
Received 6 February 2024, accepted 6 March 2024, date of publication 14 March 2024, date of current version 20 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3375393

A Random Forest Weights and 4-Dimensional
Convolutional Recurrent Neural Network
for EEG Based Emotion Recognition
WENXU WANG 1, JIA YANG2, SHENGJIA LI2, BIN WANG 1,3, KUN YANG 1,4,
SHENGBO SANG 1,4, QIANG ZHANG 1,4, AND BOYUAN LIU1
1Shanxi Key Laboratory of Micro Nano Sensor and Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan
University of Technology, Taiyuan 030024, China
2Centre of Research and Development, China Academy of Launch Vehicle Technology, Beijing 100076, China
3College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
4Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Corresponding author: Kun Yang (yangkun01@tyut.edu.cn)

This work was supported in part by the Innovation Fund of China Aerospace Science and Technology Corporation under Grant [2021]397,
and in part by the Distinguished Young Scholars Development Program of Shanxi Province under Grant 202103021221006.

ABSTRACT Emotion recognition based on electroencephalography (EEG) signals has garnered substantial
attention in recent years and finds extensive applications in the domains of medicine and psychology.
However, individual differences in EEG signals pose a challenge to accurate emotion recognition and limit
the widespread adoption of such techniques. To address this issue, this study proposes a model that combines
random forest weights (RFWs) and four-dimensional convolutional recurrent neural network (4DCRNN) to
minimize individual differences and captures emotion-relevant information. By integrating, the proposed
model aims to improve the accuracy and generalization capability of emotion recognition. To evaluate the
performance of the proposed model, experiments were conducted using the DEAP and SEED datasets.
The results demonstrate the effectiveness of the RFW-4DCRNN in emotion recognition. Specifically, the
proposed model achieves mean accuracy of 94.98% and 94.21% for Subject-dependent recognition using the
DEAP and SEED datasets, respectively. For Subject-independent emotion recognition, the model achieved
mean accuracy of 81.70% and 91.12% using two datasets, respectively. The result highlights the capability
of the RFW-4DCRNN to effectively recognize emotions and improves generalization performance. Overall,
this study presents an approach to addressing individual differences in EEG-based emotion recognition. The
RFW-4DCRNN demonstrates promising results in terms of accuracy and generalization capability, offering
potential for the advancement and application of emotion recognition techniques.

INDEX TERMS Emotion recognition, electroencephalography, individual differences, 4DCRNN.

I. INTRODUCTION
Research on emotion recognition has been characterized by
continuous advancement, with researchers fervently striving
to investigate effective emotion recognition algorithms that
can be suitably implemented [1], [2], [3]. Certain researchers
have been inclined toward recognizing emotions based on
facial expressions and bodily movements [4], [5], [6], [7].
Nevertheless, these methods are susceptible to subjective
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manipulation. Consequently, the investigation of emotion
recognition techniques based on physiological signals has
garnered considerable attention. In particular, in recent
times, emotion recognition based on electroencephalography
(EEG) signals has witnessed a surge in interest. EEG-based
emotion recognition technology is considered to improve
human-computer interaction capabilities and provide wider
commercial applications [8]. EEG captures electrical signals
emanating from neuronal firing within the brain. Such
firing activity of neurons undergoes alterations in response
to diverse cognitive and emotional states. Consequently,
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EEG signals serve as reflections of manifold cognitive
and emotional conditions. Emotion represents a fundamen-
tal mental state intrinsic to human beings, encompassing
subjective feelings and physiological responses to stimuli
or events. Given the profound interdependence between
emotion generation, expression, and brain activity, EEG
signals can effectively mirror and discern several emotional
states. However, a persistent challenge in the field is the
intricate variability in EEG signals among individuals, which
hinders the development of robust and universally applicable
emotion recognition models. Individual differences pose
a critical obstacle, necessitating innovative approaches to
address this inherent complexity [9].
Adequately transforming raw EEG signals to extract mean-
ingful features is imperative for classifying emotions based
on EEG signals [10], [11], [12]. However, EEG signals inher-
ently exhibit noise and variability [13], [14], with individual
differences significantly affecting the reliability of emotion
recognition. This issue assumes particular importance in
cross-subject emotion recognition studies because individual
variances in EEG signals have been widely acknowledged as
a key obstacle in achieving a universal classifier [9], [15].
Various methods have been proposed to optimize the effec-
tiveness of cross-subject emotion recognition in response
to this limitation. Li et al. [16] conducted a systematic
study on the emotional information recognition capabilities
of different EEG features in diverse subjects. They extracted
18 linear and nonlinear EEG features, employed support
vector machine (SVM) methods, and used ‘‘leave-one-out
validation’’ to validate their strategies. Du et al. [17] intro-
duced an attention-based long short-term memory (LSTM)
emotion recognition model that incorporates a domain
discriminator to ensure recognition efficiency in independent
subject scenarios. Samavat et al. [18] proposed a multi-input
deep model based on convolutional neural networks (CNNs)
and LSTM, and applied adaptive regularization technology to
improve generalization performance. Yildirim et al. [19] used
the swarm intelligence algorithm to reduce the feature size
by 87.17% and a random forest classifier to achieve average
accuracy of 60.01%, providing an effective approach for
analyzing and screening EEG features. Li et al. [20] proposed
a method based on CNNs and contrastive learning (ECNN-
C), which achieved remarkable results in the three dimensions
of the Database for Emotion Analysis using Physiological
(DEAP) and DERAMER datasets. Yang et al. [21] extracted
multiple features to construct high-dimensional feature sets,
and through the integration of significance test/sequential
backward selection and SVM, the approach was validated
using the DEAP and SEED datasets. Cimtay and Ekmek-
cioglu [22] employed a pre-trained state-of-the-art CNN
architecture to enhance subject-independent recognition
performance. Shen et al. [23] proposed a contrast learning
method for intersubject alignment (CLISA) to address the
challenge of intersubject sentiment recognition. There have
also been significant advances in research on emotion

recognition without cross-subject bias. Chen et al. [24]
proposed the Personal-Zscore feature processing method,
which was applied to the SEED dataset. The method
effectively eliminated the aggregation of individuals in the
feature space and improved the emotion representation of the
dataset, demonstrating the importance of the feature process-
ing method for cross-subject emotion recognition research.
Shen et al. [25] improved the accuracy of EEG-based emotion
recognition by manually extracting differential entropy
features of EEG signals, followed by classification using a
four-dimensional convolutional recurrent network. Despite
the substantial progress achieved, individual differences
continue to exert a significant impact on emotion recognition.
Prior research has predominantly steered toward two distinct
paths: the conventional realm of feature engineering and the
burgeoning landscape of deep learning models. The critical
gap in the existing literature lies in the polarized nature
of these two approaches. Conventional feature engineering
offers transparency and interpretability but may fail to capture
the full complexity of emotional states. Conversely, deep
learning models excel in automatic feature extraction but
may lack transparency, hindering their interpretability and
potentially sacrificing the incorporation of domain-specific
knowledge.
The primary objective of this study was to improve the
accuracy and efficiency of EEG-based emotion recognition
by addressing individual differences through a synergistic
combination of conventional feature extraction and deep
learning. EEG signals are inherently complex and nonlinear.
Although deep learning models such as 4DCRNN are
very powerful in learning hierarchical representations, the
complexity of EEG signals causes significant interference
for these models and significantly increases the number of
calculations. Therefore, using a certain method to manually
extract EEG features allows us to quickly identify and prior-
itize relevant features in the input space, remove noise, and
improve recognition efficiency. Manual feature extraction
can also analyze individual differences in EEG more clearly,
extract features that are more closely related to emotions,
and exclude features that are affected by individuals. Our
contributions lie in the development of a novel model, termed
RFW-4DCRNN, that strategically integrates the strengths
of both methodologies. Through extensive experimentation
and evaluation of established datasets, we demonstrate the
efficacy of our approach in improving subject-dependent
and subject-independent emotion recognition performance.
This hybrid approach aims not only to address the challenge
posed by individual differences but also to unlock new
dimensions in understanding and improving emotion recog-
nition. In particular, the proposed model integrates random
forest weights (RFWs) with four-dimensional convolutional
recurrent neural networks (4DCRNN). Initially, informative
features are extracted from EEG signals using conventional
feature engineering techniques. These features encompass
a range of temporal, spectral, and spatial characteristics
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relevant to emotion recognition. Subsequently, RFW is
used to train a model using these handcrafted features,
which facilitates an initial understanding of the relationship
between the features and emotions. To further enhance the
performance of the model, the 4DCRNNmodel is introduced
to learn more discriminative representations directly from
the EEG data. The architecture of 4DCRNN is specifically
designed to capture both spatial and temporal dependencies
in EEG signals. By combining the strengths of random
forests and 4DCRNN, the proposed model aims to leverage
the interpretability of handcrafted features while benefiting
from the powerful representation learning capabilities of deep
learning.
This paper follows the following structure: In the intro-
duction, related work on EEG-based emotion recognition
is introduced. The second section of the article provides
comprehensive details of the RFW-4DCRNN algorithm.
Subsequently, in Section III, the focus shifts toward the
experimental process, where the application of the RFW-
4DCRNN network to the datasets is presented. Finally, this
study concludes with a discussion in Section IV, followed
by a presentation of the conclusions and future work in
Section V.

II. MATERIALS AND METHODS
A. EMOTION MODEL
Emotions, inherently intricate and abstract, necessitate a
preliminary understanding of the intended emotion model
before embarking upon the study. Currently, the prevailing
emotion models can be classified into two types: discrete
and continuous. Initially, the discrete emotion model enjoyed
popularity in the nascent stages of emotion recognition
research because of its simplicity and comprehensibility.
However, in recent years, the continuous emotion model has
gained prominence as a widely adopted approach in emotion
recognition research. The psychologist Russell introduced the
two-dimensional representation model of emotions in 1980
[26]. The continuum model of emotion has several advan-
tages because it portrays the intricate nature of emotionsmore
accurately. Drawing upon arousal and valence dimensions,
the two-dimensional spatial representation visually depicts a
diverse range of complex emotional states.

B. DATASETS
The DEAP is a public emotion analysis dataset containing
physiological signals, mental questionnaires, and electrode
placement images from 32 participants [27]. The dataset
was created in collaboration between researchers at McGill
University, Canada, and École Polytechnique Fédérale de
Lausanne, Switzerland. The dataset contains rich informa-
tion from 32 participants who each watched 40 different
1-min videos. Simultaneously, the researchers recorded
the participants’ physiological signals. Furthermore, the
researchers simultaneously recorded 32 channels of brain
electrophysiological signals and 8 channels of peripheral

physiological signals of the participants. After watching the
video, the subjects scored the video on the four dimensions:
valence, arousal, dominance, and liking. The emotion in
each dimension can be divided according to different score
thresholds to represent different levels of emotion. This
study primarily investigates the 32-channel EEG data of the
participants.
Another publicly available emotion-related EEG dataset
is SEED from Shanghai Jiao Tong University [11], [12].
It includes 15 subjects (7 males and 8 females). During
the experiment, an EEG recording device with 64 electrode
channels was used. Reference electrodes were used on
two channels. For approximately 4 min each, the subjects
watched Chinese movie clips of three different emotion
types (negative, neutral, and positive). Each subject viewed
15 different movie clips. All had five sets of negative, neutral,
and positive movie clips. All subjects participated in three
experiments, and 45 sets of EEG data were collected for each
subject.

C. EVALUATING EMOTION RECOGNITION MODEL
METHODS
Researchers have devised various strategies for evaluating the
efficacy of emotion recognition models in different scenarios,
aiming to assess their performance from diverse perspectives
and cater to specific evaluation criteria. These strategies
vary in terms of application scenarios and recognition
difficulty. For instance, certain deep learning frameworks
may excel in one strategy while under-performing in another.
Consequently, such specialized emotion recognition models
may lack the versatility required for application in diverse
scenarios.
The subject-dependent strategy is extensively employed
as the primary approach in emotion recognition research.
This strategy uses the EEG data of a specific subject for
both training and testing purposes. The EEG data of each
subject are treated as an individual dataset and subsequently
partitioned into training and test subsets. One-tenth of the
subjects’ data were selected as the validation set during
training and the other nine-tenths of the data were used for
training [28], [29]. The overall classification performance
of the emotion recognition model was then determined by
computing the average accuracy across all test subsets.
The subject-independent strategy presents a greater challenge
than the subject-dependent strategy, however, it holds sig-
nificant practical value. In the subject-independent strategy,
distinct subjects are used to construct the training and test
sets. The primary objective of this study was to assess the
ability of the model to generalize across independent indi-
viduals. The expectation is that the model will exhibit strong
performance even when applied to an unknown individual,
thereby facilitating its practical application. Leave-one-out
cross-validation is a widely employed approach within this
strategy. To avoid the phenomenon of overfitting, in each
cycle, the data of one subject were reserved for testing
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purposes, whereas the data of all other subjects were used for
training. The data of a subject were selected as the validation
set during training [30]. The evaluation criterion for the
recognition model is the average accuracy rate computed
across all cycles.
Adhering to the recommended guidelines for validating
deep learning models based on EEG [31], this study
examines the two recognition strategies individually and
improves the model to ensure effective recognition under
both approaches. Figure 1 illustrates subject-dependent and
subject-independent strategies as examples.

D. RFW-4DCRNN
The RFW-4DCRNN model harnesses the strengths of
random forests and deep learning techniques to improve
the accuracy and efficiency of emotion recognition using
EEG signals. On the one hand, the RFW component of the
model incorporates the use of random forests, a well-known
machine learning algorithm renowned for its capacity to
handle high-dimensional feature spaces and capture intricate
relationships between features and labels. On the other
hand, the 4DCRNN component is specifically designed to
extract spatio-temporal features from EEG signals. This
type of neural network can effectively capture both spatial
and temporal dependencies within data, enabling the model
to learn intricate patterns and representations. A flowchart
illustrating the RFW-4DCRNN model is shown in Figure 2.
The entire RFW-4DCRNN model can be divided into three
distinct parts: feature extraction, RFW, and 4DCRNN.

1) EEG FEATURES FOR EMOTION RECOGNITION
When analyzing EEG signals, it is crucial to acknowledge
that brainwave data constitute a multidimensional time series.
Furthermore, EEG waves exhibit distinct patterns of signal
activity, depending on the specific cognitive or emotional
activities being observed. Therefore, to quantify the different
emotional states of the subjects, some researchers have
performed mean square error analysis on the EEG signal [8],
whereas others have used the principal component analy-
sis [32]. The purpose of this study is to extract features that are
more relevant to emotions. Electrodes in the prefrontal cortex
have been widely studied and demonstrated to be associated
with emotional processes [33], [34] [35]. In this section,
each feature value is computed, incorporating both linear and
nonlinear kinetic features.
The characteristics of the EEG signal are primarily divided
into four basic waveforms: δ, θ , α, and β waves, with
frequencies of 0.5-3, 4-7, 8-13, and 14-30 Hz, respectively.
The signal was divided into four frequency bands for each
channel. The first 3 s of data were used as the base band, and
the remaining data were resegmented every 0.5s. Linear and
nonlinear analyses were performed on each data segment,
and 16 features were extracted.
The linear analysis method, which is mainly used in the time,
frequency, and time-frequency domains, is the most basic

TABLE 1. Description of extracted EEG feature.

method for processing EEG signals. Time-domain features
capture the temporal statistics of EEG signals. Frequency-
domain features capture emotional information from a
frequency-domain perspective. Time-frequency-domain fea-
tures are obtained from the Hilbert-Huang transform [36],
[37], [38]. Based on previous studies, the features extracted
by linear analysis are Hjorth activity [39], [40], [41], [42],
fractal dimension [43], [44], Hurst exponent [45], [46], [47],
differential entropy [48], [49], [50], [51], logarithmic power
spectrum [52], and band energy [53]. Specific information
can be found in Table 1.
With the widespread use and development of nonlinear
dynamics techniques, researchers have discovered many
nonlinear properties that reflect the characteristics of EEG
signals. Building on previous work [8], [54], [55], [56],
[57], [58], this study uses approximate entropy, sample
entropy, permutation entropy and transfer entropy for feature
extraction and analysis of EEG signals to investigate emotion
classification and recognition.

2) RFW FEATURE SELECTION METHOD
After extracting each feature parameter of the raw EEG
signal, the specific process of the RFW method proposed in
this study is explained below. First, the Pearson correlation
coefficient p1 was obtained for each trait and emotion.
The calculation method of the p value of the Pearson
correlation coefficient is shown in Formula 1. This was done
by testing all subjects’ data for correlation with emotion.
Second, each person’s data were tested individually for
correlation with emotion to obtain the Pearson correlation
coefficient p1i (i = 1, 2, . . . , N) for each person’s features
and emotion. Third, the number of individuals n1 with
each feature strongly correlated (|p1i| ≥ 0.95) with the
subjects’ emotions was calculated. Correlation tests were
then conducted on all subjects’ data with individuals to obtain
the Pearson correlation coefficient p2 values for each feature
with individuals. Fifth, the feature data were fed into a
random forest and trained with emotion as the label to obtain
the importance value i1. Finally, the feature data were fed into
a random forest and trained with an individual as the label to
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FIGURE 1. Two examples of model validation using subject-dependent and subject-independent methods. The
top illustrates the topic-related division, where 72% of an individual’s data are selected for training at a time, 8%
of an individual’s data are selected as the validation set during training, and the remaining 20% are used for
testing. The bottom illustrates the topic-independent division, where data from one individual are used as the
test set, data from another individual are used as the validation set during training, and data from the remaining
portion are used as the training set.

FIGURE 2. The RFW-4DCRNN emotion recognition model comprises three components: feature extraction, feature selection, and 4DCRNN. The model
takes as input a feature matrix that contains distinct representations of signals extracted from each channel of the EEG signals. The RFW method is
used to select the most informative features, followed by the transformation of the feature structure into four dimensions. The resulting features are
then passed through the 4DCRNN network structure for emotion identification.

obtain the importance value i2.

p =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(1)

where xi represents the value of an eigenvalue in the ith
sample; yi represents the label represented by the ith sample;
x represents the mean of the eigenvalues of all samples; y
represents the mean of label values of all samples.
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For each feature, the final score is calculated as a combination
of the scores obtained. After this step, the final score of
each feature can be calculated on the basis of the following
equation:

Score =
n1
N

[
W ·

p21 − p22
p22 + ε

+ (100 −W ) ·
i1 − i2
i2 + ε

]
(2)

where W represents the weight, and ε denotes a minuscule
value used to prevent division by zero.
The best formula for finding feature scores is obtained
by searching for W. The process involves assigning a
value to W and then using the random forest algorithm to
perform sentiment recognition on the high-scoring features
and calculate the recognition accuracy between individuals.
The value of W with the highest accuracy is obtained as the
best.
Algorithm 1 describes the specific process for optimizing W.

Algorithm 1 Optimization of W
Require: S: original subject sample data set.
1: Accuracy = One-dimensional array of length 101
2: for W in range(0, 101): # Assign values to W from 0 to

100 respectively do
3: Score = PutW into the Formula 1 to calculate the score

of each feature in S
4: S ′ = Selecting the characteristics of the top 256 in the

score ranking
5: for i in range(0, N): # Iterate over the data of N

individuals do
6: trainingSet = Exclude the i-th person’s data S ′

i from
S ′

7: testingSet = S ′
i

8: accuracyi = Accuracy of Random Forest identifica-
tion testing set

9: end for
10: Accuracy[W ] =

∑N−1
i=0 accuracyi /N

11: end for
12: W = Index of the maximum value in the Accuracy array
13: return W

2: W= Index of the maximum value in the Accuracy array
return W
After finding the best value of W, the validity scores of all
EEG features are ranked, and the top 256 features are used in
the next step of model training and emotion recognition.

3) 4DCRNN EMOTION RECOGNITION MODEL
The 4DCRNN model is a neural network model for process-
ing spatiotemporal data. It combines the advantages of CNNs
and recurrent neural networks (RNNs) for effective modeling
and prediction of spatiotemporal data. Unlike conventional
three-dimensional CNNs, 4DCRNN introduces an additional
temporal dimension. This allows the network to process
four-dimensional spatiotemporal data. The core idea of
4DCRNN is to use CNNs to extract features while processing

spatiotemporal data, and RNNs are then used for modeling
and prediction. Specifically, 4DCRNN extracts features from
input data through multiple convolutional layers. The feature
sequences are then fed into the RNN, which combines the
previously extracted features for modelling and prediction.
Compared with conventional three-dimensional CNN and
RNN models, 4DCRNN can better handle spatiotemporal
data and can automatically learn spatiotemporal relationships
and long-term dependencies. Consequently, it has demon-
strated excellent performance in the field of EEG signal
processing and classification.
The 4DCRNN network framework can be summarized in the
following steps:

a: INPUT DATA PREPROCESSING
The input data are converted into a four-dimensional tensor.
The specific operation is to filter out 256 features with
strong relevance to emotions using the RFW method
sorting calculation, then four-dimensional processing of these
features to generate a new dataset, and finally feeding this
dataset into the 4DCRNN network for training classification.
The detailed process of four-dimensional feature processing
is to convert 256 features into a 4×8×8 data format, and
then combine the features of 6 adjacent periods as a new
dimension. The tensor structure of 6×4×8×8 is obtained
after the previous part of the operation.

b: FEATURE EXTRACTION
Feature extraction from the input data is performed using
convolutional layers, each of which contains operations
such as convolution, batch normalization, and nonlinear
activation functions. Unlike conventional CNNs, where each
convolutional layer is typically followed by a pooling
layer, this study adds a pooling layer only after the last
convolutional layer. Pooling reduces the data size in which
significant information may be buried. In this study, the data
size is significantly reduced by manually extracting the EEG
features. Therefore, for data manipulation, it is not necessary
to reduce the parameters in exchange for processing speed.
As shown in Figure 2, it contains four convolutional layers,
a maximum pooling layer, and a fully connected layer. The
fourth convolutional layer contains 64 feature maps with a
filter size of 1×1, which is used to fuse the feature maps of
the previous convolutional layer. The zero fill and rectified
linear unit activation functions are applied to all convolution
layers. After convolution, a max-pooling layer of size 2×2
with a step size of 2 is applied. This reduces overfitting and
increases the robustness of the network. The output of the
final pooling layer is flattened to a fully connected 512-cell
layer.

c: SEQUENCE MODELING
By feeding the sequence of features extracted from the
convolutional layer into a recurrent layer, the RNN can
combine the previously extracted features for modeling
and prediction. Because the EEG signal contains dynamic
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FIGURE 3. Visualization of the original feature t-SNE dimensionality reduction based on
the DEAP dataset. Before applying RFW, showcase the results of dimensionality
reduction in the EEG characteristics of 32 subjects. In this representation, the EEG data
are clustered according to individual identity, highlighting the strong individual
differences in each person’s EEG patterns.

content, the variation between time slices in the four-
dimensional structure may hide additional information that
makes it possible to classify emotions more accurately.
Therefore, LSTM units are used to extract temporal informa-
tion from the CNN output. In this study, an LSTM layer with
128memory units is used to mine the temporal dependence of
features, as shown in Figure 2. 128 outputs of the last LSTM
node are obtained after LSTM processing, which inherits the
frequency, spatial and temporal features of the EEG segments
every 3s.
Finally, the softmax layer is used to classify the 128 outputs
of the LSTM. Two outputs can be obtained, which are the
probabilities of the two outcomes.

III. RESULTS
The main experiments included feature selection using RFW.
The effectiveness of this approach in reducing individual
variability is demonstrated through t-distribution random
neighbor embedding (t-SNE) data visualization. Finally, the
performance of the 4DCRNNmodel in emotion identification
is evaluated using the DEAP and SEED datasets.

A. ELIMINATION OF INDIVIDUAL DIFFERENCES
Based on the subjects’ EEG features obtained from the
preprocessing data, it is expected that the features strongly
associated with emotions can be identified and used.

To understand the influence of individual differences in
EEG features, this study uses data mining methods to
investigate individual differences in EEG features from
different perspectives, especially data visualization methods.
Direct observation of the two- or three-dimensional spatial
distribution of the data can reveal some potential patterns.
These patterns can be translated into hypotheses for further
investigation. t-SNE was used to reduce the dimensionality
of the data. The data can be visualized for each individual.
Chen et al. [24] have analyzed individual variability in SEED
in detail; therefore, this study presents the phenomenon of
individual differences in DEAP in more detail. Figure 3
shows the visualization of the EEG features of each person
in the DEAP dataset after dimensionality reduction. All
feature data are aggregated on an individual basis. Thus, this
study considers individual differences an important barrier
to the effective transfer of emotion recognition techniques.
To reduce individual differences in EEG features, an RFW
method is proposed. After processing the above RFW
steps, 256 effective features can be obtained for identifying
emotions. Figure 4 depicts the variation of the mean with W
for the random forest, and the classification results of three
random forest classifiers with different numbers of nodes
(100, 1000, and 10,000).
The top 256 features of the ranking were subjected to
a new t-SNE data dimensionality reduction operation and

VOLUME 12, 2024 39555



W. Wang et al.: Random Forest Weights and 4-Dimensional Convolutional Recurrent Neural Network

FIGURE 4. Variation in the mean with W for the random forest for all subjects using the
leave-one-out cross-validation method.

visualized. The results are shown in Figure 5, where
individual differences are significantly reduced. There is also
a slight tendency to aggregate data for the same emotion.
Therefore, the RFWmethod can effectively reduce individual
differences in EEG, which is beneficial for expanding the
application of emotion recognition technology.
The classification of these features showed that emotions
can be well distinguished. Figure 6 shows the results of the
two classifications of emotions in the valence dimension in
the subject-dependent scenario of the features screened using
the RFW method. This method ensures the effectiveness
of emotion recognition without destroying the correlation
between EEG and emotion.

B. EMOTION RECOGNITION EFFECT
This section presents the experimental results for both
databases and compares them with those obtained using
various methods. The results are effectively visualized using
line plots, where two lines represent the recognition accuracy
of the subject-dependent and subject-independent methods.
The x-axis corresponds to different participants, and the
y-axis represents recognition accuracy.

1) EVALUATION ON THE DEAP DATABASE
In this study, the emotion labels in the DEAP database are
classified as high/low arousal and positive/negative potency.
We then performed a binary classification task for evaluation.
Two separate line plots were created to illustrate the effect of
the valence and arousal dimensions on emotion recognition.
The results of the RFW-4DCRNNmodel on DEAP are shown
in Figure 7.
Subject-dependent Evaluation: In the subject-dependent
treatment, data from each participant are used individually

TABLE 2. Average accuracy of the RFW-4DCRNN model in
subject-dependent evaluation using the DEAP dataset.

to train and evaluate the emotion recognition models. This
approach allows the models to capture the specific patterns
and characteristics of each individual’s EEG signals and their
corresponding emotions. Specifically, 32 subjects, each with
40 trial data, used the data from 39 trials as a training set and
1 trial as a test set. The cycle was repeated 40 times until
each subject used every dataset as a test set. The average
of the 40 times was taken as the effectiveness of the model
in recognizing the subject’s emotions. Various methods have
been applied to the subject-dependent treatment of the DEAP
dataset, and their accuracies in emotion recognition have been
compared in Table 2. In comparison, the proposed 4DCRNN
method achieved higher accuracies for subject-dependent
emotion recognition. These results indicate the competence
of the model in capturing individual-specific EEG patterns
and recognizing emotions within the same subject, demon-
strating its suitability for personalized emotion recognition.
Subject-independent Evaluation: The leave-one-subject-
out cross-validation strategy is applied to evaluate the
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FIGURE 5. Results of the top 256 features for the new t-SNE visualization: (a) individual and (b) emotion as labels. In this case, the data of
all individuals were evenly distributed, indicating that the proposed method successfully eliminated individual differences in EEG
characteristics. This accomplishment is crucial in improving the capability of the model for emotion recognition across subjects and
enhancing the generalization capability of the proposed model.

FIGURE 6. Emotion classification effect of the first 256 features using the random
forest algorithm in a subject-dependent scenario.

subject-independent emotion recognition. In the subject-
independent treatment, the experimental data of 31 subjects
were used for training, and the data of the remaining
1 subject were used for testing. The cycle was repeated
32 times until all subjects were used for testing. The
average of the 32 trials was taken to show the effect of
the model. Here, accuracy of 78.6% was achieved in the
valence dimension and 84.8% in the arousal dimension.
For a better comparison, average accuracy of 81.7% was
taken for both dimensions. Compared with the other
methods shown in Table 3, the proposed method achieved
an effective improvement. These results are particularly

impressive as they demonstrate the ability of the model to
generalize well across different individuals, despite their
unique EEG characteristics. The significant improvement
in subject-independent accuracy with the RFW-4DCRNN
model compared with conventional approaches highlights
its effectiveness in minimizing individual differences and
improving cross-subject emotion recognition.

2) EVALUATION ON THE SEED DATABASE
The EEG data in the SEED database are associated with
three mood labels: positive, neutral, and negative. There-
fore, we perform a three-category classification task for
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FIGURE 7. Results of 4DCRNN on DEAP: The left picture of the first line shows the classification effect of the valence label. The
right picture of the first line shows the classification effect of the arousal label. The pictures in the second row show the
classification confusion matrix in the subject-dependent scenario. The pictures in the third row show the classification confusion
matrix in the subject-independent scenario.
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FIGURE 8. Performance of RFW-4DCRNN on the SEED dataset. The picture in the
first row shows the classification accuracy for each subject in both scenarios. The
picture on the left of the second row shows the classification confusion matrix in
a subject-dependent scenario. The picture to the right of the third row shows the
classification confusion matrix in a subject-independent scenario.

TABLE 3. Average accuracy of the RFW-4DCRNN model in
subject-independent evaluation using DEAP.

assessment. Similarly, for the SEED dataset, a line graph was
created to demonstrate the effect of emotion recognition. The
graph is shown in Figure 8.
Subject-dependent Evaluation: There were 15 subjects with
data from 15 EEG trials each. Data from 14 trials were
used for model training and the remaining 1 trial was used
for testing. The average of the 15 cycles was taken as the
subject’s accuracy. The average of the 15 subjects was taken
and compared with the other methods, as shown in Table 4.
According to the table, the proposedmethod achieves the best
results.

TABLE 4. Average accuracy of the RFW-4DCRNN model in
subject-dependent evaluation using SEED.

TABLE 5. Average accuracy of the RFW-4DCRNN model in
subject-independent evaluation using SEED.

Subject-independent Evaluation: The same treatment for the
DEAP dataset was applied to the SEED dataset. The average
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TABLE 6. Analysis of the complexity of the framework.

was obtained by cycling 15 times. The results are shown in
Table 5, indicating that our method is based on other methods.

3) ANALYSIS OF THE COMPLEXITY OF THE FRAMEWORK
Analysis of the complexity of the framework is crucial. Our
analysis of the framework and training model is presented
in Table 6. This comprehensive analysis includes a detailed
elaboration of the framework parameter quantities, providing
nuanced insights into the architectural complexity that
governs model representation. In addition, the investigation is
extended to GPU use metrics, elucidating how efficiently our
framework uses computing resources on the RTX3090-24G
GPU. To quantitatively assess computational requirements,
explicit reporting of floating point operations per second
(Flops) and model size is introduced, allowing for a compre-
hensive assessment of computational complexity. Regarding
training efficiency, we carefully recorded and reported
the training time of four different classification scenarios,
capturing the performance changes of the framework in
different tasks. The experimental setupwas based on anAMD
Ryzen 9 5950X CPU and an NVIDIA RTX 3,090 GPU
with 24 GB of VRAM.

IV. DISCUSSION
This study introduces the RFW-4DCRNN model for
EEG-based emotion recognition. Experiments were con-
ducted in both subject-dependent and subject-independent
scenarios using the DEAP and SEED datasets. The experi-
mental results demonstrate significant improvements in the
model performance. Furthermore, this study investigates the
impact of individual differences in EEG features and suggests
that reducing such variability enhances the effectiveness of
cross-subject emotion recognition.
In this study, we conducted extensive analysis of EEG
features and their correlation with emotions, considering
individual differences. To address the challenge of individual
aggregation, we introduced the RFW method. By applying
t-SNE dimensionality reduction, we demonstrate that the
RFW method effectively minimizes individual variations in
EEG data. One of the significant advantages of this method
is that it not only ensures efficient emotion recognition
within individuals, but also effectively mitigates the effect
of individual differences in EEG signals and improves
the efficiency of emotion recognition between individuals.
By comparing the accuracy of subject-independent emotion
recognition with and without the RFW method, as shown

FIGURE 9. Comparison of the accuracy of emotion recognition before and
after using the RFW method.

in Figure 9, the inclusion of RFW significantly improved
the performance of the model in cross-subject emotion
recognition. We then captured the interconnections among
features and their temporal dynamics using the 4DCRNN
model. Through extensive experiments on the DEAP and
SEED datasets, we demonstrated the effectiveness of the
RFW-4DCRNN method in achieving cross-subject emotion
recognition. Our proposed approach achieved accuracy of
81.7% on theDEAP dataset and 90.12% on the SEED dataset.
Nevertheless, this study has some limitations. One of
the disadvantages of the algorithm is its computational
complexity, particularly during the training phase of the
4DCRNN network. The integration of feature extraction from
the random forest and subsequent deep learning training
may require significant computational resources, limiting
the efficiency of the algorithm in resource-constrained
environments. In addition, the complexity of the hybrid
model introduces the risk of overfitting, especially when
dealing with smaller datasets. Regularization techniques and
careful tuning of model parameters are essential to mitigate
this risk and ensure the reliability of the algorithm in
real-world applications. Specifically, our approach has only
been applied to the aforementioned datasets, which restricts
the generalizability of our findings. Furthermore, although
our model successfully reduces the influence of individual
differences on cross-thematic emotion recognition, further
research is required to gain deeper insights into the nature
of individual variations in EEG signals.
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V. CONCLUSION
In conclusion, the proposed RFW-4DCRNN model offers
a promising approach for EEG-based emotion recogni-
tion. By integrating the strengths of RFW and 4DCRNN,
the model effectively addresses individual differences and
captures spatiotemporal dependencies in EEG signals. Exper-
imental results on the DEAP and SEED datasets demonstrate
the advanced performance of the RFW-4DCRNN model in
emotion recognition tasks, under both subject-dependent and
subject-independent scenarios. These findings highlight the
significance of feature processing methods and deep learning
techniques in achieving robust and accurate cross-subject
emotion recognition. Further research can explore the gener-
alizability of the model to additional datasets and investigate
individual differences in EEG in greater depth. Overall, the
RFW-4DCRNNmodel holds promise for enhancing emotion
recognition applications and advancing our understanding
of the interplay between EEG signals and emotions. Future
investigations will explore additional domains and delve into
a more comprehensive study of individual differences in EEG
signals. In future research, performingmore detailed analyses
and specifically targeting factors that potentially contribute
to individual differences could improve the effectiveness of
emotion recognition. Furthermore, applying the proposed
approach to a larger dataset for validation would further
validate its applicability.
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