
Received 25 January 2024, accepted 1 March 2024, date of publication 7 March 2024, date of current version 25 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3374882

Overlapping Community Detection Based on
Weak Equiconcept
SUNQIAN SHI, MENGYU YAN , AND JINHAI LI
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Data Science Research Center, Kunming University of Science and Technology, Kunming 650600, China

Corresponding author: Mengyu Yan (yanmengyu2016@163.com)

ABSTRACT Community discovery refers to the process of searching for clusters in a network that are
sparsely connected to other nodes and formed dense connections internally. In many real networks, some
communities often overlap with each other, meaning that a node may belong to multiple communities
simultaneously. Revealing these (overlapping) community structures is an important issue in complex
network analysis, as it helps to better analyze the characteristics and organizational structure of the network.
Community expansion methods are very important in the study of community detection problems. However,
one of the key issues in developing effective community expansion methods is that the position of seed
nodes greatly affects the performance of these algorithms, resulting in low robustness of these algorithms.
Meanwhile, it is also difficult for them to provide high-quality results for community detection task. To solve
the above problem, this paper proposes a seed selection method based on the weak equiconcepts in a network
formal context, which integrates the attribute information of nodes during randomwalk to detect overlapping
communities. Specifically, the weak equiconcepts are constructed by establishing a network formal context
to obtain seed sets, and an improved PageRank clustering algorithm is used to expand these seed sets to
better reveal the overlapping community structure in the network. Experiments show that seed selection is
helpful to improving the performance of overlapping community detection algorithms.

INDEX TERMS Overlapping community discovery, network formal context, weak equiconcept, random
walk.

I. INTRODUCTION
The purpose of community discovery is to explore the
potential community structure in complex networks. The
research results in this field have important theoretical
significance and practical application value for understanding
the topology of networks and the analysis of inter-community
behavior patterns. The results of the community’s findings
have been widely used in various fields and tasks. For
example, community discovery based on online social
behavior was able to effectively determine the relationship
between users and was used for the task of spammer
detection [1], community discovery based on human brain
network could help identify functional parts of the brain
that play a role or have pathologies [2], image interpretation
based on community discovery was able to generate better
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image semantic descriptions by introducing communities [3],
and community detection could predict the absence of links
in link prediction [4]. Most of the communities in the real
network are not independent of each other, but overlap with
each other, and such communities were called overlapping
communities [5], [6], which means that the interaction
between communities is more complex. In order to solve the
problem of detecting overlapping communities, scholars have
proposed various methods and algorithms, such as the classic
clique percolation method [7], the community expansion
algorithm GCE by [8], link density-based methods like the
fast greedy modularity-based hierarchical community detec-
tion [9], probabilistic graphical models [10], spectral cluster-
ing methods [11], a label propagation community detection
algorithm [12], and fuzzy methods for detection [13].
As far as we know, community expansion methods are

important in the detection of overlapping communities. There
are three main problems with the existing approaches:
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1) The seed node is manually specified, which affects the
stability of the algorithm.

2) The selected seeds are not representative and cannot
fully cover the core information of the community.

3) The fringe communities of the network are not fully
detected.

In order to solve the above three problems, this paper
proposes a new seed selection method based on Formal
Concept Analysis (FCA) [14]. It is an effective computational
intelligence method used for characterizing relationships
between nodes in a graph. FCA is a powerful knowledge
discovery theory that provides techniques for efficiently
discovering fine-grained knowledge (called formal concepts)
from binary relation and organizing them into lattice-based
structures (called concept lattices). The formal context is
an important input, which is composed of the triples of
objects, attributes, and their relationships. In addition, two
key operations were defined for extracting the common
attributes/public objects for a given set of objects/attributes.
In recent years, many scholars have successfully integrated
FCA with specific tasks such as data mining [15], machine
learning [16], [17], [18], knowledge discovery [19], [20],
cloud computing [21], complex network [22], [23], [24], [25],
and so on.

In the combination of FCA and complex network,
adjacency matrices are used to describe network topology,
while a formal context is used to describe the relationship
between objects and attributes, and the formal context can
be regarded as a modified adjacency matrix from the data
point of view. Therefore, FCA and complex network are
both based on the (modified) adjacency matrix to make data
analysis and knowledge discovery. Furthermore, studying
the generation and propagation of networks and concepts
under a unified framework allows for the full utilization of
their complementary advantages. Besides, the interpretability
of complex network structures can be improved through
FCA. Some scholars have paid much attention to their
complementary researches. For instance, Hao et al. [23], [24]
combined graph networks with FCA, conducting a thorough
analysis of social networks and proposing a k-clique detection
method applied to community discovery. Gao et al. [22]
established an equivalence relationship between FCA and
critical structures in graph networks, introducing amethod for
detecting key structures. Moreover, Yang et al. [25] extended
static networks to dynamic ones, reinforcing the integration
of FCA with networks.

This paper also focuses on the study of integrating FCA and
complex network from the perspective of weak equiconcept
to propose a novel seed selection method, which can not
only represent the most critical structure of the network,
but also automatically select the most representative seed
nodes. This overcomes the problem of manually specifying
seed nodes in the traditional methods, so as to improve the
automation and universality of the division. We integrate the
attribute information and topological structure of a network
to expand communities by means of selecting seeds and

detect the fringe communities of the network. Finally, the
initial extended community is optimized, the information
entropy of a network formal context is used to determine
the parameters, and the final community division results
are obtained by adjusting some communities and nodes.
The main contributions of this paper are summarized as
follows:

1) A more representative seed selection strategy is
proposed by using the weak equiconcepts, which are
derived from the network formal context.

2) The PageRank node clustering algorithm is improved
by integrating the node attribute information and
topological structure of the network, so as to ensure
that the local community obtained by seed expansion
has a large overall node influence, and the nodes in the
local community have high attribute homogeneity and
structural similarity.

3) Furthermore, the preliminary community division is
further optimized by information entropy of a network
formal context, and the algorithm’s performance is
validated on real networks. Experimental results show
that the method proposed in this paper can identify
more accurate community structures compared to the
existing algorithms.

The outline of this paper is organized as follows: Section II
provides the preliminary knowledge. We review some
related work in local community detection in Section III.
In Section IV, we put forward an overlapping community
detection algorithm, named WEOCD (Weak Equiconcept for
Overlapping Community Detection), a stability coefficient to
guide the selection of seeds based on the weak equiconcept,
and a overlapping degree between communities to estimate
the quality of detected local communities for community
optimization strategies. Section V conducts some compara-
tive experiments to show the effectiveness of the proposed
WEOCD algorithm. Finally, Section VI concludes this paper
and presents future work.

II. PRELIMINARY
In FCA, the formal context matrix is used to describe the
relationship between objects and attributes, while complex
networks utilize adjacency matrices to depict topological
structures of networks, which illustrate the relationships
between nodes and edges in a network, with a value of
‘‘1’’ indicating the connection of them and ‘‘0’’ otherwise.
Similarly, in a formal context, if edges in the network are
considered as attributes, whether an object possesses an
attribute can also be represented by a matrix, with values of
‘‘1’’ or ‘‘0’’. By combining the advantages of them, a network
formal context is constructed by using a modified adjacency
matrix.
Definition 1 [26]: A triplet (U ,A, I ) is termed a formal

context, consisting of a non-empty finite set of objects U =
{x1, x2, · · · , xn}, a non-empty finite set of attributes A =
{a1, a2, · · · , am}, and a binary relation I on the Cartesian
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product U × A. We denote

xI = {a ∈ A | (x, a) ∈ I }

Ia = {x ∈ U | (x, a) ∈ I } (1)

where xI represents a collection of all attributes owned by
an object x, Ia represents a collection of all objects with
attribute a, and (x, a) ∈ I indicates that object x has attribute
a.
Definition 2 [26]: For a formal context (U ,A, I ), two

operators are defined for X ⊆ U , B ⊆ A:

f (X ) = {a ∈ A | ∀x ∈ X , (x, a) ∈ I } =
⋂
x∈X

xI

g(B) = {x ∈ U | ∀a ∈ B, (x, a) ∈ I } =
⋂
a∈B

Ia (2)

where f (X ) represents the set of all attributes commonly
possessed by all objects in X , and g(B) denotes the set of all
objects that possess all the attributes in B.
Definition 3 [26]: Given a formal context (U ,A, I ),

if f (X ) = B and g(B) = X , then the ordered pair (X ,B)
is termed a formal concept, or simply a concept. Moreover,
X is referred to as the extent of the concept (X ,B), and B
as the intent of the concept (X ,B). Organizing all concepts
according to the partial order relation ≺, we form a concept
lattice L(U ,A, I ).
Definition 4 [27]: A quadruple (U ,M ,A, I ) is termed a

network formal context, where M = {M1,M2, · · · ,Mk},
Mi is the network’s i-th order adjacency matrix, A =

{a1, a2, · · · , am} is a non-empty finite set of attributes, and
I = {I1, I2, · · · , Ik , Ik+1}, with I1, I2, · · · , Ik being binary
relations on the Cartesian product U × U , and Ik+1 being a
binary relation on the Cartesian product U × A.
Definition 5 [22]: A network G = {V ,E} consists of n

nodes, denoted as x1, x2, · · · , xn. Let K ′ = (kij)n×n be the
modified adjacency matrix, which is defined as:

kij =


1, if nodes vi and vj have a connection and i ̸= j,
1, if i = j,
0, otherwise.

Therefore, MFC(G) = (U ,U , I ) is equivalent to the
modified adjacency matrix of the graphG = {V ,E}, denoted
as MFC(G) = K ′. Based on the properties of K ′, MFC(G)
also has the following characteristics:

1) MFC(G) is symmetric;
2) all diagonal elements are equal to 1.
In a network G = {V ,E}, the network formal context of G

is denoted as (U ,M ,A, I ), and a simplified version leads to
a modified adjacency matrixMFC(G) = (U ,U , I ).
Definition 6 [22]: For a network formal context

(U ,U , I ), if a pair (X ,B) satisfies f (X ) = B, g(B) = X and
X = B, then (X ,B) is referred to as an equipconcept. In this
case, X is known as the extent, and B as the intent. If the
number of objects in the equiconcept is k = |f (X )|, we call
this equiconcept as k-equiconcept.

Definition 7 [28]: In a network G = {V ,E}, the
conductance of cluster C(C ⊂ V ) is defined as:

cond(C) =
links(C,C)

min(links(C,V ), links(C,V ))

where C = V − C is the complement of C in V , and
links(C,C) is the number of edges between the clusters C
and C .

III. RELATED WORKS
Community expansion-based methods start from specific
nodes and incrementally expand, relying on a local commu-
nity metric. The community is optimized by continuously
assessing changes in this metric. The selection of seeds and
the methodology for measuring local community metrics are
crucial for such algorithms. This section gives an overview
of current researches on community expansion methods and
discusses challenges in the field.

A. SEED SELECTION
The initial step in community expansion is seed selection,
and it has been extensively studied by numerous scholars.
Andersen and Lang [29] have demonstrated the feasibility
of identifying a robust seed set within communities. Lanci-
chinetti et al. [30] adopted a strategy of randomly selecting a
node as the seed, introducing an element of uncertainty to the
algorithmic outcome. Baumes et al. [31] proposed a global
approach through link clustering, considering the degree of
nodes from a global perspective but inadvertently neglecting
peripheral communities, thereby affecting the accuracy of the
results. Lee et al. [8] employed k-cliques as candidate seed
sets. Whang et al. [32] introduced methods for appropriate
seed set selection, such as the use of ‘Graclus centers’ and
‘Spread hubs’ algorithms, coupled with PageRank clustering
for expansion. Gao et al. [33] suggested the employment of
graph topological metrics for node ranking and neighborhood
inflation for seed selection. Lastly, Gao et al. [22] utilized
formal context methods for the selection of local key
structures.

B. COMMUNITY EXPANSION
Starting from the detected seeds as initial communities,
adjacent nodes are added to expand these into local communi-
ties. Common community expansion methods include quality
function-based approaches [34], [35], [36], [37] and influence
propagation methods [38], [39], [40], [41]. The community
structure in networks is defined by quality functions, which
assess the quality of community partitions [42]. In the Local
Fitness Maximization (LFM) community detection method
proposed by Lancichinetti et al. [30] and the Greedy Clique
Expansion (GCE) method by Lee et al. [8], community
expansion optimizationwas achieved by greedilymaximizing
a local fitness function. The central idea of influence
propagation methods is to score each node using an influence
assessmentmechanism and propagate this scoring throughout
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FIGURE 1. WEOCD method overview diagram.

the network. Raghavan et al. [43] introduced the Label
Propagation Algorithm (LPA), which is based on an epidemic
spread model. Building on LPA, Gregory [12] developed
a method for detecting overlapping communities, termed
the Community Overlap Propagation Algorithm (COPRA).
Additionally, Andersen et al. [28] proposed a seed expansion
method based on random walks.

In the stage of seed expansion, Andersen’s forward search
uses residual r̂(v0, u), which represents the probability of
being distributed at node u, and uses reserve π̂ (s0, u), where
α represents the probability of permanently staying at node u.
In each push operation, d(u) is the degree of node u, it selects
the one with the maximum r̂(v0, u)/d(u), and transfers a
part of α to π̂(s0, u), as a reserve for u. Then, the algorithm
transfers the other 1− α parts to the neighbors of u. For each
neighbor vt of u, the residual is (1 − α) · (r̂(v0, u)/d(u)).
When the maximum residue/degree ratio drops below the
error parameter ε, the process ends. Finally, the forward
search uses the reserved π̂ (v0, u) as the estimate of π (v0, u).
Next, using the sweep operation, each node v0 around the
seed obtains a PageRank score π̂ (v0, u), which measures the
proximity between the node and the seed. Then, the nodes are
sorted in a descending order by π̂ (v0, u)/d(v0), and the set of
the top p nodes with the best derivative in the sequence is the
community where the seed is located.

While the community expansion method can yield
high-quality local communities, several significant issues
require substantial resolution. Firstly, some community

expansion methods necessitate pre-execution parameter set-
ting, posing challenges in obtaining the most suitable param-
eters and being time-consuming. Secondly, these methods
primarily focus on expanding the seed into communities that
closely resemble real-world communities. However, during
the expansion process, certain nodes may end up on the
periphery of a community or even get excluded, indicating
an insufficient seed-centered expansion with a local com-
munity focus. Furthermore, in the forward search process
previously mentioned, probabilities are uniformly distributed
to neighboring nodes, overlooking the influence relationships
between them. The propagation of information does not
disperse uniformly to each neighbor, being influenced by the
mutual attributes of these nodes.

IV. MOTIVATION AND THE PROPOSED ALGORITHM
A. MOTIVATION FOR WEOCD METHOD
As discussed in Section III, while overlapping community
detection algorithms have achieved considerable success in
community expansion methods, three limitations persist: pre-
setting parameters, non-representative seed selection, and
information loss during random walks. Addressing these
aspects, this section proposes a novel overlapping community
detection method within the FCA framework, termed the
Weak Equiconcept for Overlapping Community Detection
(WEOCD)method. Not only does theWEOCDmethod elim-
inate the requirement for pre-defined parameters, but also it
effectively extracts more representative nodes as the seed set.
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Algorithm 1WE Menthod
Input: Graph G = {V ,E}, S ← ∅,H ← ∅
Output: Seed set S
1: Construct a formal context FC(G) according to modified

adjacency matrix
2: Build a concept lattice L(FC(G))
3: for each concept (X ,B) ∈ L(FC(G)) do
4: if X = B and |X | = |B| then
5: H ← H ∪ {(X ,B)}
6: end if
7: end for
8: for each equiconcept (X ′,B′) ∈ H do
9: if X1 ∩ X2 ̸= ∅ then

10: CS1← {(X1,B1), (X2,B2)}
11: else
12: CS1← (X1,B1),CS2← (X2,B2)
13: end if
14: end for
15: Calculate concept space CS1,CS2, · · · ,CSm
16: for each concept space CSi do
17: constructing lattice structure using a partial order

relationship ≺
18: end for
19: Calculate EC and ECk in every CS1,CS2, · · · ,CSm

according to Definition 10
20: for each concept space CSi ∈ {CS1,CS2, · · · ,CSm} do
21: for each weak equiconcept or equiconcept (Xi,Bi) ∈

CSi do
22: calculate EC and ECk
23: select (Xi,Bi) of the max stability, S ← Xi
24: end for
25: end for
26: return seed set S

Specifically, we first introduce a new seed selection approach
called the WE method, which incorporates a novel metric to
measure the tightness of objects within concepts. By selecting
weak equiconcepts, WE can efficiently detect the locations
of peripheral communities. Furthermore, we enhance the
PageRank node clustering algorithm, incorporating the influ-
ence of node attributes during random walks to extend the
seed set and form preliminary community partitions. Finally,
we utilize information entropy within the network formal
context to measure the overlapping between communities.
The merging of highly overlapping communities reduces
redundancy, enhancing the accuracy and interpretability of
overlapping community detection.

Fig. 1 illustrates the process of theWEOCDmethod, which
comprises four distinct stages: constructing the network for-
mal context, seed selection, seed expansion, and community
optimization. In the initial stage, the algorithm constructs an
equivalent network formal context for a complex network
with attributes. During the seeding phase, optimal seeds
are identified by filtering through the weak equiconcept.

The seed expansion stage is viewed as an enhancement in
the clustering process of forward propagation, integrating
attribute preferences between nodes to facilitate seed expan-
sion. Finally, the algorithm discovers and refines overlapping
communities byminimizing the conductance and information
entropy within the network formal context.

B. SEEDS SELECTION STRATEGY

Definition 8: For the equiconcepts H1 = (X1,B1) and
H2 = (X2,B2), if X1 ∩ X2 ̸= ∅, then H1 and H2 are referred
to as neighboring concepts.
Definition 9: In the network formal context (U ,M1,B, I ),

for neighboring concepts H1 and H2, the following holds:

X3 = X1 ∪ X2 (3)

B3 = B1 ∩ B2 (4)

H3 = (X3,B3) is referred to as the weak equiconcept. Denote
δ =

|X3|
|f (B3)|

, where 0 < δ < 1, and (X3,B3) is a weak
equiconcept at the degree of δ.

Similarly, (X3,B3) and (X4,B4) are weak equiconcepts. For
concept (C,D), C ⊆ X3 ∪ X4, D ⊆ B3 ∩ B4, it follows that:

C♦ =
{
ci ∈ U | 0 <

|C|
|f (D)|

< δ

}
(5)

D♦ =
{
di ∈ B | 0 <

|D|
|g(C)|

< δ

}
(6)

the concept (C,D) is also a weak equiconcept.
Within the same concept subspace, where k represents

the number of objects in an equiconcept, a (k + 1)-
weak equiconcept is necessarily a parent concept of a
k-equiconcept, and a k-equiconcept is a child concept of a
(k + 1)-weak equiconcept.
Definition 10: For an equiconcept H1 = (X1,B1), the

stability coefficient of the equiconcept is defined as:

EC(H1) =
|X1| · (|X1| − 1)
|X1|∑
xi∈X1

deg(xi)

(7)

which is to measure the internal cohesion of the cluster
formed by the objects of the equiconcept and the extent of
connections outside the cluster.

The stability coefficient of the weak equiconcept H3 =

(X3,B3) is defined as:

ECw(H3) =
2× links(H3)
|X3|∑
xj∈X3

deg(xj)

(8)

where links(H3) is the number of edges among the objects
within the concept H3, and deg(xi) is the degree of the
object xi.
Property 1: In the context of k-equiconcepts, a higher

stability coefficient implies that the extent of the concept is
more likely to belong to a singular community, leading to
smaller communities with clearer boundaries. When these

VOLUME 12, 2024 42151



S. Shi et al.: Overlapping Community Detection Based on Weak Equiconcept

FIGURE 2. In the social network graph of 10 users, the equiconcept evolves into a weak equiconcept.

are used as seed sets, they impact the quality of the
communities formed during expansion. Conversely, a lower
stability coefficient results in more ambiguous community
boundaries, and objects within these concepts are more likely
to be part of multiple communities.

Proof: For a subgraph G′ = {V ′,E ′} ⊆ G = {V ,E}, the

subgraph modularity can be simplified as Qc =
Lc
L −

(
dc
2L

)2
,

where Lc represents the edges within the community C , L is
the number of edges in G, and dc is the sum of the degrees of
nodes within the community C .
Given two k-equiconcepts C1 and C2, serving as seed

sets and also considered as two small communities. Thus,
we have Lc1 = Lc2 . Assume the stability value is Ck

1stability >

Ck
2stability. From the definition of the stability coefficient,

it follows dc1 < dc2 . Modularity of subgraphs C1 and C2 are
as follows:

Qc1 =
Lc1
L
−

(
dc1
2L

)2

(9)

Qc2 =
Lc2
L
−

(
dc2
2L

)2

(10)

Subtracting Equation (9) from Equation (10), we obtain:

Qc1 − Qc2 =
1

4L2
[(dc2 )

2
− (dc1 )

2] > 0 (11)

This impliesQc1 > Qc2 , meaning that an equiconcept with
a higher stability coefficient has a higher modularity and is
more characteristic of a community. □
Property 2: The formation of a (k + 1)-weak equicon-

cept, constructed from k-equiconcepts, is characterized by
changes in the stability coefficient. An increase in the
stability coefficient indicates that the newly added objects
strengthen the connections among existing internal objects,
thereby enhancing the clarity of community boundaries in
the resulting communities. Conversely, a decrease in the
stability coefficient suggests that the addition of new objects
negatively impacts the stability of the internal community,
leading to more ambiguous community structures.

Proof: The proof is similar to that of Property 1, so it is
neglected here. □

As shown in Algorithm 1, equiconcepts are constructed
by using the network formal context. Further, these concepts

are stratified based on the number of objects they contain.
Within each stratum, equiconcepts are sorted by their stability
values from high to low, forming a sequence of concepts
for each level. This process facilitates the selection of seed
sets characterized by tight internal connections and sparse
external links. Sequential generation of weak equiconcepts
within each stratum effectively curbs the emergence of
multiple highly overlapping seed sets, which can enhance the
accuracy of subsequent community expansion. For seeds with
exceptionally low stability coefficients, a threshold control
is employed to mitigate assortative mixing, which often
occurs when high-degree nodes connect to low-degree nodes.
This algorithm, named WE (Weak Equiconcept) method,
can select seeds directly, without prior knowledge of the
actual number of communities. Moreover, as the selection of
seed nodes involves no additional parameters, it yields stable
community detection outcomes. This approach overcomes
the shortcomings of existing community expansion-based
methods, which often suffer from poor stability in overlap-
ping community detection results.
Example 1: Fig. 2 illustrates a social network of 10 users

and the development of initial and final communities, high-
lighting friendships among these users through connecting
edges. Fig. 3 presents the process of the formal context matrix
transformation corresponding to Fig. 2. Here, the symbol
‘‘1’’ in the matrix indicates that users 1 and 2 are first-order
adjacent, in other words, they are directly connected, while
‘‘0’’ signifies that users 1 and 2 are not first-order adjacent,
indicating no direct connection between them. Fig. 4 displays
the corresponding Hasse diagram.

Fig. 3(a) shows its corresponding simplified network
formal context, considering only 1-th association matrixM1,
while in Fig. 3(b), equiconcepts are generated by Defini-
tions 2 and 5. We consider each equiconcept’s objects as
an initial seed set, objects 1, 3, and 4 are part of more
than one seed set, with object 3 belonging to three seed
sets. Based on the decomposition of the concept subspaces
in Fig. 4, we observe changes in the stability coefficient.
Equiconcepts 1 and 2 merge into weak equiconcept 7, with
the stability value of concept 7 being higher than both 1 and 2,
thus selecting concept 7. Similarly, concepts 1 and 3 form
weak equiconcept 11, which is also a weak equiconcept of
concepts 7 and 8. However, its stability coefficient is lower
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FIGURE 3. The process of seed sets selection based on the changes in the network formal context corresponding to Fig. 2.

FIGURE 4. The Hasse diagram constructed from equiconcepts enables the decomposition of larger concept spaces into smaller, distinct equiconcept
subspaces. This decomposition is guided by the stability coefficients of the equiconcepts. Given the symmetrical nature of the Hasse diagram, the
decomposition can be illustrated using only the upper half of the concept subspaces. In this process, the concept with the highest stability coefficient in
each concept subspace is selected. The objects within this chosen concept are then considered as a seed set.

TABLE 1. Comparative analysis of extended modularity in seed sets selected using different methods about Fig. 2(a) network.

than that of concept 7, so concept 11 is not chosen, but
concept 7 is. Weak equiconcept 12, formed by concepts 9 and
10, is selected, along with concept 6. In Fig. 2(c), there are
three small communities in blue, green, and purple, composed

of objects from concepts 7, 12, and 6, forming three seed sets.
Object 3, as overlapping node in two seed sets, demonstrates
their multiple social relationships, belonging to two social
circles.
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Algorithm 2 Community Expansion
Input: Network formal context NFC = {U ,M1,A, I }, seed

set S, teleport probability α, and error ϵ

Output: Preliminary community division U
1: π̂ (s, t)← 0, s ∈ S
2: r̂(s, s)← 1, r̂(s, t)← 0
3: for each s ∈ S do
4: calculate sim(s, neighbor(s)) and ds(t) according to

Definition 11
5: end for
6: for any r̂(s, t) ≥ εds(t) do
7: µ ← r̂(s, t) − ε

2ds(t), π̂(s, t) ← π̂ (s, t) + (1 − α) ·
µ, r̂(s, t)← ε

2ds(t)
8: end for
9: for object g ∈ V , (g, t) ∈ E do
10: r̂(s, g) = r̂(s, g)+ sim(g,t)

ds(t)
· α · µ

11: end for
12: return π̂ (s, t) as the estimator for π (s, t), s ∈ V
13: Using sweep operation: sort objects by decreasing π̂ (s,t)

ds(t)
,

select the first p elements from the sequence, calculate
the conductance of them, and let community be the set of
objects that reaches the minimum value

14: return community division U

This approach is contrasted with several common seed
selection methods: directly selecting k-cliques, using various
centralitymeasures as an importancemetric for nodes, sorting
them, and then forming a seed set from the highest node and
its neighbors. Nodes selected in this process are not used
in subsequent neighborhood expansions for other seed sets,
continuing until no nodes are left to select. This neighborhood
expansion method is concisely referred to as NEB in Table 1.
Four types of centrality are considered for comparison:
degree, betweenness, closeness, and eigenvector centralities.
The seed selection strategy proposed in [33] is also compared,
using the cohesion measure EQ from Section IV to assess the
cohesiveness of the seed sets, as shown in Table 1, where ‘‘-’’
represents a negative EQ value.

When comparing the first seven seed selection algorithms,
where each seed set is considered an initial community,
the extended modularity EQ is used to measure these small
communities. The seed set chosen by WE method exhibits
the highest EQ. Possessing high modularity in the initial
step of community expansion influences the quality of the
communities expanded from these seeds in later stages. This
indicates the excellent quality of seeds selected under the
equiconcept, highlighting the effectiveness of theWEmethod
in enhancing the overall community detection process.

C. COMMUNITY EXPANSION BY SELECTING SEEDS
Definition 11: The Jaccard coefficient is used to measure

the homogeneity of attributes of a node. The Jaccard
similarity coefficient treats the attributes of two nodes as
two sets. For nodes s, g, t ∈ V , sim(s, g) = |As∩Ag|

|As∪Ag|
. When

Algorithm 3 Community Merging

Input: Preliminary community division U
Output: New community division U
1: U ← ∅
2: Calculate overlap for U according to Definition 12
3: Calculate CO for U according to Definition 13
4: for each Ui,Uj ∈ U do
5: if CO(Ui,Uj) > CO then
6: Uij = Ui ∪ Uj, U ← U ∪ Uij
7: else if U = ∅ then
8: U ← {Ui,Uj}
9: else

10: U ← {U ,Ui,Uj}
11: end if
12: if CO(Ui,Uj0 ) ≥ · · · ≥ CO(Ui,Ujk ) ≥ CO then
13: Uij0 = Ui ∪ Uj0 , U ← U ∪ Uij0
14: end if
15: end for
16: return U

considering attribute homogeneity in node propagation, the
preference of sim(s, g) for nodes is taken into account.
Therefore, we have:

ds(t) =
∑

(g,t)∈E

sim(s, g) (12)

r̂(s, g) = r̂(s, g)+
sim(g, t)
ds(t)

· α · µ (13)

where As is the attribute set of node s, r̂(s, g) is the residual
quantity of nodes s and g, which is a neighbor of seed nodes s,
µ updated to r̂(s, t)− ε

2ds(t), and r̂(s, t) is the residual quantity
between the source node and the target node.

Through the algorithm discussed in the previous section,
a set of seeds is obtained. This section focuses on expanding
these seeds into preliminary communities. During the process
of information propagation in nodes, a portion of the
information is stored with a certain probability for the
node itself, while another portion is likely to be transmitted
to neighboring nodes. Since nodes have attributes, those
with more shared attributes have a higher probability of
information transfer, indicating a preference between nodes.
Considering this important aspect, the push operation is
modified to better align with real-world scenarios. This
approach incorporates the attribute-based preferences of
nodes into the community expansion process, enhancing
the relevance and accuracy of the detected communities,
as shown in Fig. 5.

As shown in Algorithm 2, the forward push process
represents the message transmission between source and
target nodes. In this process, for any given node t ∈ V ,
it temporarily holds a forward storage π̂ (s, t) and a forward
residual r̂(s, t). These values are continually updated through
forward push operations. Unlike the average distribution of
residuals to each neighbor of t , for nodeswith attributes, those
with more shared attributes exhibit greater homogeneity.
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FIGURE 5. The probability distribution is influenced by attribute
homogeneity, in which the attribute similarity between the source node s
and nodes v1, v2, and v3 is assumed to be sim(s, v1) D 1

3 ,
sim(s, v2) D 3

4 and sim(s, v3) D 2
5 , during the residual propagation

process of the source node s.

Algorithm 4 Node Adjustment
Input: Node set Unodes
Output: Final community division H
1: for each v ∈ Unodes do
2: Sort nodes by degree: degree(v1) > degree(v2) >

· · · > degree(vs)
3: end for
4: for each Uij (j = 1, · · · , k) connected with v do
5: Calculate IV ({v} ∪ Ui1 ), IV ({v} ∪ Ui2 ), · · · , IV ({v} ∪

Uik ) according to Definition 14
6: end for
7: δ← IV ({v} ∪ Uij )− IV (Uij )
8: if δ ≥ 0 then
9: Select Uij with min(δ), then update Uij ← Uij ∪ {v}

10: else
11: Select Uij with max(δ), then update Uij ← Uij ∪ {v}
12: end if
13: return H

Considering this, the forward residual r̂(s, t) is temporarily
stored in the neighbors of other t nodes. The current
residual held by t is distributed to the neighbors of t
based on different ‘‘attractions’’ between nodes, allocating
probabilities according to attribute similarity.

D. COMMUNITY MERGING
This section proposes a target function value to assess
whether two communities can be merged into a larger one.
This value focuses on the degree of structural and attribute
overlap between communities. The greater the overlap, the
more reasonable it is to merge the two communities into one.
By merging communities with high overlap, the number of
communities can be reduced while retaining relevance and
similarity, thus yielding more meaningful community parti-
tion results. This approach helps to reduce the fragmentation
of communities, enhancing the accuracy and coherence of
community division, and making community detection more
practical and applicable.

Definition 12: The overlapping degree between commu-
nities Ui and Uj is defined as:

CO(Ui,Uj) = θ ·

(
1−

∣∣Ui ∩ Uj∣∣∣∣Ui ∪ Uj∣∣
)

+ (1− θ ) · IE(Ui ∪ Uj) (14)

where Ui and Uj are the initially partitioned i-th and
j-th communities, respectively, and IE(Ai) is the information
entropy of the formal context (Ui,Ai, Ii), which is defined as:

IE(Ai) =
1
|Ui|

∑
x∈Ui

(
1−

∣∣gAi fAi (x)∣∣
|Ui|

)

Definition 13: Based on the degree of overlapping
between communities, determine whether two communities
can be merged into one. The average value of community
overlapping CO(Ui,Uj) as follows:

CO =
1
q

∑
Ui,Uj⊆U

CO(Ui,Uj) (15)

where q is the number of communities in the initial partition.
As shown in Algorithm 3, calculate the overlapping matrix

based on Definition 11, similar to the network formal context
in Fig. 3(b). Only consider the average of the elements in
the upper triangle of the matrix. Set a threshold for the
average value to filter out elements with low overlapping.
Each element corresponds to the strength of overlap between
communities. Keep the elements that indicate the need for
merging operations between communities.
Theorem 1: Given θ = 0.5, if µ < CO holds,

the community partition tends to decrease after merging
CO(Ui,Uj).

Proof: Assuming that G = (V ,E) is initially divided
into q communities {U1,U2, · · · ,Uq}, each with a unique
formal context represented by (U1,A1, I1), (U2,A2, I2),
· · ·, (Uq,Aq, Iq), the corresponding information entropy for
IE(A1), IE(A2), · · ·, IE(Aq), and communityUi after merging
with Uj is represented by CO(Ui,Uj), where q represents the
number of communities before merging.

1
q

q∑
r=1

IE(Ar )−
1

q− 1

 q∑
r=1,r ̸=i,j

IE(Ar )+ IE(Ai ∪ Aj)


>

1
q

q∑
r=1

IE(Ar )

−
1

q− 1

 q∑
r=1,r ̸=i,j

IE(Ar )+ IE(Ai)+ IE(Aj)


=

(
1
q
−

1
q− 1

) q∑
r=1,r ̸=i,j

IE(Ar )

−

(
2
q
−

1
q− 1

)
(IE(Ai)+ IE(Aj))
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FIGURE 6. The TCMs network graph, and the results of the TCMs community division based on WEOCD method.

=
q− 2

q · (q− 1)

IE(Ai)+ IE(Aj)−
q∑

r=1,r ̸=i,j
IE(Ar )

q− 2


Given IE(Ai) > 1

q ·
q∑

r=1
IE(Ar ) and IE(Aj) > 1

q ·
q∑

r=1
IE(Ar ),

we have

IE(Ai)+ IE(Aj) ≥
1
q
·

q∑
r=1

IE(Ar )

≥
1

q− 2
·

q∑
r=1,r ̸=i,j

IE(Ar )

Thus,

q− 2
q · (q− 1)

IE(Ai)+ IE(Aj)−
q∑

r=1,r ̸=i,j
IE(Ar )

q− 2

 > 0

In other words,

1
q

q∑
r=1

IE(Ar )−
1

q− 1

 q∑
r=1,r ̸=i,j

IE(Ar )+IE(Ai ∪ Aj)

>0

is true. □

E. ADJUSTMENT OF NODES
After the community merging, there may still exist isolated
nodes and nodes that haven’t been assigned to any commu-
nity. It is necessary to determine whether these nodes can
form a new community or be assigned to existing ones.

Definition 14: For an unassigned node Unodes, when
choosing to connect to the nearest community Ui, the
following criteria can be used to measure the impact of the
node joining the community Ui:

IV =
cond({u} ∪ Ui)

2
+
IE(A′i)

2
(16)

where IE(A′i) is the information entropy of the formal context
of new cluster {u} ∪ Ui.
We give Algorithm 4 for undivided node adjustment.

An isolated node is not connected to other nodes. At this
time, the node can exist as an independent community. For
nodes that are not isolated nodes and are not divided into
any communities, we select connections in turn. The nearest
community or communities, as judged by Definition 12,
choose to join the largest community.
Example 2: The paper conducted preprocessing on a

dataset of 144 prescription formulas fromTraditional Chinese
Medicine scientist Zhang Zhongjing’s ‘‘Treatise on Cold
Damage andMiscellaneous Diseases’’. In this preprocessing,
Traditional Chinese Medicine (TCMs) were treated as nodes.
If two TCMs appeared together in the same prescription
formula at least 3 times, a connection was established
between those two medicines. Additionally, the attributes of
the TCMs were considered, including the four natures (‘‘qi’’)
and five flavors (‘‘wei’’) of TCMs, along with the attributes
‘‘ping’’ and ‘‘dan’’. In total, there were 11 attributes for the
medicinal nodes. The final dataset includes 63 medicinal
nodes and 202 edges representing co-occurrences in prescrip-
tion formulas, as shown in Fig. 6(a).
For the drug classification task in Example 2 using the

WEOCD algorithm, the partition results are depicted in
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TABLE 2. The division of medicinal herbs.

Fig. 6(b), with the primary indications and effects of TCMs
in each community detailed in Table 2.

F. COMPLEXITY ANALYSIS
This section discusses the time complexity of constructing
formal concept lattices. In the proposed formal context, the
number of objects is denoted as |V |, and the number of
attributes is denoted as |V |. N represents the total number
of concepts. UC represents all the classified nodes in the
network. The time complexity analysis is as follows.

1) During the seed selection phase, the construction
of the network formal context has a time complexity of
O(|V |3 + |V |2N ).
2) The time complexity of the seed expansion phase can be

represented as O
( q∑
i=1

links(Ci,UC )
)
.

3) The process of community merging is divided into two
parts. In the first part, calculations are performed on the
community’s topological structure, considering the largest
community Cmax in terms of the number of nodes. In the
second part, information entropy is also influenced by Cmax.
Overall, the time complexity can be expressed as O(|Cmax|).
4) The final step of community optimization involves

adjusting nodes, considering the possibility of nodes moving
to other communities. Therefore, the time complexity is
proportional to the number of community partitions Ci, and
it can be expressed as O(|Ci|).

In summary, for the four steps mentioned above, the overall
time complexity is given by O(|V |3 + |V |2N ).

V. EXPERIMENTS
Here, experiments on 7 real-world datasets are conducted to
validate the effectiveness of the proposed algorithm.

A. DATESETS AND EVALUATIONS METRICS
1) DATESETS
The datasets used in this study hold significant relevance and
importance in research.

Participant dataset is a participant-project network formed
during the 2013 Santa Fe Complex System Summer School,
consisting of 61 nodes and 224 edges. Nodes represent
participants, while edges represent collaborative relation-

ships among participants in a project. Attributes are the
academic background of the participant. Each participant’s
background consists of four different categories of subjects:
math & physics, life sciences & ecology, social sciences &
economics, and computing & programming. The Medcine
dataset, as illustrated in Example 2, represents pharmaceu-
tical prescription data. It serves as a valuable resource for
exploring patterns and relationships in prescription records.
WebKB dataset comprises four subnetworks collected from
four different universities: Cornell, Texas, Washington, and
Wisconsin. Each subnetwork includes multiple communities,
web pages, binary word attributes (with 1703 dimensions),
and edges. It provides valuable information about web
page categorization. Cora dataset contains 2708 scientific
publications categorized into 7 classes. With 5429 edges,
each publication is described using binary word attributes
(with 1433 dimensions), indicating the presence or absence of
specific words in the document. Citeseer dataset consists of
3312 scientific publications categorized into 6 classes. Each
publication is associated with a 3703-dimensional binary
word attribute vector, denoting the presence or absence of
words from a dictionary. The Facebook dataset is constructed
from Facebook ‘‘circles’’, containing 4039 nodes (users)
and 88234 edges (friendship connections). It offers insights
into social network analysis. The Deezer Europe dataset
represents a network of deezer users from european countries.
Edges in this network denote follower relationships between
users based on their shared liking of music artists. Node
features are extracted based on users’ preferred artists. All
information of each dataset is shown in Table 3.

2) EVALUATION METRICS
• Average P, R and F1.
In this section, we use Macro-Precision, Macro-Recall,
andMacro-F1 to evaluate the local community detection
result. The Precision and Recall for class i (i =
1, · · · , q) can be represented as follows:

Precisioni =
TPi

TPi + FPi
(17)

Recalli =
TPi

TPi + FNi
(18)
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TABLE 3. Basic information of selected datasets.

Calculate the average Precision and Recall across all
classes:

Precisionmacro =

q∑
i=1

Precisioni

q
(19)

Recallmacro =

q∑
i=1

Recalli

q
(20)

F1 scores:

F1macro = 2 ·
Precisionmacro · Recallmacro

Precisionmacro + Recallmacro
(21)

• Expanded modularity.
Due to the fact that the modularity function is only
applicable to non-overlapping community detection, this
paper adopts the extended modularity to assess the
quality of overlapping community structure partition.
A larger value of the extended modularity indicates
a better community partitioning result. The extended
modularity function is defined as follows:

EQ =
1
2m
·

q∑
i=1

∑
u∈Ci,v∈Ci

1
QuQv

[Auv −
kukv
2m

] (22)

where Qu represents the community to which node u
belongs, Auv is the adjacency matrix, ku is the degree
of node u, and m represents the number of edges in the
network.

B. EXPERIMENTAL RESULTS AND ANALYSIS
To validate the effectiveness of the proposed algorithm,
several comparative algorithms were selected.

BIGCLAM: a method that considers only the network
structure and specifies the number of communities as the true
number of communities.

COPRA: a method based on label propagation. It is
an overlapping community detection algorithm that uses
membership scores to help nodes determine their belonging
to multiple communities. It terminates when the remaining
label sets in the network are the same after two consecutive
iterations or when it reaches the maximum iteration limit.
It exhibits instability due to the randomness in label selection.

LFM: a method as a representative of community expan-
sion methods. LFM defines a fitness function for a subgraph

TABLE 4. Time complexities of comparative algorithms.

of the network. It exhibits uncertainty in results due to the
randomness in seed selection.

NISE: a greedy method for seed node selection and
community generation. The parameter specifying the number
of communities is set to be the true number of communities.
It uses the sphub method for seed selection and PPR for
community expansion.

EWKM: a method that considers both node attributes and
subspaces. It requires the user to provide the number of
communities in advance, and this parameter is set to be the
true number of communities.

SAC: an algorithm that fuses attributes and topology, and
has high complexity.

These comparative algorithms were chosen to evaluate the
proposed algorithm’s performance in terms of community
detection, especially in handling overlapping communities.
Comparing the results of these algorithms provides insights
into the strengths and weaknesses of the proposed approach.

Table 4 lists the time complexities of the mentioned
methods, where q represents the number of community
classifications, n is the number of nodes, m is the number of
edges, v is the threshold used in the COPRA algorithm, l is
the initial number of seed nodes, Ncu is the average number
of nodes generated within a community, Nnu represents the
average number of nodes in the neighborhood of a community

or node,
q∑
i=1

links(Ci,UC ) is the sum of node degrees within

community Ci, and h is the number of iterations required for
the clustering process to converge.

In this section, we use the EQ value to evaluate the density
and strength of the communities formed by expanding the
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FIGURE 7. The relationship of the community modularity and stability coefficient of each order.

seed sets under each stability value. It can be observed that
the trends of EQ values for all four datasets show a wave-like
pattern. According to Properties 1 and 2, for networks with
larger average degree or clustering coefficient, the EQ values
for each segment tend to be smaller compared to networks
with lower average degree. Within each segment of a dataset,
if the segment with the highest stability coefficient shows a
decreasing trend, it indicates that the nodes in this network
are less likely to exhibit characteristics of small, marginal
communities. If the EQ values of communities expanded by
stability coefficient in the range of 0-0.1 are relatively higher
than the average level, it suggests that in this network, nodes
tend to aggregate with communities that have higher degrees
due to the cohesive nature of the network.

Considering the average degree and clustering coefficient
for the seven chosen datasets, we obtain that the average
degree is kFacebook > kParticipant > kDeezer > kMedcine >

kCora > kWebkb > kCiteseer and the clustering coefficient
is CParticipant > CFacebook > CMedcine > CCora >

CWebkb > CCiteseer > CDeezer . In Fig. 7(a), Participant dataset
has the highest clustering coefficient, and ECw has seven
stages. EQ ranging from 0.6 to 0.7 is considered very high,

with lower values at both ends. Nodes tend to cluster with
nodes with high surrounding degrees, and weak equiconcepts
with ECw as the intermediate stage are prioritized as seeds.
Medcine dataset has four stages where weak equiconcepts
can be detected, and there is not much difference in EQ
between each stage. As a small dataset, when selecting
seeds, we need to consider the weak equiconcepts of the
stability coefficients for all stages. The structure in Fig. 7(b)
is relatively complex, where Webkb contains four subgraphs:
Cornell, Texas, Washington and Wisconsin, encompassing
an average of four phases of isopotential concepts. The
differentiation in community modularity arising from the
expansion of weak equiconcepts is notably pronounced.
This complexity is attributable to the intricate inter-node
relationships within the four subgraph datasets, characterized
by extensive interactions and a diversity of relationship types.
In seed selection, the strategy involves initially choosing
from the weak equiconcepts with larger stability coefficients,
proceeding in a sequential manner. In Fig. 7(c), the citation
networks Citeseer and Cora demonstrate a truncation in
their stability coefficients, signifying the scarcity of com-
munities that are disconnected from external influences.

VOLUME 12, 2024 42159



S. Shi et al.: Overlapping Community Detection Based on Weak Equiconcept

TABLE 5. Comparison of selected algorithm in terms of P , F1 and R.

This phenomenon underscores the academic sphere’s reliance
on communication and mutual learning for producing
high-quality scholarly papers. Operating in isolation is
neither advisable nor conducive to positive development.
In Fig. 7(d), Facebook exhibits the highest average degree
and the second highest clustering coefficient. However, as the
modularity expands, the stability value of each segment
consistently decreases. In social networks, aside from isolated
nodes, there are also peripheral nodes within marginal
communities. Such social connections often prove to be more
stable. Conversely, nodes with high stability coefficients tend
to be more versatile, participating in multiple communities
and social circles. Deezer, as a music-based social platform,
has the lowest clustering coefficient. This observation, along-
side the performance of the stability coefficient, suggests
that social interactions on music platforms are relatively
independent. The common interest in music might be the
primary reason for users to follow each other. This analysis
provides insights for the current study. In networks with
high average degree and clustering coefficient, selecting seed
sets based on low stability coefficients is not advisable. For
communities emanating from high stability coefficient seed
sets, it is viable to consider them as distinct groups. However,
in networks with low clustering coefficients, it is meaningful
to incorporate the concept of low stability coefficients into
the part of the seed set.

In Table 5, the values of P, F1, and R are compared
across 7 datasets among 6 algorithms, where ‘‘-’’ indicates

excessively long computational time (> 7 days). It can be
seen from the table that for indicatorsP andF1, our algorithm
is the best compared to all the selected algorithms on all the
datasets; for indicator R, our algorithm is better than all the
compared algorithms on four datasets, and it is ranked second
on the rest datasets. Therefore, our algorithm is satisfactory
in achieving overlapping community detection task.

In addition, for our purpose, we continue tomake a detailed
analysis of the relationship between the performance of our
algorithm and how to select seeds of networks. Notably,
our algorithm demonstrates excellent performance on the
Paticipant, Medicine, Webkb, and Deezer datasets, attributed
to the consideration of both edge communities and the
most representative seeds during the seed selection process.
Detailed discussion is as follows:

(1) Through the selection of seeds for Medcine dateset by
WEmethod, we are able to screen out the most representative
drug set as the seed set for expansion, as well as the marginal
drug community. Also as a small data set, Paticipant has
the highest clustering coefficient. Therefore, for the weak
equiconcepts with small stability coefficients, we did not
choose them as seeds, as it inevitably includes numerous
nodes with high degrees. These nodes with high degrees
frequently appear in various orders of weak equiconcepts, and
we selected the weak equiconcept satisfying the maximum
ECw. There have been some nodes with low degrees but they
existed in weak equiconcepts with high ECw, and these nodes
were detected as fringe communities.
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(2) Webkb dataset lacks high homogeneity, and high-
degree nodes may not share the same category as their
neighbors. For instance, if a teacher has many students,
teacher’s neighbors are not in the same category, resulting in a
relatively small community. In seed selection, we prioritized
seeds formed by the highest stability coefficient, avoiding
their expansion in subsequent steps. Note that we rarely
considered seeds with low stability coefficients due to
the dataset’s heterogeneity. Overall, performance is not
uniformly high across all methods, but our approach in this
paper proves to be the most effective.

(3) As a social dataset, Deezer is relatively independent
among users and is not as dense as Facebook. This data took a
long time for SACmethod to run, but no results were obtained
because it was terminated forcibly, so it was not evaluated
successfully in the experiments. In comparison with the other
six methods in terms of running time, the accuracy of finding
communities is more advantageous. This dataset has fewer
stability factor orders than Facebook, and all of them were
selected as the seed set. The WEOCD method also performs
better on networks that do not have obvious community
characteristics.

Note that, for indicator R, our algorithm is ranked
second on datasets Cora, Citeseer, and Facebook. This is
because the Cora and Citeseer datasets have fewer fringe
communities, and few people publish papers independently
without collaborating with other scholars. For the Facebook
dataset, it has a large number of isolated nodes that have
not been classified, which to some extent reduces the
performance of our algorithm on the indicator R.

VI. CONCLUSION
In this paper, an effective method for selecting seed sets of
a network has been proposed within the framework of FCA.
Firstly, a representation of a network based on FCA has been
implemented to generate weak equiconcepts that characterize
the network structure. Subsequently, concept subspaces have
been filtered, and concepts that are more community-oriented
and representative have been selected from these subspaces.
Furthermore, an improved personalized PageRank clustering
algorithm has been used to expand the selected concepts.
Finally, a community optimization scheme has been obtained.
Experiments conducted on real social networks have demon-
strated the efficiency and effectiveness of the proposed
method.

Further researches include: (1) a faster method for weak
equiconcept generation and concept stability coefficient
calculation should be explored; (2) in this paper, we have
focused solely on the single-layer relationship within the
topology of complex networks. Note that the single-layer
methods may not be able to fully reveal more complex
multi-layer network structures and interactive behaviors
between clusters. Therefore, it is still necessary to investigate
multi-layer relationships in the network formal context, inte-
grating attributes and topological structures more effectively
into formal contexts and network analysis.
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