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ABSTRACT Immunohistochemistry (IHC) slides are graded for breast cancer based on visual markers and
morphological characteristics of stained membrane regions. The usage of whole slide images (WSIs) from
histology in digital pathology algorithms for computer-assisted evaluations has increased recently. Human
epidermal growth factor receptor 2 (HER2)-stained microscopic images are challenging, time-consuming,
and error-prone to evaluate manually. This is due to different staining, overlapped regions, and huge, non-
homogeneous slides. Additionally, the classification of HER2 images by the selection of fundamental
features must be used to capture the difficult elements of the images, such as the irregular cell structure
and the coloring of the tissue of the cells. To solve the above problems, a transfer learning model-based,
trainable metaheuristic method for choosing the best features is suggested in this paper. Moreover, the
suggested model is efficient in reducing model complexity and computational costs as well as avoiding
overfitting. The four main components of the proposed cascaded design are: (1) converting WSISs to tiled
images and enhancing contrast with fast local Laplacian filtering (FILpF); (2) extracting features with a
ResNet50 CNN technique based on transfer learning; (3) selecting the most informative features with the
help of a non-dominated sorting genetic algorithm (NSGA-II) optimizer; and (4) using a support vector
machine (SVM) to classify HER2 scores. Results from the HER2SC and HER2GAN datasets show that
the suggested model is superior to other methods already in use, with 94.4% accuracy, 93.71% precision,
98.07% specificity, 93.83% sensitivity, and a 93.71% F1-score for the HER2SC dataset being achieved.

INDEX TERMS HER2, CNN, transfer learning, NSGA-II optimizer, FILpF.

I. INTRODUCTION

HER?2 stands for human epidermal growth factor receptor 2,
and it is a protein that stimulates the development of cancer-
ous epithelial cells. In instances of breast cancer (BC) with
invasive tumors, the HER2 gene is amplified. When we look
at HER2+ (positive) and HER?2 (negative) cases of BC, it can
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be seen that neoplastic changes happen more often in HER2+
cases, which means that tumors can grow without being
stopped. Overexpression of the HER2 protein is linked with
poor prognosis, poorer survival, and increased recurrence [1],
[2], and is thus suggested for all patients with invasive breast
cancer [3]. Recent research [4] has described HER2 status
as a prognostic factor that correlates invasive tumors with
mortality and recurrence-free survival. This emphasizes the
need for an accurate assessment of HER2 overexpression
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in HER2+ patients so that they may get the most effec-
tive anti-HER2 medication possible. Immunohistochemistry
(IHC) and fluorescence in situ hybridization (FISH) were two
common ways to measure HER2 expression [5]. Samples are
usually put into one of four HER2 classes based on how
many and how strongly the membranes of invasive cancer
cells are stained. Based on the IHC examination hypothesis
for figuring out the BC [6], here’s how to figure out the HER2
score:

o 34+ (More than 10% of invasive cancer cells had strong,
complete, and consistent staining of the cell membrane);

e 24+ (More than 10% of tumor cells exhibited weak to
moderate full membrane staining);

e 14+ (More than 10% of tumor cells had faint, almost
invisible incomplete membrane staining);

e 0 (Less than 10% of invasive cancer cells exhibited no
staining or patchy, weak staining of the cell membrane).

Pathologists visually examine the biopsy tissue slides
under the microscope as part of a standard clinical pro-
cedure. This kind of visual evaluation is often open to
mistakes. HER2 testing becomes hard to do in places with
limited resources and where qualified pathologists aren’t
always available right away [7]. IHC slide digitization
and quantitative image analysis have become crucial for
image preservation and repeatable diagnosis to overcome
both of these problems. Thus, pathologists primarily use
computer-assisted digital approaches for quantitative image
analysis. The repeatability and ease of use of digital pathol-
ogy are its key benefits. Digital imaging technology is also
a pixel-based technology, which lowers false positives and
inter-observer variability by increasing detection and seg-
mentation accuracy, among other things [8].

Assessing the HER2 score manually is challenging, time-
intensive, and prone to errors. The reason for this is the
presence of overlapping regions, extensive and heterogeneous
slides, and diverse stains. To accurately depict the intricate
features of the images, such as the irregular cell structure and
the pigmentation of the cell tissue, the HER2 images must
be classified based on a predefined set of criteria. The study
proposes a hybrid paradigm that effectively tackles these
challenges. The model comprises a transfer learning model,
a metaheuristic optimizer, and a machine learning algorithm.
The features were extracted from the transfer learning model,
specifically Resnet50. Additionally, we developed a train-
able multi-objective metaheuristic optimizer called NSGA-II.
An SVM machine learning algorithm is used to classify
the selected features and provide feedback to the NSGA-II
algorithm for the purpose of reselecting the minimal optimal
features. The results showcase the exceptional, adaptable, and
optimal performance of the proposed model.

Contributions made by this paper include the following:

1. Optimal feature selection from the irregular structure
of the cells and the coloring of the tissue of the cells.

2. Utilizing the NSGA-II to select minimum-perfect fea-
tures.
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High performance accuracy to classify the HER2 score.

4. Calculation of the error value and sending it to the
NSGA-II optimizer as feedback

5. Reduce time consumption for HER2 score decisions

using DL and ML networks.

An application of our proposed method is its potential
installation on imaging devices for real-time, clinical exami-
nation, rapid, and accurate image classification. Additionally,
it can assist specialists in identifying the type of HER2 score
while reviewing the images.

A review of earlier research on the same problem that
we are addressing in this work was done in Part 2, and a
detailed technical background of the major themes is given
in Section III. The findings from the experiments that were
applied to the data using the suggested model are shown in
Section IV. Lastly, the paper’s general findings are presented
in Section V.

Il. RELATED WORK

A lot of research was published on various machine learn-
ing (ML) and deep learning (DL), including segmentation,
texture features, classification, etc., to solve the difficulties
in HER2 score diagnosis [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18]. Numerous studies have employed the
HER?2 classification using DL technology, which eliminates
the need to manually set up the feature extractor [9]. Instead,
a deep neural network with multi-layer nonlinear transfor-
mation is used to automatically learn the internal structure
feature representation of the data from the input data.
HER2GAN presents a novel supervised deep learning-based
method for overcoming the scarcity of HER2 datasets [10].
To achieve optimal results via transfer learning and generate
HER?2 images of superior quality, a GAN-based model is
suggested. The InceptionResNetV2 model achieved 94.2%
accuracy by using a mix of generated and original images for
training and testing. To automatically classify breast imaging
cancers, [11] presented a complete connectivity layer struc-
ture utilizing the maxout activation function and incorporated
it into the CNN model. The model’s AUC increased from
0.787 to 0.822. To choose more discriminative patches, [12]
suggested a patch screening approach based on the clus-
tering algorithm and CNN. This method achieved 88.89%
accuracy on the whole test set. Convolutional, pooling, and
fully connected layers were used to create the model [13].
The probability of passing the exam is 99.7 percent. Refer-
ence [14] presented a deep reinforcement learning method
for automatically scoring IHC-stained HER2 breast cancer
slides. The approach treats the IHC score as a series of
choices, making it simple to zero in on regions with high
diagnostic potential. We just employed ResNet50 DL for
feature extraction in our proposed model.

Several academics have done their studies based on the
texture of the images. The authors of [19] used two ML
techniques, logistic regression, and SVM, as well as uni-
form local binary patterns as a texture descriptor for feature
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extraction, to determine the HER2 score. The accuracy rates
of the two models were 91% and 93%, respectively. Unlike
the semi-supervised model used in [19] and [20] uses a super-
vised classification framework. Reference [21] proposed a
semi-supervised method to discover lesions in colorectal
biopsies that was simple to grasp and had a classification
accuracy of 90.19% based on ML and feature aggregation
approaches. Performance would be improved by training tiles
for HER2 and then combining them all with CNN in a single
optimization procedure. Using HER2-ResNet, a DL and pre-
trained model, [9] completed the identical test with 91%
accuracy. The work detailed in [22] and [23] included the
extraction of characteristics from the HER2 2+ tissue and
the application of ML algorithms for classification, producing
mostly acceptable findings.

In addition, DL-based HER2 image segmentation is a
growing area of study for determining HER2 scores in
diagnostic settings. The authors of [8] suggested a unique
methodology for automatically segmenting, categorizing,
and quantifying IHC breast cancer images inside an ML
framework. They started by using an SVM feature learning
classifier to divide the WSI into epithelial and stromal com-
ponents. To automatically segregate or categorize epithelial
(EP) and stromal (ST) regions from digital tumor tissue
microarrays, [24] introduced a Deep Convolutional Neu-
ral Networks (DCNN)-based feature learning technique.
To achieve a 98% success rate in HER2 image segmenta-
tion, [25] employed a U-Net network with a trapezoidal long
short-term memory (TLSTM) in its latent layers.

The selection of acceptable features for the HER2 image
was the subject of fewer investigations since it is difficult
due to the complex structure of the HER2 image. Using a
binary pixel classification method, [26] showed a new way
to pick out representative features in order to separate images
of breast cancer that show high levels of HER2. They were
able to preserve good classification performance by reducing
the original collection of 210 color and texture characteris-
tics to 65 features. In cases when the medical images have
unique morphology and complex structure, such as HER2
images, metaheuristic approaches may play a crucial role in
selecting the optimal feature. A multi-objective metaheuristic
optimizer was used in this investigation. In multi-objective
optimization problems [27], [28], [29], [30], there are two or
more optimization goals that compete with each other. This
means that reaching one goal will make it harder to reach
another.

Pretrained deep learning models can be used to detect the
HER?2 score and analyze breast ultrasound images by extract-
ing relevant features. References [31] and [32] employed
pretrained models for feature extraction and applied NCA
(neighborhood component analysis) to identify the most opti-
mal features. The Kaplan et al., [31] developed a Breast Imag-
ing Reporting and Data System (BI-RADS) and achieved
accuracy rates of 79.29%, 80.42%, and 88.67% for Case 1,
Case 2, and Case 3, respectively. The image classification
approach provided by [32], which utilizes grid-based deep
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TABLE 1. Summary of HER2 scoring approaches.

Study Year Method Objective Evaluation
(Accuracy)
Saha et 2018 SVM Segmentation and 98.33%
al. [8] classification HER2
score
Wanget 2022 Resnet HER? classification 92%
al. [9]
Mirimog 2023 GAN and Scarcity of HER2 94.2%
haddam pretrained image
et al. models
[10]
Arevalo 2015 CNN HER? classification 82.2%
et al.
[11]
Lietal. 2019 CNN Breast cancer 88.9
[12] classification
Qaiseret 2019 CNN & HER2 score 79.4%
al. [14] LSTM
Mukund 2019 Logistic Automated scoring 93%
an et al. regression of HER2
[19] , SVM
Xu et al. 2016 DCNN Automatically 98%
[24] segment and
classify
Kaplan 2022 CNN, Classification of 88.67%
et al. NCA breast ultrasound
[31] lesions
Liuetal. 2022 CNN, Breast ultrasound 97.18%
[32] NCA lesions diagnosis

feature creation, achieved a classification accuracy of 97.18%
on ultrasonic pictures for three distinct classes: malignant,
benign, and normal.

In cases where the medical images have unique mor-
phology and complex structure, such as HER2 images,
metaheuristic approaches may play a crucial role in select-
ing the optimal feature. NSGA-II [33] is a very effective
multi-objective optimization technique. Several metaheuris-
tic algorithms make use of the NSGA-II idea, such as ant
colony optimization (ACO) [34], bee colony optimization
(BCO) [35], the Differential Evolution (DE) [36] method,
and others; however, the Pareto front estimate technique is
specific to the NSGA-IL. In contrast to other feature selec-
tion approaches such as Chi2 [37], neighborhood component
analysis (NCA) [38], and ReliefF [39], multi-objective opti-
mization techniques like NSGA-II are trainable and may find
optimum and minimum features in problems. Each iteration
of multi-objective optimization provides a set of minimum
and optimal features. Table 1 presents a concise overview of
the several methods used for scoring HER2.

IIl. MATERIAL AND METHODS
A method that combines DL and a metaheuristic optimizer
is proposed, as shown in Figure 1, to diagnose the HER2
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score with the best accuracy, the fewest errors, and the least
amount of time. Algorithm 1 offers a thorough explanation
of the whole procedure. The structure of our proposed model
includes four steps: (i) a preprocessing step containing crop-
ping the WSI image and then enhancing the cropped image
based on the FILpF method; (ii) a TL-based Resnet50 model
is used for feature extraction; (iii) a fine-tuned NSGA-II
optimizer is used for optimal feature selection; (iv) SVM is
used for the HER2 score diagnostic. Following are detailed
explanations of each stage.

A. DATASET
The model’s capability to generate and classify convincing
images was evaluated using two distinct sets of data.

For the first dataset, the Department of Computer Science
at the University of Warwick in the United Kingdom donated
the publicly available HER2 image dataset (HER2SC), which
was used to evaluate the suggested strategy [40], [41].
The dataset was gathered using a Hamamatsu NanoZoomer
C9600 scanner and mostly consisted of 158 WSIs. A mon-
oclonal antibody against the HER2 gene was used to stain
79 of the 158 WSIs, while the other 79 were stained with
hematoxylin and eosin (H&E). Each WSI was 100,000 by
80,000 pixels in size (width by height). The WSIs could be
seen at magnifications ranging from 4 to 40. Figure 2 includes
several instances of HER2SC images.

For the second dataset, the Department of Pathology at
Mashhad University of Medical Sciences’ Ghaem Educa-
tional Research and Treatment Center collected IHC-stained
tissue (HER2GAN) samples from 126 individuals. After
diagnosis of Invasive Ductal Carcinoma of the breast, all
female patients had core needle or excisional biopsies stained
for the HER2 marker. 32 patients scored zero, 40 scored one,
30 scored two, and 24 scored three, which is an imbalanced
dataset. To protect patient privacy, we deidentified our data
during screening. Pathology slides were digitized using a
Jenus microscope, and manual digital photography was done
using a Tucsen Photonics TrueChrome II digital camera with
a CMOS sensor with magnifications of 10-20 and 40 in
diagnostic areas suitable for HER?2 scoring [10].

B. TRANSFER LEARNING MODEL

In some situations, the challenges of putting up a large dataset
may reduce the model’s performance accuracy, even if a large
dataset is necessary for CNN training to reach the neces-
sary accuracy. Training and testing data pairs are notoriously
difficult to get in the real world [42]. To address this issue,
“transfer learning” was put forth as a solution. To rephrase,
transfer learning is an ML strategy in which we use a pre-
viously trained model as the basis for a model applied to a
different problem. A model that has been optimized for one
task and then applied to another enables quick progress to be
made while modeling the second task. Compared to training
with a minimal quantity of data, the results of applying trans-
fer learning to a new task are far more impressive [43]. For
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Algorithm 1 Pseudocode of the proposed method

Inputs:
D1: HER2SC Dataset
D2: HER2GAN
imgl: a HER2’s image which is selected from D1
img2: a HER2’s image which is selected from D2
Forimgl, img2 in (D1 andD2)
[Imgpy, Imgpy ] = Select 2048 features from [imgl, img2]
End for
For 1: iterations
[Mp1, My ] = Build a modelM based onNSGA-II model
which select optimal minimum features from [Imgp1, Imgpz ]
[Cp1, Cpa] = Build a modelC based onSVM classifier
which classify [Mp1, Mpa]
[MSE, accuracy, specificity, sensitivity, precision, FI-
score] =
Calculate metrics [MSE, accuracy, specificity, sensitivity, pre-
cision,
Fl1-score] from [Cpy, Cpa]
End for
End

feature extraction, our recommended method makes use of
the Resnet50 transfer learning model, which is detailed in the
section below.

1) RESNET50

When researchers attempted to add layers to the CNN design,
they ran into issues that led to the development of ResNet. The
performance of a CNN design improves as more layers are
added, but then it begins to degrade. The ResNet model built
to address this issue does not carry out gradient computation.
To avoid this, a fast cut is given by simply adding x to the f(x)
function (See Figure 3).

ResNet has a flat 34-layer network architecture with fewer
filters and a simpler design. Learn More By including jump
connections or residual blocks into this flat network, the
design is then transformed into a residual network. In a 34-
layer network, Resnet50 is created by swapping out every
2-layer block with a 3-layer bottleneck block [44], [45].
The research conducted for feature extraction employed
ResNet50. A 50-layer convolutional neural network, ResNet-
50, consists of 48 convolutional layers, 1 MaxPool layer, and
1 average pool layer.

C. NSGA-II OPTIMIZER

A lot of problems have been pointed out with the first
non-dominated sorting genetic algorithm (NSGA) [46], such
as the fact that it doesn’t have any elitism, you have to set
a sharing parameter to keep the diversity, and it takes a lot
of time to run. NSGA-II architecture, on the other hand,
exhibits elitism and does not need a sharing parameter. Its fast
processing allows it to be called the *“Fast Elitist NSGA-II.”
The maximum complexity of NSGA-II is O(MN2), where
M is the total number of objective functions and N is the
population size. In addition, it uses the crowding distance
operator as part of its variety preservation strategy. The elite
preserving operator, crowding distance, selection operator,
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FIGURE 2. HER2-stained IHC image of breast cancer. Images from the HER2SC dataset a) score 0 b) score 1 c) score 2 d) score 3.

and non-dominated sorting are the four fundamental ideas
that form the basis of the NSGA-II-based foundation. Below
is a quick discussion of each of them [33].

1) NON-DOMINATED SORTING

Using the Pareto dominance principle, the whole population
is sorted using this strategy. The non-dominated individu-
als of the starting population are given the top rank at the
beginning of the procedure by non-dominated sorting. The
first front is filled with first-rank members, who are then
excluded from the original population. The remaining popu-
lation members are then sorted using a non-dominant method.
Non-dominant members of the remaining population are
given the second rank and are seated in the second front [27].

VOLUME 12, 2024

As shown in Figure 4(a), the procedure is repeated until every
member of the remaining population is given a rank.

2) ELITE PRESERVING OPERATOR

A population’s elite solutions are preserved by the direct
transmission of those solutions to the next generation.
In other words, unless certain solutions take control, the
non-dominant solutions of each generation are passed on to
the next [47].

3) CROWDING DISTANCE

The crowding distance calculates how close an individual is to
their neighbors. Better population variety will be the outcome
of a larger average crowding distance. By adopting binary
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tournament selection based on rank and crowding distance as
shown in Figure 4(b), parents are chosen from the population.
Equations 1 and 2 compute the crowding distance [27]. The
maximum and minimum values of the j** objective function
across all individuals is ];.m““x and ]3.’"[”, respectively, if ];.i is the
j’h value of an objective function for the i individual. Then,
the crowding distance of an i”* individual by averaging the
distances of the two closest solutions on either side of it is

calculated.
previous next
ey
d; = W M
J J
o
di=d'+.. . +d'=> " d )

j=1

4) SELECTION OPERATOR

A crowded tournament selection operator is used to determine
the next generation’s population based on the crowding dis-
tances and ranks of the current population. If two individuals
in a population have the same rank, then the one with the
greater crowding distance will be chosen to go on to the next
generation. If their ranks are different, then the individual
with the higher rank will be chosen [27], [48].

5) NSGA-Il PROCEDURE

To begin, NSGA-II creates a population of starting candi-
dates, denoted by P;, with a size of N. Next, the population
P; experiences crossover and mutation to produce the new
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FIGURE 5. Procedure of NSGA-II.

population Q;. Next, we merge P, and PQ; into a new popu-
lation, R;, and apply the non-dominated sorting method to R;.
In the next step, the R; the population is stratified into distinct
“fronts” based on their non-domination scores. After that,
choose N people from Rt to form the next population, P, .
If there are fewer than N individuals in the first front, those
individuals are promoted to the next generation immediately,
and the remaining individuals are selected from the second
front’s least congested zone and added to P;y1. If the size of
the first front is larger than or equal to N, however, then only
N members will be chosen from the least congested section
of the first front to create P;41. If P;4 is still less than N in
size, the process is repeated for each succeeding front. With
the help of Figure 5, we can see how NSGA-II operates. The
rationale for adopting a multi-objective optimizer algorithm
to determine the most effective features for breast cancer,
particularly HER2, is that it provides measurements for both
quality and regularity. Both measures are part of NSGA-II,
and in this research, quality is more important than regularity.

The primary benefits of using NSGA-II for feature selec-
tion over other methods like Chi2, NCA, ReliefF, etc. are
its multi-objectiveness and trainability. In order to provide
NSGA-II feedback on MSE in each iteration and improve
performance in later iterations, we set up NSGA-II with an
SVM classifier. Another component of NSGA-II that may
choose the minimum and greatest features in each iteration
is trainability.

D. sVym

The SVM method generates a hyperplane decision boundary,
which is situated at the dataset’s extremes. Where to place a
decision border and which features to use to get there [49].
There is some flexibility in terms of where and how the
line is drawn. Because there is no unique decision boundary,
incorrect classifications may be assigned. Thus, as illustrated
in Figure 6(a), the edge of a data point exerts upward pressure
on all points in the vicinity of the opposite class, which are
known as support vectors [50]. The classifiers must find out
where the outliers are and use those points to set their bound-
aries. Margin refers to the separation hyperplane, which is the
D+ plus the D-. The shortest distance to the nearest positive
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point (denoted D+) and the shortest distance to the nearest
negative point (denoted D-) are shown in Figure 6(b) [51].
The SVM is used as a classifier to determine the HER2 score
in this research.

Python was used to implement the ResNet50 model, the
NSGA-II model, and the SVM classifier. For all training
methods, the NVIDIA GeForce GTX 1080 Ti graphics pro-
cessing unit was employed.

E. EVALUATION CRITERIA

A range of observational error measures is employed to assess
each classification’s effectiveness. One metric for determin-
ing a classification model’s effectiveness is how well it can
classify data. Here, “accuracy” refers to the frequency with
which our model makes correct predictions. To be exact,
in technical terms, means:

A TP + TN o
ccuracy =
YT INXTPYFN 1 FP

where TP = True Positives, TN = True Negatives, FP = False
Positives, and FN = False Negatives.

Precision, also known as a positive predictive value, is the
number of relevant examples found among those found.
It measures how many predicted positive classes include
members from that class. Precision is defined by the follow-
ing equation (4).

L. TP
Precision = —— “4)
TP + FP

Specificity is sometimes used to show or assess how well
a test can accurately rule out the existence of an ailment or
disease state. This indicator of a test’s classification accuracy
is crucial in circumstances where a false positive might be
exceedingly expensive. The equation defines specificity (5).

Fici TN
Specificity = N + FP &)
In statistics, sensitivity is found by dividing the number of
accurate positive predictions by the total number of positives.
It’s also known as the true positive rate or recall. Sensitivity
is defined in Equation (6).
TP

Sensitivity = TP_|_—FN (6)
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The F-score, also known as the Fl-score, measures how
well a model fits the given data. The harmonic mean of the
model’s accuracy and recall is called the F-score, and it is
calculated. Use Equation (7) to get an F1-score:

2TP
Fl1—Score= ————— @)
2TP 4+ FP 4+ FN

The MSE calculates the degree of accuracy in statistical
models. Between the observed and predicted values, it eval-
uates the average squared difference. The formula for the
MSE is Equation (8). We used the MSE as a loss function
to evaluate the NSGA-II in our proposed model.

a2
MSE — 201 =) ®
n
where y; is the i’ observed value, J; is the corresponding
predicted value, and n is the number of observations.

The Matthews Correlation Coefficient (MCC) is a metric
used to assess the accuracy of binary classifications, espe-
cially when dealing with imbalanced classes. The analysis
considers the number of correctly identified positive cases,
correctly identified negative cases, incorrectly identified pos-
itive cases, and incorrectly identified negative cases. The
MCC is a numerical measure that ranges from —1 to 41.
A value of +1 represents perfect prediction, O shows no
better than random prediction, and —1 indicates complete
disagreement between the prediction and the observation
(Equation 9).

B TP« TN — FP % FN
~ J(TP ¥ FPY(TP + EN)(IN + FP)(IN + FN)
9

Cohen’s Kappa score is a metric used to evaluate the
effectiveness of machine learning classification models by
quantifying the level of agreement between two raters, taking
into account both the perfect agreement and the agreement
that could occur by chance (Equation 10).

kappa = —(Po —pe) (10)

(1 = pe)
where p, is relative observed agreement among raters and p,
is hypothetical probability of chance agreement.

Mcc

IV. EXPERIMENTAL

The goal of this work is to detect the HER2 score in breast
cancer tissue images using an ideal feature selection approach
by selecting the pertinent features. The main method has
two steps: the first is to choose the most useful features
based on the primary structure and morphological texture of
HER?2 images, and the second is to reduce error and improve
the accuracy of HER2 score diagnosis. Although there are
many feature selection approaches, choosing the appropriate
one for a given job is always a challenge. For this research,
a combination of several preprocessing, feature extraction,
feature selection, and classifier algorithms has been set up,
which are assessed using various metrics. In this part, the
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FIGURE 7. HER2 image example used by the FILpF technique.

preprocessing, training, and testing details will precede the
actual implementation of the system. Experiments that use
the proposed approaches are then shown and analyzed.

A. PREPROCESSING

We used the HER2SC and HER2GAN datasets to evaluate the
suggested method, which included classifying HER2 images.
HER?2SC is a dataset that was pre-processed in several ways
to diagnose the HER2 score and evaluate the proposed model.
The dataset consists of WSI images. All WSI images are
more than 50,000 pixels wide and 100,000 pixels tall and are
available in a wide range of resolutions. For practical pur-
poses, these images will need to be cropped. In this study, the
WSI images were loaded into memory, and their dimensions
were calculated using the OpenSlide package [52]. All of
the WSI images were scrolled through in 2048 by the 2048-
pixel window, and that window was used to create a series of
stored images. Information on HER2 scores is complete in the
archived images. This allows for very precise identification in
addition to producing high-quality images.

Following the preparation of the WSI images, 1600 images
were chosen, with 400 images chosen for each score, which
is a balanced dataset. The FILpF [53] is used to improve the
colors. In order to determine the rate of change of the first
derivative, a Laplacian filter computes the second derivative
of the picture. This indicates if the values of nearby pixels
have changed because of an edge or a smooth transition.
Laplacian filter kernels, located in the middle of the array,
often make use of negative values arranged in a cross pattern.
Values for corners might be either O or 1. The central value
might be negative or positive. All cropped photographs are
then processed using the FILpF technique to enhance their
quality. Figure 7 displays an example built on the FILpF
platform.

B. TRAINING AND TESTING PHASES

Our major focus is the development and training of a
multi-objective optimizer model with the following objec-
tives: i) feature reduction and optimum feature selection and
ii) Improve the model’s performance accuracy and minimize
its error rate. Despite these challenges, it is possible to get
a high degree of diagnostic accuracy for the HER2 score
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TABLE 2. Set of the NSGA-II parameters.

Parameters Value
Maximum Number of Iterations 100
Population Size 600
Crossover Percentage 70%
Mutation Percentage 40%
Mutation Rate 0.1

ROC Curve: SVM
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FIGURE 8. ROC curve for the SVM classifier on different scores.

using just a small variety of features, as shown in Tables 3
and 4. There are two parts to the proposed procedure at this
point. In the first step, all HER2 preprocessed image features
were extracted using a Resnet50 fine-tuning transfer learning
model from the global average pooling layer. Each image has
2048 features that were extracted from it. The NSGA-II is
developed in the second stage using two objective functions:
MSE and optimal and minimal feature selection.

To determine the performance model accuracy and MSE
objective function, the minimal and ideal features are chosen
for each iteration and fed to the SVM classifier. The NSGA-II
receives the calculated MSE back. The proposed model is
processed through 100 iterations to get the lowest MSE with
the best possible feature set. Setting the key parameters of
NSGA-II as indicated in Table 2. Table 4 and Figure 9(a)
both illustrate the impressive outcomes of the NSGA-II for
the Pareto front. Following the calculation of the initial values
and setting of the parameters in the third phase, all subsequent
stages are used in each iteration to obtain the optimal and
minimized features, as well as the reduction of the model
MSE.

Non-Dominated Sorting of the population.
Calculate Crowding Distance on the population
Sort the population

Truncate the extra population

Ealb el
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TABLE 3. The efficiency of using optimal feature selection on the proposed model’s performance on the both HER2SC and HER2GAN datasets (%).

Model NF Rf Accura Spcf:mﬁc SelleItIV Precisi Fl-score MCC Kappa
cy ity ity on
ResNet50+SVM (HER2GAN) 2048 100  88.86  87.35 86.34 87.42 87.79 0.821 86.12
Resnet50 + NSGA-IT + SVM 0.852 87.91
(HER2GAN) 894 43.65 90.8 91.18 90.19 90.31 90.03
ResNet50+SVM (HER2SC) 2048 100 90.89  97.05 89.74 90.47 89.76 0.853 87.95
Resnet50 + NSGA-IT + SVM (HER2SC) 633 3091 944  98.07 9373 9381 93.71 0.90 92.3
Resnet50 + NSGA-II + SVM (HER2SC) 549 26.81  90.75 96.98 89.98 89.96 89.93 0.851 87.88
NF= Number of Features RF=Ratio of selected features
TABLE 4. The results of the pareto front from the last iteration on the HER2SC dataset (%).
F NF Rf MSE Accuracy Specificity Sensitivity Precision Fl-score
1 695 33.94 0.0616 93.84 97.96 93.42 93.55 93.45
2 549 26.81 0.098 90.75 96.98 89.98 89.96 89.93
3 633 3091 0.0645 94.4 98.07 93.73 93.81 93.71
4 551 26.9 0.0856 91.66 97.26 91 91.03 91
5 623 30.42 0.0692 93.19 97.78 92.44 92.49 92.43
6 562 27.44 0.0794 92.39 97.52 91.51 91.5 91.47
7 566 27.64 0.0758 92.75 97.62 92.1 92.14 92.09
8 604 29.49 0.0692 93.3 97.81 92.75 92.7 92.7
9 583 28.47 0.0754 92.57 97.57 91.93 92.01 91.92
10 597 29.15 0.0699 93.11 97.75 92.37 92.49 92.41
11 594 29 0.0732 93.11 97.74 92.61 92.54 92.53
12 561 27.39 0.0842 91.69 97.26 91.07 91.11 91.05
13 592 2891 0.075 92.71 97.61 92.18 92.2 92.14
14 560 27.34 0.0852 91.69 92.27 91.12 91.08 91.07
F= Number of front NF= Number of features RF= Ratio of selected features
0.1
*
0.095 - 1
0.09 f .
0085 * 1 %
£
0
€ 008 - % 1 v
0.075 * — i
*
0.07 | * * .
0.065 - % 1
*
0.06 : : : : : : :
540 560 580 600 620 640 660 680 700

Number of Features

(a)

predicted label
(b)

FIGURE 9. a) Pareto front of the proposed model, b) Confusion matrix of the first value of the Pareto front based on (a).
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Calculate Crowding Distance on the new population
Sort the new population
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In addition, when the selected features are fed to the SVM
classifier, The system performance accuracy and MSE objec-
tive function based on a cross-validation (CV) approach [54]
are evaluated. We trained and tested the SVM classifier five

38893



IEEE Access

T. A. Rashid et al.: NSGA-II-DL: Metaheuristic Optimal Feature Selection With DL Framework

times with different data using the fivefold cross-validation
(CV) approach, assigning 80% of the data to train and 20%
to testing each time. We averaged across all CVs in a batch
of five to get the mean CV. The averaged result is sent back
to NSGA-II. The summaries of all of the tests are included in
Tables 3 and 4.

C. DISCUSSION

The main objective of this work is to develop a compos-
ite model that accurately classifies the HER2 score, aiming
for high model accuracy. The Resnet50 model is utilized
for extracting features via TL. The NSAGA-II algorithm is
employed to identify the optimal and minimal set of features
from a collection of retrieved features, characterized by their
distinct and intricate structure. The NSAGA-II algorithm
differs from traditional feature selection models in that it
does not aim to pick a predetermined number of features.
Instead, it is a trainable model that iteratively selects the opti-
mal minimal number of features. This process ensures that
the best features are selected gradually and systematically.
Furthermore, NSGA-II has the capability to utilize feedback
from a classifier in order to choose the most effective set of
minimum features. The SVM classifiers are utilized in our
suggested model.

Several limitations must be acknowledged in this investiga-
tion. The fundamental constraint that specialist pathologists
must ascertain is the diagnosis of the HER2 score. Further-
more, in the WSI image, due to its extensive size and the
presence of many HER? types, it is imperative that an expert
pathologist individually diagnose and separate each distinct
HER?2 score inside the image. The third constraint pertains
to the limited availability of the HER2 dataset. Acquiring an
adequate dataset with comprehensive labeling is exceedingly
challenging.

As can be seen in Tables 3 and 4, one of the primaries
aims of this study is to develop an automated trainable model
that selects the best characteristics while keeping them to a
minimum, thereby improving the system’s performance accu-
racy. Table 2 shows that the model’s accuracy was 88.86 and
90.89% before we used the NAGA-II optimizer for both the
HER2SC and HER2GAN datasets, respectively. Using the
NSGA-II optimizer for least-cost feature selection, we were
able to boost the model’s performance accuracy to 94.4%
while utilizing only 633 features (or 30.91% of all features)
for the HER2SC dataset. In addition, the model’s accuracy
was 90.75% while utilizing the minimal optimum feature set
of 549 features, which is equal to 26.81% of all features.
We improved the HER2GAN dataset’s accuracy to 90.8%
with 43.65% of all features. This increase in the model’s abil-
ity to find HER2 scores suggests that NSGA-II is one of the
best multi-objective optimizers for picking the best features
from images with certain structures and morphologies.

Table 4 displays the Pareto front results of the HER2SC
dataset for our proposed models. The model could provide the
best 14 responses based on minimum features and minimum
MSE rate after 100 iterations, as shown by the details of
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TABLE 5. Performance accuracy of our proposed model compared to
existing deep frameworks (%).

Ratio of used  Classification

Methods

features of accuracy
[9]1 HER2-ResNet 100 93
[19] Logistic regression
SVM 100 91 averages
[14] Lg, Lgc, Liog 100 79.4
[25] 100 87
[20] CNN+MLP 100 83.3
[10] HER2GAN (original images) 100 90.5
[10] HER2GAN .(c.omb_med 100 949
generated and original images)
Resnet50 + NSGA-II + SVM
(HER2GAN) 43.65 90.8
Resnet50 + NSGA-II + SVM
(HER2SC) 30.91 94.4
TABLE 6. CNN classifier's average time test (ATT) (sec).
Model ATT
ResNet50 0.203
ResNet50+SVM 0.0958
Resnet50 + NSGA-II + SVM 0.563

ATT = Average Time Test

all metrics in Table 4 and Figure 9(a). We proved that a
model’s performance accuracy may reach higher than 90%
by choosing less than 34% of all features. Moreover, the MSE
for every response was lower than 1%. Figure 9(b) shows the
confusion matrix, and Figure 8 shows the ROC curve which
shows the sample response with 94.4% model performance
accuracy of the Pareto front.

Table 5 presents a comparison between the proposed model
and the most advanced research. Researchers employed vari-
ous ML and DL algorithms to assess the HER2 image scores.
By employing a composite model comprising the trans-
fer learning model, the multi-objective NSGA-II optimizer,
and the SVM classifier, we achieved a 4% improvement in
the accuracy of the system’s performance for the HER2SC
dataset, despite utilizing less than 34% of the total fea-
tures. The HER2GAN has shown a substantial enhancement,
increasing by 2%. The proposed model outperforms [10] in
terms of both the number of features and model performance.
Reference [10] integrated created and original images using
all available features. Our combination model, in contrast to
the models shown in references [14], [19], [20], and [25],
which utilized ML and DL algorithms, demonstrated the
ability to simultaneously decrease the number of features and
substantially enhance the accuracy of the performance model.

Our proposed method only needs 100 iterations of the
NSGA-II model to pick optimum minimal features, even
when systems take a long time to train the model. Table 6
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FIGURE 10. a) precision-recall curves of SVM classifier for HER2SC dataset, b) precision-recall curves of SVM classifier for HER2GAN

dataset.

shows that it takes less than 0.563 seconds on average to
evaluate every image.

FLOPs, short for Floating Point Operations, serve as a
widely employed metric for quantifying the computational
complexity of deep learning models. FLOPs provide a rapid
and straightforward means of quantifying the number of arith-
metic operations necessary to execute a specific computation
in deep learning models. The Resnet50 model, when trained
with an input size of 224*224, has a time complexity of
497 giga FLOPs. The NSGA-II algorithm has a temporal
complexity of O(MN?) for creating non-dominated fronts in a
single iteration, given a population size of N and M objective
functions. The time complexity for training the SVM classi-
fier is O(Numbe Of Samples® « Number Of Features). Due
to the varying number of features in each iteration of our
proposed model, it is not possible to precisely calculate the
time complexity of the SVM classifier.

It is evident from the results of Figure 9(a)’s Pareto front
design from the last iteration that the features that were
selected ranged from 540 to 700 (corresponding to 26%
to 34% of all features). The Pareto front in Figure 9(a) is
a complete Pareto Front, demonstrating that the NSGA-II
is an appropriate approach for selecting the best features.
Figure 10 depicts SVM classifier precision-recall curves of a
classification model’s performance at different classification
thresholds for both the HER2SC and HER2GAN datasets.

V. CONCLUSION

In conclusion, it is presented in this paper how to choose the
best features to improve performance in the HER?2 score diag-
nostic problem. Based on breast cancer images, specifically
HER2 images, which have a unique structure and morpholog-
ical, we showed that selecting the best features may improve
the accuracy of model performance. In addition, reducing the
number of features reduced the time complexity of the image

VOLUME 12, 2024

assessment. According to the findings, metaheuristic opti-
mizers may be effective in determining the minimal optimal
feature set. Moreover, instead of repeatedly utilizing a single-
objective optimizer, we used an NSGA-II multi-objective
optimizer for optimum feature selection, which boosted the
model’s accuracy and saved time.

In the future, it is necessary to research and compare the
performance of different metaheuristic optimization algo-
rithms, specifically when fine-tuning parameters for optimal
minimum feature selection in complex structure images. Fur-
thermore, it is necessary to optimize the parameters of the
chosen metaheuristic optimizers in order to enhance their
effectiveness and efficiency in picking the smallest optimal
feature set.
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