed technique, we achieve a remarkable
×5.4 to ×7.6 throughput improvement for various networks
on Google Pixel 6 and ×35.5 to ×44.2 on Samsung Galaxy
S22, compared to mapping FP32 networks on a single type
of processor.

The significance of our work extends beyond experimental
results; it challenges the conventional reliance on layer-wise
profiling and offers a concrete, measurement-based alter-
native. This study not only contributes to the scientific
understanding of deep learning application optimization on
commercial smartphones but also enables more efficient and
applicable methodologies in this domain.
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