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ABSTRACT Scalable Video Coding (SVC) and edge caching are two techniques that hold the potential
to improve user-perceived video viewing experience. Moreover, video recommendation can further
enhance the caching gain by reshaping users’ video preferences. In this paper, we investigate the video
caching, recommendation and transmission for layered SVC streaming in cache-enabled cellular networks.
Considering the dynamic characteristics of video popularity distribution and wireless network environment,
to improve energy efficiency by minimizing system energy consumption and ensure the average user
preference deviation tolerance, we begin by formulating a long-term optimization problem that focuses on
video caching, recommendation and user association (UA). The problem is then transformed into a Markov
decision process (MDP), which is solved by designing a dueling deep Q-learning network (DDQN)-based
algorithm.Using this algorithm,we can obtain the optimal video caching, recommendation andUA solutions.
Since the action space of the MDP is huge, to cope with the ‘‘curse of dimensionality’’, linear approximation
is integrated into the designed algorithm. Finally, the proposed algorithm’s convergence and effectiveness in
reducing long-term system energy consumption are demonstrated through extensive simulations.

INDEX TERMS Scalable video coding, edge caching, recommendation, user association, energy efficiency,
dueling deep Q-learning.

I. INTRODUCTION
In recent years, driven by mobile network technologies’ rapid
advance and smart devices’ popularization, the mobile data
traffic is experiencing an explosive growth. According to the
report from Ericsson [1], the total global mobile data traffic
will reach 325EB every month in 2028, which is nearly four
times of 2022. Meanwhile, the unprecedented increase of
multimedia applications results in video service being one of
themost popular services. It is estimated that video trafficwill
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account for 80 percent of all mobile data traffic in 2028 [1].
Thus, enhancing user-perceived video viewing experience in
cellular networks becomes very important.

Edge caching [2], [3], [4] and Scalable Video Coding
(SVC) are two techniques that hold the potential to improve
user-perceived video viewing experience. Edge caching
brings videos much closer to users by caching a part of
high-popular videos at the mobile network edge (e.g., base
station (BS)) in advance during off-peak hours. Once the
video requested by a mobile user has already been cached,
it will be transmitted to the user directly, thereby reducing
the end-to-end content delivery latency, mitigating duplicate
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content transmissions, saving backhaul resources, alleviating
network congestions, as well as improving mobile users’
quality of experience (QoE).

Considering the heterogeneity of mobile users’ devices
and the time-varying wireless channel conditions, SVC [5],
[6], [7] has been proposed. The main idea of SVC is to
encode a video into one base layer (BL) and multiple
enhancement layers (ELs). The BL can realize the basic
quality version, the BL combined with ELs can realize high
quality versions. The more ELs, the higher quality version is
realized. Different quality versions of a video have different
bitrates and resolutions. In this way, layered SVC streaming
is able to adaptively adjust the bitrates of videos transmitted
to mobile users according to their preferences and wireless
channel conditions. For example, when amobile user’s device
is highly capable and the wireless channel condition is good,
he can receive high quality videos, whereas the mobile user
can receive low quality videos when the wireless channel
condition is poor.

Based on the above analysis, combining edge caching and
SVC can improve user-perceived video viewing experience.
However, it is particularly challenging due to the following
two major reasons. First, with SVC, not only different
videos, but also different layers of the same video will
compete for edge nodes’ limited caching capacity. Thus, the
layer-based caching decision should be considered. Second,
when a quality version of a video is requested by a mobile
user, all layers of the video related to the requested quality
version need to be transmitted to the mobile user. Thus, the
relationship between different layers should be considered.

In general, video delivery in cache-enabled cellular
networks consists of video caching and video transmission.
For video caching, BSs or other mobile edge nodes prefetch
high-popular videos and cache them in advance. Considering
the conflict between mobile edge nodes’ limited caching
capacity and the massive number of videos, mobile edge
nodes can only cache a part of videos. Therefore, in order
to satisfy as many users’ requests as possible, it is a critical
problem to make caching policy decision to select the proper
videos for each mobile edge node to cache. For video
transmission, considering the densification trend of radio
access networks (RANs), it is high-probability for mobile
users to be covered bymultiple edge nodes [8], [9]. Therefore,
it is a critical problem to make user association (UA) strategy
decision to obtain the appropriate association relationship
between mobile users and edge nodes. The UA strategy in
cache-enabled cellular networks should consider not only
the wireless channel conditions, but also the mobile users’
requirements and edge nodes’ cache status. For example,
to reduce the content delivery latency, the mobile user may
prefer to associate with the edge node that has cached the
requested video instead of the edge node with the best
wireless channel condition. Apparently, caching policy and
UA strategy are naturally coupled.

In order to further enhance the caching gain, video
recommendation [10], [11], [12] is considered as an effective

approach by reshaping users’ video preferences. In general,
different users’ video popularity distribution (VPD), i.e.,
probability distribution of requesting video contents, is dif-
ferent. To weaken the impact of the heterogeneity of users’
video preferences and make users’ VPD less heterogeneous,
recommending carefully selected video contents to users is
proposed, which is the basic idea of video recommendation.
Apparently, caching policy and recommendation mechanism
are naturally coupled. Recommendation mechanism has a
direct influence on users’ VPD, which further affects caching
policy.

In cache-enabled cellular networks, caching policy and
recommendation mechanism strongly depend on the VPD,
while UA strategy is largely affected by the wireless
channel state information (WCSI). Considering the dynamic
time-varying characteristics of VPD and WCSI, as well
as the strong coupled relationship between the video
caching, recommendation and transmission, the caching
policy, recommendation mechanism and UA strategy should
be optimized jointly. As a result, it is of great significance to
design efficient caching policy, recommendation mechanism
and UA strategy for layered SVC streaming in dynamic
cache-enabled cellular networks.

A. RELATED WORKS
Due to the potential to enhance video delivery efficiency
and mobile users’ QoE, layered SVC streaming has been
widely investigated. Literature [13] gives a detailed survey
on the LCEVC technology. In [14], the authors propose
an adaptive policy iteration algorithm to improve the QoS
in wireless scalable video multicast. The authors in [15]
optimize the bit allocation for images/videos’ scalable codec.
In [16], a low-complexity SICO scheme is proposed for
AVS3. The authors in [17] propose a SS-CVS frameworkwith
hierarchical subspace learning to improve video transmission
in heterogeneous networks. Literature [18] optimizes the
devices’ downloading and sharing activities to enhance users’
QoE. However, these works rarely took into account the video
caching for layered SVC streaming.

There have been studies focusing on cache-enabled lay-
ered SVC streaming. Considering the relationship between
different layers, literature [19] proposes a heuristic caching
placement solution for layered SVC streaming aiming
at minimizing the average download time. In [20], the
authors propose a FPTA per-video-layer caching algorithm
to minimize the aggregate video delivery delay and design
an approximation algorithm based on a cache-partition
technique to solve the cooperative caching problem among
multiple network operators. The authors in [21] optimize the
random caching strategy in a wireless video broadcasting
system by using a gradient-based iterative algorithm to
maximize the successful transmission probability. In [22],
to improve the system capacity, transmission scheduling and
rate allocation are optimized jointly. The authors in [23]
propose a Lagrangian dual pricing algorithm to optimize
the caching placement, video quality decision and UA
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jointly. Literature [24] investigates the secure edge caching
problem and exploits the distributed alternating direction
method of multipliers (ADMM) to achieve the optimal edge
caching strategy. The caching placement policy and the video
transmission scheme are optimized in [25]. However, these
works only focused on utilizing edge nodes’ limited caching
capacity to cache different layers of videos, whereas the video
recommendation was largely ignored.

Some research efforts have been conducted to consider
both the video caching and recommendation. In order to
maximize the total cache hit ratio, the authors in [26] present
a heuristic scheme to optimize the UA, content caching
and recommendation jointly. In [27], the authors propose ε-
greedy algorithm to learn a user-specific threshold, which
is used to control the impact of recommendation. Then
content caching and recommendation are optimized jointly to
improve the successful offloading probability. Literature [28]
proposes a heuristic algorithm to maximize the cache hit
ratio under the user preference distortion constraint. In order
to balance QoE and delivery rate, a heuristic algorithm
called GPA is presented in [29] to group users and files,
based on which the set of recommended files is optimized.
Another notable work is [30], which proposes a scheme called
GRACE to balance the average hit ratio and the peak rate
by optimizing user grouping and content recommendation
jointly. In [31], the content transmission latency in Fog-RANs
is minimized by optimizing caching, recommendation and
beamforming jointly. The authors in [32] focus on the
cache-enabled mobile social networks and investigate the
optimal caching placement based on three recommendation
operations aiming at maximizing the traffic offloading ratio.
However, these works studied in static scenarios, whereas
the dynamic characteristics of the system states in practical
scenarios were largely ignored. Considering the time-varying
VPD and WCSI, the optimal system performance at a certain
time slot cannot guarantee the optimal system performance
over a long time period.

There have been studies that specifically focus on video
caching and transmission in dynamic scenarios. In [33], the
cache hit rate is maximized by utilizing a DQN-based content
caching algorithm. Literature [34] proposes a learning-based
algorithm to predict the future content popularity and
optimize the edge caching policy. The authors in [35] focus
on the two time-scale caching placement and UA problem,
and propose a BP-based UA algorithm and DDPG-based
caching placement algorithm. Literature [36] uses Q-learning
algorithm to optimize caching placement and resource
allocation. Literature [37] adopts the Stackelberg game to
optimize UA, power allocation of non-orthogonal multiple
access (NOMA), unmanned aerial vehicle (UAV) deployment
and caching placement to minimize the content delivery
delay. In [38], the authors improve the content caching
and sharing of D2D networks by a CAQL-based caching
placement algorithm. Taking into account Coordinated Mul-
tiPoint (CoMP) joint transmission technique, a reinforcement
learning (RL)-based algorithm is presented in [39] to

maximize the delay reduction. However, these works just
consideredmultiple single videos, whereas the video contents
with multiple layers and the relationship between different
layers were not taken into account.

Recently, as artificial intelligence (AI) and machine learn-
ing algorithms continue to advance rapidly, many researchers
have studied on the integration of intelligence technology and
wireless communication system optimization [40]. RL-based
algorithms, as one critical category of AI algorithms, have
been widely used in many domains, such as blockchain, edge
caching, computation offloading and resource allocation.
Considering the immersive VR video services, literature [41]
provides an asynchronous advantage actor-critic (A3C)-
based algorithm to minimize the long-term energy consump-
tion of Terahertz wireless networks. In [42], the authors pro-
pose an A3C-based algorithm to maximize the computation
rate and the transaction throughput of blockchain-enabled
Mobile Edge Computing (MEC) systems. Another notable
work is [43], which proposes a RL-based energy-aware
resource management scheme for wireless VR streaming
in industrial Internet of Things (IIoTs). In [44], quantum
collective learning and many-to-many matching game are
adopted to solve the spectrum resource allocation problem
and the distributed vehicles selection problem respectively.
The authors in [45] aim at obtaining the optimal intelligence
sharing policy by a collective deep reinforcement learning
algorithm. Literature [46] improves the scalability of a
service-oriented blockchain system by considering consensus
protocols selection, block producers selection and network
bandwidth allocation jointly.

B. MOTIVATION AND CONTRIBUTION
As discussed above, most of the existing works that focused
on the video caching, recommendation and transmission opti-
mization problem rarely took into account the time-varying
VPD and WCSI. Some research contributions considered the
dynamic scenarios, but they just considered multiple single
videos and ignored the video contents with multiple layers.
In addition, they rarely considered the video recommenda-
tion. To fulfill this gap, this article focuses on optimizing
video caching, recommendation and UA for layered SVC
streaming in dynamic cache-enabled cellular networks with
time-varying VPD andWCSI. Due to the surging energy cost
of information industry, developing green communication
becomes very urgent and important, which makes the energy
efficiency a key performance indicator in current 5G and
future 6G networks [47], [48], [49]. Thus, we adopt energy
efficiency as the performance metric and aim at minimizing
the long-term system energy consumption while ensuring
the average user preference deviation tolerance. Dueling
deep Q-learning network (DDQN) is proposed to solve the
problem. More specifically, the main contributions of this
article are summarized as follows:
• We focus on the content caching, recommendation and

transmission of layered SVC streaming in cache-enabled
cellular networks. Considering the time-varying VPD and
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WCSI, a joint video caching, recommendation and UA
optimization problem is formulated to enhance the energy
efficiency by minimizing the long-term system energy
consumption while ensuring the average user preference
deviation tolerance. The system energy consumption is
composed of video transmission energy consumption and
caching energy consumption.
• The formulated problem is then transformed into a

discrete Markov decision process (MDP), which is solved by
designing a DDQN-based algorithm. Using this algorithm,
we can obtain the optimal video caching, recommendation
and UA solutions. Considering the large state space and
action space of the MDP, to cope with the ‘‘curse of
dimensionality’’, linear approximation is integrated into the
designed algorithm.
• Finally, during the simulations, the proposed algorithm’s

convergence is evaluated and its effectiveness is verified.
The results show that the proposed algorithm outperforms
benchmark algorithms in terms of energy efficiency and
system energy consumption reduction over a long period.

C. ORGANIZATION
The remainder of this paper is organized as follows. Section II
introduces the system model and formulates the optimiza-
tion problem for video caching, recommendation and UA.
In Section III, we propose a DDQN-based algorithm to solve
the problem. The simulation settings, results, analysis and
discussions are presented in Section IV. Finally, we conclude
our work in Section V.

II. SYSTEM DESCRIPTION
In this section, we first present the system model, including
networkmodel, video request and cachingmodel, recommen-
dation model, transmission model and energy consumption
model. Then the joint video caching, recommendation and
UA optimization problem for layered SVC streaming is
formulated.

A. SYSTEM MODEL
1) NETWORK MODEL
As illustrated in Figure 1, we are interested in delivering video
content in a cache-enabled cellular network that consists of
M ground BSs and N users. Let M = {1, 2, . . . ,m, . . .M}
and N = {1, 2, . . . , n, . . .N } denote the set of M ground
BSs and the set of N users, respectively. Each ground BS is
equipped with a MEC server with limited caching resources,
which is denoted as Ccache

m . The ground BSs are connected
to the core network using wired backhaul links, which have
a limited capacity. Meanwhile, users communicate with the
ground BSs through radio access links, the bandwidth of
which is assumed to be B. This bandwidth is shared among
all the ground BSs.

Suppose that there are total F videos in the network, the
set of which is denoted as F = {1, 2, . . . , f , . . .F}. Each
video has K different quality versions with different bitrates
and resolutions. Let K = {1, 2, . . . , k, . . .K } denote the set
of K quality versions. We assume that quality version 1 has

FIGURE 1. The cache-enabled cellular network architecture.

the lowest bitrate and resolution, while quality version K has
the highest bitrate and resolution. Let vf ,k denote the video
f with quality version k . In addition, we assume that each
video is encoded into K layers, including one BL and K − 1
ELs. We also use K = {1, 2, . . . , k, . . .K } to denote the set
of K layers. The BL can realize the quality version 1, the BL
combined with the first EL can realize the quality version 2,
and so on. Let ṽf ,k denote the kth layer of video f . The size
of ṽf ,k is denoted as s̃f ,k , which generally decreases with the
increase of k , i.e., s̃f ,1 > s̃f ,2 > · · · > s̃f ,K .

In general, caching policy and recommendation mecha-
nism in cache-enabled cellular networks strongly depend on
the VPD, while UA strategy is largely affected by the WCSI.
It is assumed that the VPD and WCSI vary in different time
slots. Suppose that the equal-sized time series is represented
as T = {1, 2, . . . , t, . . .}, where t denotes a time slot.
Therefore, at the beginning of each time slot, the caching
policy decision, recommendation mechanism decision and
UA strategy decision are made and updated.

2) VIDEO REQUEST AND CACHING MODEL
Note that the VPD is based on users’ video interest
and preference. In this article, the VPD, i.e., the request
probabilities of different videos are modeled as a Zipf-like
distribution [50], [51]. Let p(t)n,f be the probability that user
n requests video f at time slot t and sort all F videos in
a descending order based on their corresponding request
probabilities, i.e., p(t)n,1 > p(t)n,2 > · · · > p(t)n,f > · · · > p(t)n,F .

Thus, p(t)n,f can be expressed as

p(t)n,f =
f −η

(t)
n∑F

i=1 i
−η

(t)
n

(1)

where η(t)n is the skewness factor of user n at time slot t .
For each video, the request probabilities of different quality

versions are modeled as a normal distribution. The mean
of this distribution is denoted by ϑ , which represents the
dominant quality version [52]. Thus, the request probability
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of quality version k can be expressed as

pk = e−(k−ϑ)
2/2σ 2/√2πσ (2)

where σ 2 is the variance of the request probabilities of quality
versions. A smaller σ leads to more concentrated requests of
the dominant quality version ϑ . Based on p(t)n,f and pk , the
probability of user n requesting vf ,k at time slot t can be
obtained by

p(t)n,f ,k = p(t)n,f · pk (3)

Denote p(t)n =
{
p(t)n,1,1, . . . , p

(t)
n,1,K ; . . . ; p

(t)
n,F,1, . . . , p

(t)
n,F,K

}
as user n’s preference for all videos with different quality
versions at time slot t . The time-varying VPD is modeled
as a finite state Markov chain (FSMC). The corresponding
state set is represented as P = {p (η1) , p (η2) , . . . , p (ηH )},
where p (ηH ) is the H -th state of VPD with skewness factor
ηH . The total number of states is H and each state is a
probability distribution of users requesting videos. The VPD
transfers over time slots and the transition probability from
one state to another state is denoted as P

(
p(t+1)n

∣∣∣p(t)n )
, where

p(t)n ∈ P, p(t+1)n ∈ P .
As for the video caching model, we denote the

caching policy decision at time slot t as X (t)
={

x(t)m,f ,k |m ∈M, f ∈ F , k ∈ K
}
, where x(t)m,f ,k ∈ {0, 1}.

If BS m caches ṽf ,k at time slot t , x(t)m,f ,k = 1; otherwise,

x(t)m,f ,k = 0. Due to the limited caching resources, each
BS can only store a part of video layers. For simplicity,
we assume that BS m can store at most Ccache

m video layers
and Ccache

m < F · K . Under the caching capacity constraint,
x(t)m,f ,k satisfies

F∑
f=1

K∑
k=1

x(t)m,f ,k ≤C
cache
m , ∀m ∈M (4)

Given the caching policy decision, the caching energy
consumption at time slot t can be represented as

E (t)
cache =

M∑
m=1

F∑
f=1

K∑
k=1

wcachex
(t)
m,f ,k s̃f ,k (5)

where wcache denotes the energy of caching one bit data in
MEC servers (in J/bit).

3) VIDEO RECOMMENDATION MODEL
We denote the recommendation mechanism decision at time

slot t as Y (t)
=

{
y(t)m,f ,k |m ∈M, f ∈ F , k ∈ K

}
, where

y(t)m,f ,k ∈ {0, 1}. If BS m recommends vf ,k to its associated

users at time slot t , y(t)m,f ,k = 1; otherwise, y(t)m,f ,k = 0. The
recommendation list, i.e., the videos that are recommended
by BSm, is denoted asR(t)

m =

{
vf ,k

∣∣∣y(t)m,f ,k = 1
}
. We assume

that BS m can only recommend Crec
m videos to its associated

users at each time slot, where Crec
m ≤ Ccache

m because users

generally would not like to read a long recommendation list.
Therefore, y(t)m,f ,k satisfies

F∑
f=1

K∑
k=1

y(t)m,f ,k =C
rec
m , ∀m ∈M (6)

Video recommendation generally boosts the request prob-
abilities of the recommended videos and proportionately
decreases the request probabilities of the non-recommended
videos. Thus, if user n is associated with BS m at time slot t ,
user n’s video preference after recommendation is given by

p̃(t)n,f ,k =

{
αnp

(t),rec
m,f ,k + (1− αn) p

(t)
n,f ,k , vf ,k ∈ R(t)

m

(1− αn) p
(t)
n,f ,k , vf ,k /∈ R(t)

m
(7)

where
{
p(t)n,f ,k |f ∈ F , k ∈ K

}
represents user n’s inherent

video preference,
{
p̃(t)n,f ,k |f ∈ F , k ∈ K

}
represents user n’s

video preference after recommendation. p(t),recm,f ,k represents

the recommendation gain. According to [53], the recom-
mendation gain of videos in the recommendation list is
assumed to be equal, i.e., p(t),recm,f ,k =

1
Crecm

. αn ∈ [0, 1]
represents the probability that user n is influenced by the
video recommendation. αn = 1 means that user n accepts the
recommended videos sufficiently and only requests videos
in the recommendation list. On the contrary, αn = 0 means
that video recommendation has no impact on user n’s video

preference, i.e., p̃(t)n,f ,k = p(t)n,f ,k .
Although video recommendation can further enhance

the caching gain, unfortunately, excessive recommendation
whichmeans that users are recommendedwith video contents
that they are not interested in, has negative impact on
users’ QoE. To quantify the impact of video recommen-
dation on users’ preferences, we introduce the average
user preference deviation, which is a non-negative function
to measure the deviation of

{
p(t)n,f ,k |f ∈ F , k ∈ K

}
and{

p̃(t)n,f ,k |f ∈ F , k ∈ K
}
, and is defined as

D(t)
=

N∑
n=1

F∑
f=1

K∑
k=1

(
p̃(t)n,f ,k − p

(t)
n,f ,k

)2

N
(8)

To alleviate the negative effects of excessive recommen-
dation, we assume that the average user preference deviation
shouldmeet specific criteria, specifically, it should not exceed
the maximum deviation tolerance Dmax. Therefore, D(t)

satisfies

D(t)
≤ Dmax (9)

4) TRANSMISSION MODEL
We denote the UA strategy decision at time slot t as Z (t)

={
z(t)m,n |m ∈M, n ∈ N

}
, where z(t)m,n ∈ {0, 1}. If user n is

associated with BS m at time slot t , z(t)m,n = 1; otherwise,
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z(t)m,n = 0. We assume that one user can only be associated
with one BS at each time slot, therefore, z(t)m,n satisfies

M∑
m=1

z(t)m,n = 1, ∀n ∈ N (10)

If user n is associated with BSm at time slot t , the downlink
transmission rate from BS m to user n can be represented as

R(t)m,n =
B∑N

n=1 z
(t)
m,n

log
(
1+ γ (t)

m,n

)
(11)

where γ (t)
m,n denotes the received signal-to-interference-plus-

noise-ratio (SINR) of user n from BS m at time slot t ,∑N
n=1 z

(t)
m,n is the number of users associated with BS m.

Here, B is equally allocated to all associated users [34]. The
time-varying WCSI, i.e., the SINR γ

(t)
m,n, is modeled as a

FSMC [54], [55]. In this model, the value range of γ (t)
m,n is

quantized into L discrete levels: if γ ∗0 ≤ γ
(t)
m,n < γ ∗1 , γ1;

if γ ∗1 ≤ γ
(t)
m,n < γ ∗2 , γ2; . . .; if γ

(t)
m,n ≥ γ ∗L−1, γL . Each

level is a state of the FSMC and the corresponding state set
is represented as ℜ = {γ1, γ2, . . . , γL}. The SINR transfers
over time slots and the transition probability from one state
to another state is denoted as P

(
γ
(t+1)
m,n

∣∣∣γ (t)
m,n

)
, where γ (t)

m,n ∈

ℜ, γ
(t+1)
m,n ∈ ℜ.

5) CONTENT DELIVERY ENERGY CONSUMPTION MODEL
Let E (t)

m,n denote the content delivery energy consumption
from BS m to user n at time slot t . According to the
basic principle of SVC, if a mobile user requests vf ,k , all
layers of video f from the BL up to the k − 1 EL (i.e.,
ṽf ,k ′ , k ′ = 1, 2, . . . , k) need to be transmitted to the mobile
user. According to whether BSs cache the required layer of
a video, there are two cases to handle requests from users.
In the following, the content delivery energy consumption of
these two cases will be discussed.
Case 1: BS m has cached the required ṽf ,k at time slot

t (i.e., x(t)m,f ,k = 1), and ṽf ,k can be delivered to user n
directly. In this case, the content delivery energy consumption
of the required ṽf ,k only contains the energy consumption for
downlink radio transmission from BS m to user n denoted as
E (t),trans
m,n,f ,k , which can be calculated by

E (t),trans
m,n,f ,k = Pm

s̃f ,k

R(t)m,n
(12)

where Pm is the transmission power of BS m.
Case 2: BS m does not cache the required ṽf ,k at time slot

t (i.e., x(t)m,f ,k = 0). In this case, handling users’ requests
is divided into two steps: backhaul link transmission and
downlink radio transmission. Here, we assume that different
layers of all videos are available in the core network. Thus,
the content delivery energy consumption of the required ṽf ,k
contains E (t),trans

m,n,f ,k and the energy consumption for backhaul
link transmission from the core network to BS m denoted as
E (t),BH
m,n,f ,k . E

(t),BH
m,n,f ,k can be calculated by

E (t),BH
m,n,f ,k = wBH s̃f ,k

s̃f ,k

R(t),BHm,n
(13)

wherewBH represents the power of backhaul links to transmit
one bit data (in Watt/bit), R(t),BHm,n represents the backhaul link
transmission rate allocated to user n by BS m at time slot t .
Here, we assume that the backhaul link transmission rate of
BSs is equally allocated to all associated users. Thus, R(t),BHm,n

can be expressed as R(t),BHm,n =
RBHm∑N
n=1 z

(t)
m,n

.

Based on the above analysis of the content delivery energy
consumption of these two cases, E (t)

m,n is given by

E (t)
m,n

=

F∑
f=1

K∑
k=1

p̃(t)n,f ,k

k∑
k ′=1

(
E (t),trans
m,n,f ,k ′ +

(
1−x(t)m,f ,k ′

)
E (t),BH
m,n,f ,k ′

)
(14)

Therefore, the total content delivery energy consumption
at time slot t can be represented as

E (t)
delivery =

M∑
m=1

N∑
n=1

z(t)m,nE
(t)
m,n (15)

B. PROBLEM FORMULATION
Given the abovemodels, the total energy consumption at each
time slot consists of the caching energy consumption and the
content delivery energy consumption, which can be expressed
as

E (t)
total = E (t)

cache + E
(t)
delivery (16)

In this article, our goal is to minimize the long-term system
energy consumption by jointly optimizing video caching,
recommendation and UA with the given WCSI γ (t)

m,n,∀m ∈
M,∀n ∈ N and VPD p(t)n ,∀n ∈ N in dynamic networks.
To achieve this goal, according to (16), we formulate the
long-term optimization problem as follows:

min
X (t),Y (t),Z (t)

∑
t∈T

E (t)
total (17)

s.t.
F∑
f=1

K∑
k=1

x(t)m,f ,k ≤C
cache
m , ∀m ∈M (17a)

F∑
f=1

K∑
k=1

y(t)m,f ,k =C
rec
m , ∀m ∈M (17b)

D(t)
≤ Dmax (17c)

M∑
m=1

z(t)m,n = 1, ∀n ∈ N (17d)

x(t)m,f ,k ∈ {0, 1} , ∀m ∈M, ∀f ∈ F , ∀k ∈ K
(17e)

y(t)m,f ,k ∈ {0, 1} , ∀m ∈M, ∀f ∈ F, ∀k ∈ K
(17f)

z(t)m,n ∈ {0, 1} , ∀m ∈M, ∀n ∈ N (17g)

where (17a)-(17g) show the constraints of the optimization
problem. Constraint (17a) indicates the caching capacity
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limitation of each BS. Constraint (17b) indicates that BS
m can only recommend Crec

m videos to its associated users
at each time slot. Constraint (17c) indicates the average
user preference deviation does not exceed the maximum
deviation tolerance Dmax. Constraint (17d) indicates that one
user can only be associated with one BS at each time slot.
Constraints (17e), (17f) and (17g) indicate that x(t)m,f ,k , y

(t)
m,f ,k

and z(t)m,n are all binary variables, i.e., the values of them are
either 0 or 1.

So far, the joint video caching, recommendation and UA
optimization problem has been formulated. In Section III,
we will show how to solve the problem (17) and present a
solution to it.

III. SOLUTION TO JOINT VIDEO CACHING,
RECOMMENDATION AND UA OPTIMIZATION PROBLEM
In this section, aiming at minimizing the long-term total
energy consumption in dynamic networks, we first transform
the optimization problem into a MDP. Then, for each time
slot, givenVPD p(t)n ,∀n ∈ N andWCSI γ (t)

m,n,∀m ∈M,∀n ∈
N , a DDQN-based algorithm is designed, using which the
optimal video caching, recommendation and UA solutions
can be obtained.

A. MARKOV DECISION PROCESS MODEL
In general, a MDP problem is defined by a tuple {S,A,P, r},
where S represents state space, A represents action space,
P represents state transition probability, r represents the
immediate reward. Specifically, according to the optimization
problem (17), the key elements of MDP are defined as
follows.

1) STATE SPACE
S contains all possible states in dynamic networks, so S(t) ∈
S, where S(t) represents the network state at time slot t . S(t)

is composed of VPD and WCSI at time slot t . Therefore, S(t)

is defined as

S(t) =
{
p(t), γ (t)

}
(18)

where p(t) =
{
p(t)n |n ∈ N

}
, γ (t)

=

{
γ
(t)
m,n |m ∈M, n ∈ N

}
.

2) ACTION SPACE
A is the set of feasible actions in dynamic networks,
so A(t) ∈ A, where A(t) represents the action at time
slot t . A(t) is composed of video caching policy decision
X (t)

=

{
x(t)m,f ,k |m ∈M, f ∈ F , k ∈ K

}
, recommendation

mechanism decisionY (t)
=

{
y(t)m,f ,k |m ∈M, f ∈ F , k ∈ K

}
and UA strategy decision at time slot t Z (t)

={
z(t)m,n |m ∈M, n ∈ N

}
. Therefore, A(t) is defined as

A(t) =
{
X (t),Y (t),Z (t)

}
(19)

3) TRANSITION PROBABILITY
The state transition probability is defined asP

(
S(t+1)

∣∣S(t),A(t) ).

4) REWARD FUNCTION
At time slot t , an agent first observes and senses the state of
the dynamic network environment S(t). Then, according to a
certain policy function π , the agent performs an action A(t).
After the action is taken, the agent can obtain an immediate
reward. Since the goal of the optimization problem (17) is to
minimize the energy consumption, to achieve this goal, the
energy consumption is set as the main reward. Therefore, the
immediate reward is defined as

r
(
S(t),A(t)

)
=

{
−E (t)

total, if (17c) is satisfied

−E (t)
total − ϕ

(
D(t)
− Dmax

)
, otherwise

(20)

where ϕ represents the penalty reward factor.
The MDP problem can be solved by determining the

optimal policy π∗ that maximizes the long-term system
reward. Here, π : S → A is a policy function that maps
a state S ∈ S to an action A ∈ A. There are two popular
methods to assess the long-term system reward, namely state
value function and state-action value function. Given a policy
π , the state value function in state S is defined as

V π (S) = Eπ
[
ψ (t)

∣∣∣S(t) = S
]

(21)

where Eπ [·] represents the mathematical expectation,ψ (t)
=

∞∑
τ=t

βτ−tr
(
S(τ ),A(τ )

)
. β ∈ (0, 1] is the discount factor to

determine the importance of immediate reward and future
rewards. Similarly, the state-action value function in state S
and action A is defined as

Qπ (S,A) = Eπ
[
ψ (t)

∣∣∣S(t) = S,A(t) = A
]

(22)

RL algorithms as a branch of machine learning algorithms
are generally used to solve the MDP problem. Q-learning
algorithm [56] is a classical RL algorithm, which aims to train
an agent to learn π∗. Since the state-action value function
is used to assess the long-term system reward, learning
π∗ is equivalent to learning the optimal state-action value
function Q∗ (S,A). π∗ can be determined by Q∗ (S,A), i.e.,
π∗ (S) = argmax

A∈A
Q∗ (S,A) ,∀S ∈ S. In order to learn

Q∗ (S,A), the agent needs to interact with the dynamic
network environment repeatedly. Specifically, during each
interaction step, the agent observes the environment’s state,
chooses an action, executes it, and receives an immediate
reward. As a result of executing the action, the state S is
transferred to the next state S ′. Then, the state-action value
function is updated by

Q (S,A)← (1−ζ )Q (S,A)

+ ζ

[
r (S,A)+β max

A′∈A
Q

(
S ′,A′

)]
(23)

where ζ ∈ (0, 1] represents the learning rate. After several
interaction steps, the agent can eventually learn π∗ and
Q∗ (S,A).
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During the learning process, there are two methods for
the agent to select an action, namely ‘‘exploitation’’ and
‘‘exploration’’. ‘‘Exploitation’’ means that the agent selects
the action with the highest state-action value. ‘‘Exploration’’
means that the agent randomly selects an action except for the
action with the highest state-action value. The ‘‘exploitation’’
process can maximize the long-term system reward, while
the ‘‘exploration’’ process can avoid the Q-learning algorithm
converging into a local optimum. Therefore, to learn π∗, the
‘‘exploitation’’ and ‘‘exploration’’ need to be balanced when
selecting an action under a given state.

B. THE DDQN-BASED CACHING, RECOMMENDATION
AND UA ALGORITHM
In the Q-learning algorithm, the state-action values of all
state-action pairs are stored in a Q-table. However, with
the increase of state space and action space, the Q-learning
algorithm faces the challenge of ‘‘curse of dimensionality’’,
which means that when the number of state-action pairs
is huge, storing and searching the Q-table will take lots
of time and space, leading to a slow learning speed and
influencing the convergence efficiency. Motivated by deep
learning, DDQN [57] has been proposed to overcome the
above challenges.

Based on deep neural networks (DNNs)’ nonlinear nature,
deep learning can utilize DNNs to approximate almost
any function by finding the low-dimensional features of
high-dimensional data. The core idea of DDQN is to
combine Q-learning algorithm with deep learning. DNNs are
utilized to approximate the state-action value function, i.e.,
Q (S,A; θ, ς,ϖ) ≈ Q (S,A), where θ , ς and ϖ represent
the set of weights and biases in DNNs. Three outstanding
innovations are applied to make DDQN more efficient and
robust:

1) DECOMPOSITION OF THE STATE-ACTION VALUE
FUNCTION
The DDQN decomposes the state-action value function
Q (S,A; θ, ς,ϖ) into the state value function V (S; θ, ς)
and the action advantage function A (S,A; θ,ϖ), i.e.,
Q (S,A; θ, ς,ϖ) = V (S; θ, ς)+A (S,A; θ,ϖ). V (S; θ, ς)
is a scalar and helps improve the capability of estimating the
state value. A (S,A; θ,ϖ) is an |A|-dimensional vector and
represents all actions’ relative advantages.

2) EXPERIENCE REPLAY
Experience replay utilizes a finite-sized replay mem-
ory to store the agent’s past learning experience, i.e.,(
S(t),A(t), r (t), S(t+1)

)
. By this way, the DDQN can break the

temporal correlations among past learning experiences and
make the DNNs updating more efficient.

3) FIXED TARGET DNN
There are two DNNs in DDQN, i.e., the evaluated DNN and
the target DNN, which have the same architecture. At each

FIGURE 2. The workflows of DDQN.

training step, the weights and biases in the evaluated DNN
are updated. However, the weights and biases in the target
DNN are kept fixed for a period of time and are only updated
with the evaluated DNN periodically. Here, we assume that
the weights and biases in the target DNN are updated everyG
training steps, i.e., θ−(t) = θ (t−G), ς−(t) = ς (t−G),ϖ−(t) =
ϖ (t−G), where θ, ς,ϖ and θ−, ς−,ϖ− are the weights and
biases in the evaluated DNN and the target DNN respectively.
This innovation can stabilize and smooth the learning process.

Both the evaluated DNN and the target DNN take the state
S ∈ S as input and all actions’ state-action values under the
state S as output. At each training step, the agent randomly
selects a mini-batch of samples from the replay memory
and updates the weights and biases in the evaluated DNN to
minimize loss function Loss (θ, ς,ϖ), which is defined as
the mean-squared deviation between the target state-action
value Qtarget = r (S,A) + β max

A′∈A
Q

(
S ′,A′; θ−, ς−,ϖ−

)
and the estimated state-action value Q (S,A; θ, ς,ϖ), i.e.,
Loss (θ, ς,ϖ) = E

[(
Qtarget − Q (S,A; θ, ς,ϖ)

)2]. The
workflows of DDQN are presented in Figure 2.

In the standard DDQN algorithm, the output of the
evaluated DNN and the target DNN is all actions’ state-action
values, resulting that the output layer’s dimension in the
evaluated DNN and the target DNN is related to the size of the

action space, which is |A| =
(

FK
Ccache
m

)M(
FK
Crec
m

)M (
2MN

)
in the formulated MDP problem.

(
FK
Ccache
m

)M

is the number

of all possible caching policies,
(
FK
Crec
m

)M

is the number

of all possible recommendation mechanisms and 2MN is
the number of all possible UA strategies. It is obvious
that as the number of videos F , the number of ground
BSs M and the number of users N increasing, the size of
the action space increases exponentially, resulting in the
challenge of ‘‘curse of dimensionality’’. To overcome the
challenge, we integrate linear approximation into the DDQN
algorithm, which reduces the action space from exponential

size
(

FK
Ccache
m

)M(
FK
Crec
m

)M (
2MN

)
to linear size 2MFK +

MN . In linear approximation-integrated DDQN algorithm,
the first MFK outputs of the evaluated DNN are used to
select the caching policy X (t), the next MFK outputs of
the evaluated DNN are used to select the recommendation
mechanism Y (t) and the last MN outputs of the evaluated
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DNN are used to select the UA strategy Z (t), both of which
are combined as the action A(t) =

{
X (t),Y (t),Z (t)

}
.

Specifically, we denote the first MFK outputs of the
evaluated DNN under a state as {Q1,Q2, . . . ,QMFK }. Then,
the elements of BS 1’s caching policy that correspond with
the largest Ccache

m values in {Q1,Q2, . . . ,QFK } are set to
1 and the other elements are set to 0. Similarly, the elements
of BS 2’s caching policy that correspond with the largest
Ccache
m values in {QFK+1,QFK+2, . . . ,Q2FK } are set to 1 and

the other elements are set to 0. By this way, all M BSs’
caching policies X (t) can be obtained. Moreover, we denote
the next MFK outputs of the evaluated DNN under a state
as {QMFK+1,QMFK+2, . . . ,Q2MFK }. Then, the elements of
BS 1’s recommendation mechanism that correspond with the
largest Crec

m values in {QMFK+1,QMFK+2, . . . ,QMFK+FK }
are set to 1 and the other elements are set to 0. Sim-
ilarly, the elements of BS 2’s recommendation mech-
anism that correspond with the largest Crec

m values in
{QMFK+FK+1,QMFK+FK+2, . . . ,QMFK+2FK } are set to 1 and
the other elements are set to 0. By this way, all M BSs’ rec-
ommendation mechanisms Y (t) can be obtained. In addition,
we denote the last MN outputs of the evaluated DNN under
a state as {Q2MFK+1,Q2MFK+2, . . . ,Q2MFK+MN }. Then, the
element of user 1’s UA strategy that corresponds with the
largest value in {Q2MFK+1,Q2MFK+2, . . . ,Q2MFK+M } is set
to 1 and the other elements are set to 0. Similarly, the element
of user 2’s UA strategy that corresponds with the largest
value in {Q2MFK+M+1,Q2MFK+M+2, . . . ,Q2MFK+2M } is set
to 1 and the other elements are set to 0. By this way, all
N users’ UA strategies Z (t) can be obtained. Thus, we can
ensure that the obtained X (t) satisfies the constraint (17a),
Y (t) satisfies the constraint (17b) and Z (t) satisfies the
constraint (17d).

According to the basic principle of DDQN and linear
approximation, a DDQN-based caching, recommendation
and UA algorithm, i.e., Algorithm 1 is presented to solve the
optimization problem (17). ε-greedy policy (lines 10-15) is
used to select an action under the observed state aiming at
balancing the ‘‘exploitation’’ and ‘‘exploration’’.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, we employ computational simulation method
to evaluate the effectiveness of the proposed DDQN-based
caching, recommendation and UA algorithm. For the sake
of simplicity in our simulations, the algorithm is referred
to as ‘‘DDQN-based CA, UA and REC’’. All simulations
are conducted on a X64-based laptop, which is equipped
with 2.8GHz Intel Core i7, 32GB LPDDR3 and 512GB
memory. The proposed algorithm is implemented in PyTorch
1.12.1 with Python 3.9. We consider a cellular network with
M = 4 BSs and N = 10 users. We set F = 30, K = 3,
Ccache
m = 10, Pm = 46dBm [37], B = 20MHz, ϑ = 2,

RBHm = 1.5Mbps [38], wcache = 8 × 10−8J/bit [58],
wBH = 8 × 10−6Watt/bit [59], Crec

m = 5, αn = 0.7,
Dmax

= 0.08. Besides, the sizes of three layers of each
video are set as 4, 2 and 1Mbit. Furthermore, the VPD is set

Algorithm 1 The DDQN-based Caching, Recommendation
and UA Algorithm
1: Initialization:
2: Initialize the maximum number of training episodes
4max and the maximum number of steps in each episode
gmax.

3: Initialize the experience replay memory and the mini-
batch size.

4: Initialize the discount factor β, the learning rate ζ and the
exploration probability ε.

5: Initialize the weights and biases in the evaluated DNN
with θ, ς,ϖ .

6: Initialize the weights and biases in the target DNN with
θ− = θ, ς− = ς,ϖ− = ϖ .

7: for episode = 1, 2, . . . , 4max do
8: Reset the environment with the initial state Sini, i.e.,

S(t) = Sini.
9: for t = 1, 2, . . . , gmax do

10: Choose a random probability p.
11: if p > ε then
12: Select an action A(t) with linear approximation.
13: else
14: Randomly select an action A(t).
15: end if
16: Execute the selected action, obtain the immediate

reward r (t) and observe the next state S(t+1).
17: Store

(
S(t),A(t), r (t), S(t+1)

)
into the experience

replay memory.
18: Randomly select a mini-batch of samples from the

experience replay memory.
19: Calculate V (S; θ, ς) and A (S,A; θ,ϖ), and com-

bine them as the estimated state-action value
Q (S,A; θ, ς,ϖ).

20: Calculate the target state-action value Qtarget by
Qtarget = r (S,A)+β max

A′∈A
Q

(
S ′,A′; θ−, ς−,ϖ−

)
.

21: Train the evaluated DNN to minimize
the loss function Loss (θ, ς,ϖ) =

E
[(
Qtarget − Q (S,A; θ, ς,ϖ)

)2].
22: Update θ−, ς−,ϖ− every G training steps.
23: Set S(t)← S(t+1).
24: end for
25: end for

as a three-state FSMC with three different skewness factors
{η1, η2, η3} = {0.2, 0.5, 0.8}. Their transition probability
matrix is assumed as

Pη =

 0.6 0.3 0.1
0.1 0.6 0.3
0.3 0.1 0.6

 (24)

Similarly, the WCSI is set as a three-state FSMC with
three different spectrum efficiency parameters, i.e., 10, 2 and
0.2, which means that the state of wireless channels between
BSs and users are good, medium and bad respectively. Their

VOLUME 12, 2024 36665



J. Xie et al.: Joint Content Caching, Recommendation, and Transmission

transition probability matrix is assumed as

PSE =

 0.6 0.2 0.2
0.1 0.7 0.2
0.2 0.3 0.5

 (25)

For comparison, the following four benchmark algorithms
are considered:
‘‘DDQN-Based CA and UA Only’’: In this algorithm, the

learning agent only tries to learn the optimal caching policy
and UA strategy, but makes recommendation mechanism
decision randomly. That is to say, each BS recommends
videos with different quality versions to its associated users
randomly. Compared with ‘‘DDQN-based CA, UA and
REC’’, the potential benefits of optimizing recommendation
mechanism can be indicated.
‘‘DDQN-Based CA and REC Only’’: In this algorithm, the

learning agent only tries to learn the optimal caching policy
and recommendation mechanism, but makes UA strategy
decision randomly. That is to say, users are associated with
BSs randomly. Compared with ‘‘DDQN-based CA, UA and
REC’’, the potential benefits of optimizing UA strategy can
be indicated.
‘‘DDQN-Based UA and REC Only’’: In this algorithm, the

learning agent only tries to learn the optimal UA strategy
and recommendation mechanism, but makes caching policy
decision randomly. That is to say, each BS caches videos’
different layers randomly until its caching capacity is filled
up. Compared with ‘‘DDQN-based CA, UA and REC’’,
the potential benefits of optimizing caching policy can be
indicated.
‘‘Random CA, UA and REC’’: In this algorithm, the

learning agent makes caching policy, UA strategy and
recommendation mechanism decisions randomly. Compared
with ‘‘DDQN-based CA, UA and REC’’, the potential
benefits of jointly optimizing caching policy, UA strategy and
recommendation mechanism can be indicated.

We first investigate the convergence performance of all the
algorithms. Here, we set ζ = 0.01, β = 0.9, ε = 0.1.
In Figure 3, the abscissa denotes the number of episodes (each
episode contains 40 time slots) and the ordinate represents
the values of reward per episode, i.e., the system energy
consumption. It can be seen that all DDQN-based algorithms
can gradually converge to a stable value with the number
of episodes increasing. Specifically, ‘‘DDQN-based CA,
UA and REC’’, ‘‘DDQN-based CA and UA only’’, ‘‘DDQN-
based CA and REC only’’ and ‘‘DDQN-based UA and REC
only’’ reach stability after about 600 episodes, 700 episodes,
500 episodes and 550 episodes respectively. Besides, it shows
that the converged stable value of ‘‘DDQN-basedCA,UA and
REC’’ is the smallest, the corresponding value of ‘‘Random
CA, UA and REC’’ is the largest, while the corresponding
values of other algorithms are medium. This demonstrates
the potential benefits of jointly optimizing caching policy,
recommendation mechanism and UA strategy.

Figure 4 illustrates the system energy consumption of
all the algorithms under different values of the caching

FIGURE 3. Convergence of the proposed algorithm.

FIGURE 4. Total energy consumption under different values of the
caching capacity of each BS.

capacity of each BS Ccache
m . We observe that the system

energy consumption of all the algorithms decreases with the
increase of Ccache

m . This is intuitive, when Ccache
m is larger,

each BS can cache more video layers, and more users’
requests can be satisfied locally without incurring backhaul
link transmission. As a result, the backhaul link transmission
energy consumption is decreased, which leads to the decrease
of the total energy consumption. This figure also shows
that the total energy consumption achieved by the proposed
algorithm is smaller than the other benchmark algorithms.

Figure 5 reveals the relationship between the performance
of all the algorithms and the number of users N . As we can
see, the larger the number of users, the larger the system
energy consumption of all the algorithms, which is in line
with the intuition. Larger N leads to the increase of the
number of video requests. In this case, given the VPD
and caching capacity, more video requests consume more
radio transmission energy consumption and backhaul link
transmission energy consumption, resulting in the increase of
the total energy consumption.

How the number of videos F affects the performance of all
the algorithms is illustrated in Figure 6. As we can see, the
system energy consumption of all the algorithms gradually
increases with the increase of F . The reason is that when F
becomes larger, users’ requests scatter more widely, which
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FIGURE 5. Total energy consumption under different values of the
number of users.

FIGURE 6. Total energy consumption under different values of the
number of videos.

leads to higher cache miss rate and definitely consumes larger
content delivery energy consumption, which leads to the
increase of the total energy consumption.

Figure 7 reveals the impact of the bandwidth of radio
access links B on the performance of all the algorithms.
As expected, with the increase of B, the system energy
consumption of all the algorithms gradually decreases. The
reason is that when B becomes larger, R(t)m,n increases which
leads to the decrease of radio transmission delay and energy
consumption. As a result, the total energy consumption is
reduced.

The relationship between the performance of all the
algorithms and the recommendation size Crec

m is shown in
Figure 8. We observe that the larger the recommendation size
Crec
m , the smaller the system energy consumption of all the

algorithms, which is in line with the intuition. In the case
that Crec

m is less than Ccache
m , larger Crec

m makes users’ video
preferences after recommendation more flat, which increases
the effect of recommendation mechanism. Hence, the total
energy consumption is decreased.

Next, the impact of the maximum deviation tolerance
Dmax on the performance of all the algorithms is revealed in
Figure 9. As expected, whenDmax becomes larger, the system
energy consumption of all the algorithms decreases. The
reason is that larger Dmax means more actions taken by the

FIGURE 7. Total energy consumption under different values of the
bandwidth of radio access links.

FIGURE 8. Total energy consumption under different values of the
recommendation size.

FIGURE 9. Total energy consumption under different values of the
maximum deviation tolerance.

agent can satisfy (17c). As a result, the obtained immediate
reward is increased, which leads to the decrease of the total
energy consumption.

V. CONCLUSION
This article has investigated the content caching, recom-
mendation and transmission for layered SVC streaming
in cache-enabled cellular networks. Taking into account
the dynamic characteristics of video popularity distribution
and wireless channels, we focused on minimizing the
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long-term system energy consumption while ensuring the
average user preference deviation tolerance. To achieve this,
we formulated the problem of optimizing video caching, rec-
ommendation and UA as aMDP.We utilized both DDQN and
linear approximation techniques to tackle the MDP problem
and determine the optimal video caching, recommendation
and UA decisions. Simulation results have demonstrated that
both video caching, recommendation and UA decisions have
effect on the system energy consumption, and the proposed
algorithm yields significant performance gains in enhancing
the energy efficiency compared with benchmark algorithms.
In our future works, UAV-assisted cellular networks will
be considered, and UAV deployment, UA, content caching,
recommendation and resource allocation will be jointly
optimized to improve users’ QoE for layered SVC streaming.
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