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ABSTRACT In this paper, an intelligent Model Reference Adaptive Control (MRAC) based on a neural
network is proposed for robust tracking control of quadrotor UAV under external disturbances and parameter
variations. First, the singularity-free dynamic model of the quadrotor is developed using Newton-Quaternion
formalism. Then, conventional MRAC is designed to generate training data. With the generated data, the
Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) are trained offline to get an
initial set of network parameters for position controller parameters estimation and attitude control of the
quadrotor, respectively, and an online learning algorithm is developed to update those network parameters
in real-time. Finally, the performance of the designed Neural network-based MRAC has been evaluated
using a numerical simulation in a nominal scenario and by introducing parametric variation and external
disturbances as matched and unmatched uncertainties into the system. The simulation results show that the
proposed controller has a better tracking performance and disturbance rejection capability compared with
the Linear Quadratic Regulator (LQR) and conventional MRAC. Furthermore, the utilized control efforts are
minimal and smooth proving functional safety and economical use of the controller. Therefore, the suggested
controller is feasible for real-time implementation of the quadrotor UAV.

INDEX TERMS Feed forward neural network, LQR, model reference adaptive control, newton-quaternion
formalism, online learning algorithm, recurrent neural network, quadrotor UAV.

I. INTRODUCTION
Unmanned Aerial Vehicle (UAV) is a kind of recent
generation of autopilot aircraft deployed for various industry,
civilian, and military applications. A quadrotor is a type of
UAV that is driven by four rotors with the capability of Verti-
cal takeoff and landing and other flight maneuverings. Due to
this capability, low operation cost, andmaneuverability at low
altitudes and dangerous environments for high-risk applica-
tions, research on quadrotors has been growing enormously
from time to time and currently become a research hotspot
in the aviation field [1], [2]. Civilian use of quadrotor UAV
includes aerial photography, inspection missions of railways
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and power lines, surveillance for illegal imports and exports,
road detection and tracking, fire detection and control,
traffic management, border patrolling, crop monitoring and
spraying, and search and rescue operation for missing
persons and natural disasters [3], [4]. The aforementioned
applications attract control researchers to design robust
control algorithms to achieve the assigned tasks precisely.
Therefore, this research study follows the model-based high-
performance closed-loop flight controller design for autopilot
quadrotor UAV.

The Flight Control System (FCS) is the brain of a
quadrotor UAV that is responsible for achieving the desired
attitude and position while the quadrotor flies. Quadrotor
UAV control researchers face many challenges in developing
high-performance controllers for the FCS due to time-varying
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properties of the environment, nonlinear coupled dynamics
of the system, uncertainties in modeling, and external
disturbances from the wind [5]. These make the dynamics
more challenging for control applications. To deal with such
dynamics, adaptive control has been a promising technique
that can improve the performance of control systems in
the presence of uncertainty due to model degradation and
uncertainty from the operating environment [6]. The basic
working principle of adaptive control laws is the Certainty
Equivalence Principle (CEP), which is a principle that most
current adaptive controllers are working on. Based on this
principle, the parameters of the adaptive controller are
derived from a set of uncertain plant parameters whose
true values are unknown. According to CEP, the controller
parameters are replaced by estimates and taken as the true
parameters when the control laws are manipulated. However,
this parameter estimation requires sufficiently fast parameter
convergence for the adaptive controller to achieve the desired
performance specification [7], [8].
The adaptive control technique is an appropriate solution

for dealing with parametric uncertainties, and it has better
performance than robust control in dealing with uncertainties
in constant or slow-varying parameters. However, robust
control is advantageous in dealing with disturbances, quickly
varying parameters, and unmodeled dynamics [9]. Here,
the goal of robust control design is to maintain system
performance with acceptable error within a certain range
of model variations and inaccuracies, so it’s well suited for
applications where stability and reliability of the system
are top priorities, where process dynamics are known and
variation ranges for uncertainties can be estimated. Since
robust control system design requires such a high level
of expertise that can exactly estimate variation ranges for
uncertainties, it has never been a popular solution for control
problems in several industries [10]. For this reason, adaptive
control gets more attention than robust control in industries
among those, NASA has been performing a series of adaptive
flight control studies since 70’s [11].
Model Reference Adaptive Control (MRAC) is the type

of adaptive control that aims to force the dynamic response
of the system to asymptotically approach that of a desired
reference model despite parametric uncertainties in the
system. Nowadays, control engineers classify MRAC into
direct and indirect MRAC [12]. In the case of direct
MRAC, controller parameters are directly updated online
without the need to estimate plant parameters [8]. In this
control topology, the purpose of MRAC is to make plant
output behave like a reference model in the way that the
adaptation rule works to estimate uncertain plant parameters
whereas the controller works to achieve acceptable con-
vergence to a desired output [13]. On the other hand, the
indirect MRAC technique involves applying some system
identification method to obtain a model of a system and
its environment from input-output experiments, and the
controller is redesigned online based on the estimated model.

Self-tuning regulator (STR) is an example of indirect
MRAC. In this control topology, uncertain parameters of
the plant model are estimated first, and then based on
the estimated model controller parameters are computed
separately [7].
The control systems that combine AI techniques such

as neural networks, fuzzy logic, evolutionary competition,
and Bayesian probability; with conventional adaptive control
systems are classified under intelligent control systems
due to their knowledge-based decision-making capabilities.
From stated AI techniques, Artificial Neural Network
(ANN) is considered as a complex adaptive system that
can change its internal structure based on the information
passing through it [14]. With these features, ANN is
a widely used effective method to solve estimation and
control problems, and its application areas in aviation
fields have also increased [15]. Therefore, in this study
intelligent flight controller is designed by combining the
MRAC technique with the learning power of ANN, which
are two equivalent topics under different umbrellas of
research such as control engineering and machine learning,
respectively [16]. Such systems can achieve sustained
behavior in the presence of uncertainty in system dynam-
ics, unpredictable environmental changes, unreliable sensor
information, and actuator malfunction. Furthermore, can
perform complex tasks as compared to conventional control
techniques.

A. RELATED WORKS
Due to the significant increase in quadrotor UAV application
areas, various control researchers have published studies on
quadrotor UAV control. The Proportional Integral Deriva-
tive (PID) controller is the aviation industry’s most widely
used control algorithm. It is a linear controller with the
advantages of being easy to tune and alter parameter gains,
simple to construct, and strong resilience [17]. Authors
in reference [18] by linearizing the quadrotor model and
decoupling the state, designed a PID controller to stabilize
and control the quadrotor. The authors demonstrated that the
PID controller is effective only within the range of ±100 for
roll and pitch angles, and the controller performance is highly
affected by external disturbances. Using a PID controller for
a quadrotor has the following problems: it’s suitable only
for linear systems, it loses control performance for wider
angles of roll and pitch rotations, which limits quadrotor
maneuverability near the specified range, and it can’t tolerate
external disturbances.

Authors in reference [19] did a comparative study between
LQR and PID controller’s performance on the quadrotor
system. First, the authors drive a linear mathematical model
of system dynamics and then simulate the two designed
control techniques under the same initial condition. The
authors verified that the LQR controller is more stable and
robust than the PID controller. However, the LQR control
mechanism has the following two drawbacks. First, it is
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sensor-intensive. Second, LQR controllers can not handle
unmodeled dynamics, which is the most common problem
of implementing linear controllers in nonlinear systems.
On the other hand, authors in [12] and [20] proposed a
nonlinear robust MRAC approach for matched uncertainty
in quadrotor UAV dynamics. The authors proved that this
control approach loses its robustness for the unmatched
uncertainty. Other solutions are proposed to solve the non-
linearity of the quadrotor dynamics and the effect of matched
uncertainties.

Intelligent control techniques have been emerged as
promising control techniques in tolerating the harmful effects
of unmatched uncertainty and complexity of the system
dynamics. Authors in reference [21] did a comparative
analysis between neural network-based direct MRAC and
conventional MRAC, and the author proved that neural
network-based direct MRAC has a smaller rising time,
steady-state error, and settling time than the conventional
MRAC approach. Authors in [22] also developed extended
minimum resource allocating network (EMRAN) based
MRAC for UAV control and compared controller per-
formance with existing PID controller. The results prove
that the controller has better performance in the presence
of disturbances compared to the existing one. However,
this study is only focused on offline trained neural net-
works that estimate the parameters of the controller but
outdoor quadrotor applications require adaptive control,
which can adapt its parameters to changing flight con-
ditions of quadrotor dynamics. In this phenomenon, the
idea of online training that continuously tunes network
parameters with changing flight dynamics of the system
with environmental conditions is crucial for quadrotor
control.

Authors in reference [23] designed a neural network-based
intelligent adaptive control for nonlinear systems. The
authors developed an online trained neural network structure
along with a conventional MRAC by obtaining training
patterns for the network training from PI control. The authors
found that the online tuned network compensates for the
nonlinearity of the system that is not considered in con-
ventional MRAC, and the proposed controller significantly
improves the system performance by minimizing reference
model tracking error, and it shows superior performance
than PI-basedMRAC and pure MRAC approaches. However,
the nonlinearity of adaptation laws in conventional MRAC
causes difficulty in tuning PI controller gains, so the
author obtained PI controller gains manually by try and
error method, and when the controller gains are large
the generated training patterns are mostly corrupted by
noise and the network unable to fit the patterns. These
make the network training process tricky. Generally, in the
literature survey, the recently proposed methods have been
focused on offline-trained networks, and noisy sensitive
data used to train the networks, which motivates us to
develop a novel training and control approach for the
quadrotor.

B. MAIN CONTRIBUTIONS
In this study, the intelligent flight control technique, which
combines ANN from the AI technique and MRAC from the
conventional control technique, is developed for quadrotor
control. In this approach, ANN is employed to learn and
approximate the system dynamics meanwhile MRAC adjusts
its parameters based on the error between the actual system
output and the desired reference model output. The training
pattern for the network is obtained from input-output patterns
of the adaptation law of conventional MRAC, and the
generalized Back Propagation Algorithm (BPA) is developed
to update network parameters in real-time enabling the
controller to adapt its parameters to changing flight condi-
tions of the quadrotor dynamics. Furthermore, the proposed
control technique is effective in tolerating matched and
unmatched uncertainties, requires less processing time, and
can perform its control action in all quadrotor maneuvering
ranges. This implies that the proposed control technique is
an effective control approach for real-time implementation
on the quadrotor platform. Therefore, the objective of this
study is to develop a high-performance ANN-based MRAC
algorithm for quadrotor control with the following major
contributions:

1) A novel neural network-based MRAC architecture for
robust tracking control based on quaternion modeling
of quadrotor UAV has been proposed,

2) To increase the performance of the designed controller,
a more precise quaternion-based singularity-free
quadrotor dynamic model is developed by apply-
ing Newton-Quaternion formalism and considering
real-time scenarios of quadrotor maneuvering,

3) The proposed technique has been designed and tested
under external disturbances and parameters uncertain-
ties using simulation and proved to have a better
performance than other similar controllers that are used
for UAV control, and

4) An online learning algorithm has been introduced
to enhance controller performance. Artificial neural
networks are used to update weights and biases in
real- time which in turn increases convergence rate and
ensures the stability of the system.

The rest of the paper is organized as follows. In section II,
the detailed quaternion-basedmathematical model of quadro-
tor flight dynamics is presented. In section III, ANN-based
MRAC design is described. In section IV, simulation results
are presented. Finally, concluding remarks and possible
further works are presented in section V.

II. QUATERNION-BASED MATHEMATICAL MODEL OF
QUADROTOR UAV
A. PRELIMINARY NOTIONS OF QUADROTOR UAV
To model quadrotor dynamics, the coordinate frames of
the quadrotor must be defined first. There are two coor-
dinate frames, as shown in Figure 1, that the quadrotor
will operate in: inertial frame (xi, yi, zi) and body frame
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FIGURE 1. Quadrotor free body diagram and its reference frames.

(xb, yb, zb) [24]. Inertial Frame (IF) is defined with respect
to the ground with a positive z-axis pointing in the opposite
direction of gravity, whereas Body Frame (BF) is defined
with respect to the Center of Gravity (CoG) of the quadrotor
with its axes fixed to the body. The necessity of defining those
reference frames is because of

1) aerodynamics forces and torques are manipulated with
respect to BF,

2) on-board builtin sensors measure quantities with their
respective reference frame, for instance, Inertial Mea-
surement Unit (IMU) gives readings with respect to BF
whereas GPS gives readings with respect to IF, and

3) Newton laws are valid in IF only.
Therefore, projection matrices are required to transform
quantities between the two frames and derive a system gov-
erning equations according to a single reference frame [25].

Coordinate frames transformation is used to transform
quantities between the two reference frames. To avoid
the nonlinearity, geometric singularity, and computational
cost usually associated with the Euler angles [26], [27],
the quaternion approach is applied for coordinate frames
transformation. A quaternion is a hyper-complex number
with four dimensions that include a scalar part qo, and
a three-dimensional vector part q⃗ = [qi, qj, qk ] with
orthonormal base [i, j, k] [28]. Thus, the quaternion can be
represented as follows:

q = qo + q1 î+ q2 ĵ+ q3k̂ = [qo, q1, q2, q3] = (qo, q⃗) (1)

To represent a valid 3D orientation or to compute valid
vector rotations, the quaternion must be normalized. The
normalized quaternion is ideally suitable for representing and
transforming the orientation of coordinates between any two
reference frames. Quaternion normalization can be done as
follows:

q =
qo + q1 î+ q2 ĵ+ q3k̂√
qo2 + q12 + q22 + q32

(2)

A unit quaternion provides a convenient mathematical
notation for representing orientations in 3D space. Hence,
to derive the quadrotor dynamic model, the unit quaternion
notion is applied. The product between two quaternion
qa = (qoa, q⃗a) and qb = (qob, q⃗b), is manipulated as
follows:

qa ⊗ qb = (qoaqob − q⃗a.q⃗b, qoaq⃗b + qobq⃗a + q⃗a × q⃗b) (3)

Coordinate transformation between two different refer-
ence frames by using quaternion rotation is computed
as [29]

X = q⊗ X ′
⊗ q−1 (4)

where X is rotated vector and X ′ is vector to be
rotated. Equation 4 implies that multiplying two or more
rotation quaternions produces another rotation quaternion
that represents the total rotation obtained by perform-
ing each individual rotation for each quaternion. Vectors
can be transformed from one axis system to another
if first transformed into quaternions with a zero scalar
value, also this is known as a pure quaternion. Thus,
a quaternion-based rotation matrix that transforms quantities
from IF to the BF is obtained by rewriting equation 4
as follows: [

0
rb

]
= q⊗

[
0
ri

]
⊗ q∗ (5)

where rb = [xb, yb, zb]′ and ri = [xi, yi, zi]′ are
position quantities with respect to BF and IF, respectively.
By using the quaternion product in equation 3, a 3D rotation
matrix RBI (q) [30] that projects position quantities from
BF into IF can be obtained by rearranging equation 5 as
follows:[
xi
yi
zi

]
=

2(qo2 + q12) − 1 2(q1q2 + qoq3) 2(q1q3 − qoq2)
2(q1q2 − qoq3) 2(qo2 + q22) − 1 2(q2q3 + qoq1)
2(qoq2 + q1q3) 2(q2q3 − qoq1) 2(qo2 + q32) − 1

 [
xb
yb
zb

]

(6)

Transformation matrix that projects BF rates ω =

[p, q, r]′ into IF quaternion rates q̇ can be obtained
as [31], [32]:

q̇o
q̇1
q̇2
q̇3

 =
1
2
q⊗ ω =

1
2


qo − q1 − q2 − q3
q1 qo − q3 q2
q2 q3 qo − q1
q3 − q2 q1 qo



0
p
q
r

 (7)

B. QUADROTOR FLIGHT DYNAMICS MODELING
Almost all systems in real life are nonlinear in nature,
so control researchers design model-based either linear
controllers by linearizing those nonlinear systems at some
operating point, or design nonlinear controllers based on
a simplified nonlinear model of the system by ignoring
some features that are assumed to have less effect on the
system. During simulation, the designed controller may show
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promising results by effectively driving tracking error toward
zero. However, during the implementation of the developed
control algorithm in the real system, the error may not
converge to zero. This is due to the designed control law,
which is designed based on a linearized model not based on
the real plant. So, unmodeled dynamics, which are neglected
during modeling, may result in poor controller performance
and may also cause the system unstable. To solve such
harmful effects of unmodeled dynamics, in this section
more realistic behavior of the quadrotor is enforced by
considering every possible effect which has a significant
change on the quadrotor dynamics. This point is raised from
the general fact of control engineering: when the accuracy
of the model improves, the controller performance will also
improves though this increases the complexity of the model.
Taking this general fact into consideration, the following
assumptions have been made to model the quadrotor flight
dynamics [33], [34]:

1) structure of the quadrotor is rigid with constant mass
and uniform symmetry,

2) gravitational force doesn’t change with altitude,
3) the resistance and inductance of Brushless Direct

Current (BLDC) electric motor are negligible, and
4) at the hovering position, velocity of air and propellers

are equal.

Parameter values of the system dynamics are presented in
Table.1.

TABLE 1. Specifications for the quadrotor model design [35], [36].

1) QUADROTOR ROTATIONAL MOTION
Using Newton’s 2nd law of rotational motion for fully
actuated quadrotor rotational dynamics, the net moment
derived from BF as follows:∑

τi = Jα = [U2,U3,U4]′ −Mgyro −Maero (8)

ω̇ = J−1[[U2,U3,U4]′ − ω × (Jω) −Mgyro −Maero
]
(9)

where J is inertia matrix, α = ω̇ = [ṗ, q̇, ṙ]′ are
angular accelerations in BF; U2,U3, and U4 are moments
on BF which are used to control roll, pitch, and yaw,
respectively; Mgyro = Jp� × ω is a gyroscopic moment
that the spinning propellers induce when the quadrotor
rotates in the space [37]; Maero = Caω is aerodynamic
frictional moment [38]; Ca is drag coefficient; and � is net
propeller angular speed. By rearranging equation 9, rotational
dynamics of the quadrotor is obtained as

ṗ =
1
Jxx

U2 +
Jyy − Jzz
Jxx

qr −
Jpq
Jxx

�r −
Cap
Jxx

p

q̇ =
1
Jyy

U3 +
Jzz − Jxx
Jyy

pr +
Jpp
Jyy
�r −

Caq
Jyy

q

ṙ =
1
Jzz
U4 +

Jxx − Jyy
Jzz

pq−
Car
Jzz

rw

(10)

2) QUADROTOR TRANSLATIONAL MOTION
The translational dynamics of the quadrotor is derived based
on Newton’s 2nd law of translational motion. Since Newton’s
laws are valid only in IF, the rotation matrix RBI is used
to project the thrust force that is generated in BF onto IF.
Thus, the translational dynamics of the quadrotor in IF is
derived as ∑

Fi = ma = RBI (q)U1 − Fg − Fd (11)

a =
1
m
[RBI (q)U1 − Fg − Fd ] (12)

where U1 is the total thrust force used to control the altitude,
a = [ẍ, ÿ, z̈]′ is the linear acceleration of quadrotor in IF,
Fg = mg is a gravitational force along the z direction,
Fd = Cd [ẋ, ẏ, ż]′ [39] is air drag or friction force in IF which
is proportional to linear velocity, Cd is drag coefficient, g
is gravity, and m is mass of quadrotor. Since the quadrotor
translation is the underactuated system, only the altitude
of the quadrotor is controlled directly, and any non-zero
roll or pitch angle results in the quadrotor maneuvering
along the x or y direction. Therefore, equation 12 can be
rewritten asẍÿ

z̈

 =
1
m

RBI (q)
 0

0
U1

−

 0
0
mg

−

Cdx ẋCdy ẏ
Cdz ż

 (13)



ẍ = 2(q1q3 − qoq2)
U1

m
−
Cdx
m
ẋ

ÿ = 2(q2q3 + qoq1)
U1

m
−
Cdy
m
ẏ

z̈ =

[
2(qo2 + q32) − 1

] U1

m
− g−

Cdz
m
ż

(14)

3) AERODYNAMIC GROUND EFFECT
Ground Effect (GE) is an aerodynamic phenomenon that
the ground pushes the quadrotor up when the propeller
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approaches the ground surface [40]. For the same transmitted
power to the actuator, the propeller generates more thrust
caused only by the presence of the ground as shown
in Figure 2.

FIGURE 2. Variation of thrust generated at Mid Air maneuvering and
Near-ground maneuvering due to GE in the quadrotor [33].

Quadrotor has a stronger GE up to the altitude of z = 6R,
so GE is considered for the altitude up to z = 6R. Hence, the
region where z ≥ 0.5R and z ≤ 6R is considered as In Ground
Effect (IGE), and the region where z < 0.5R and z > 6R
is considered as Out of Ground Effect (OGE) where GE is
typically doesn’t exist. Experiments show that at constant
power, GE is mathematically expressed as [27], [35]

fGE (z) =


1

1 − γ ( R4z )
2

0.5R ≤ z ≤ 6R

1 otherwise

(15)

where fGE (z) is the ground effect factor which is decreased
as altitude z increases. γ is the correction coefficient,
which is estimated from the experiment, and it’s used to
adjust unpredictable airflow influence between the rotors
of the quadrotor, and R is the radius of the propellers.
To account the effect of GE, the thrust force model is
modified [27] as

Ti = b�2fGE (z) (16)

The rate multiplication of the Coriolis term which is the
product of quaternion rates is very small and has insignificant
effects in the quadrotor governing equation. In addition to
this, the net residues speed �r in equation 10, has a nonzero
value for yaw rotation but yaw rotation doesn’t have a gyro-
scopic effect. Therefore, both Coriolis term and net residues
speed �r are ignored to simplify the rotational dynamics of
the quadrotor. Hence, by combining equations 10 and 14,

and considering the GE, the overall quadrotor flight dynamics
is summarized as



ẍ = 2(q1q3 − qoq2)
U1

m
fGE −

Cdx
m
ẋ (17a)

ÿ = 2(q2q3 + qoq1)
U1

m
fGE −

Cdy
m
ẏ (17b)

z̈ =

[
2(qo2 + q32) − 1

] U1

m
fGE − g−

Cdz
m
ż (17c)

ṗ =
1
Jxx

U2fGE (z) −
Cap
Jxx

p (17d)

q̇ =
1
Jyy

U3fGE (z) −
Caq
Jyy

q (17e)

ṙ =
1
Jzz
U4fGE (z) −

Car
Jzz

r (17f)

q̇o = −
1
2
(pq1 + qq2 + rq3) (17g)

q̇1 =
1
2
(pqo + rq2 − qq3) (17h)

q̇2 =
1
2
(qqo + pq3 − rq1) (17i)

q̇3 =
1
2
(rqo + qq1 − pq2) (17j)

Based on the free body diagram of the quadrotor in Figure 1
and the relation between propeller angular speed � and
induced torque τ , control allocation equations are obtained
as follows

�1 =

√
1

fGE (z)

(
U1

4b
+

U2

4bℓ
+

U3

4bℓ
−
U4

4d

)
�2 =

√
1

fGE (z)

(
U1

4b
−

U2

4bℓ
+

U3

4bℓ
+
U4

4d

)
�3 =

√
1

fGE (z)

(
U1

4b
−

U2

4bℓ
−

U3

4bℓ
−
U4

4d

)
�4 =

√
1

fGE (z)

(
U1

4b
+

U2

4bℓ
−

U3

4bℓ
+
U4

4d

)
(18)

and the overall residual or net propeller angular speed �r is
obtained as

�r = −�1 +�2 −�3 +�4 (19)

Conversion from quaternion to Euler angle can be per-
formed by using a canonical set of Euler angles as [41]φθ
ψ

 =

arctan 2(2(qoq1 + q2q3), qo2 − q12 − q22 + q32)
arcsin(2(qoq2 − q3q1))

arctan 2(2(qoq3 + q1q2), qo2 + q12 − q22 − q32)


(20)
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III. INTELLIGENT FLIGHT CONTROL DESIGN OF
QUADROTOR
A. QUADROTOR CONTROLLER DESIGN STRATEGY
Due to the underactuation of the quadrotor translational
dynamics, there is no way to directly control the lateral
motion of the quadrotor. Therefore, a nested control approach
has to be deployed in which desired attitude commands
are generated by the outer position control loop based on
the targeted response, and the inner attitude control loop
stabilizes and controls the attitudes of the quadrotor based
on the generated desired command. To ensure that every
quadrotor output follows a specified trajectory, virtual control
inputs are introduced to the system [42]. The physical
interpretation of this control law is that control of the
translation motion of the quadrotor depends on desired
quaternion rotation qd and total thrust forceU1. In the case of
no external disturbance acts on the system, the virtual control
inputs can be obtained as

U = [Ux ,Uy,Uz]′ = RBI (qd )U1fGE − mg (21)


Ux = 2(q1d q3d − qod q2d )U1fGE (22a)

Uy = 2(q2d q3d + qod q1d )U1fGE (22b)

Uz =

[
2(qod

2
+ q3d

2) − 1
]
U1fGE − mg (22c)

where Ux , Uy and Uz are virtual position control inputs along
x, y and z directions, respectively. This method of controlling
a nonlinear system as if it is linear is called Nonlinear
Dynamic Inversion (NDI). NDI is used to linearize the
system, decouple the controlled variables, and separate the
main model from the dynamic inversion model to compute a
solution in closed form. By substituting equation 22(a, b & c)
into equation 17(a,b&,c), the translational quadrotor dynam-
ics can be rewritten in terms of virtual control inputs as
follows: 

ẍ =
Ux
m

−
Cdx
m
ẋ

ÿ =
Uy
m

−
Cdy
m
ẏ

z̈ =
Uz
m

−
Cdz
m
ż

(23)

To design a controller for 2nd order system, a small
quaternion approach is implemented to rewrite quadrotor
rotational dynamics in quaternion. This assumption is true for
stabilizing the quadrotor near to hovering state. Since the unit
quaternion approach is utilized to represent the orientation
of the quadrotor, the following conditions are always true
for near hovering state maneuverings such as qo ≈ 1, and
q1 = q2 = q3 ≈ 0. In this scenario, the relationship
between BF rates and quaternion rates, which is expressed

in equation 7, becomes
q̇o
q̇1
q̇2
q̇3

 =
1
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



0
p
q
r

 =
1
2


0
p
q
r

 (24)

Hence, pq
r

 = 2

q̇1q̇2
q̇3

 (25)

and then taking time derivative on both sides result inṗq̇
ṙ

 = 2

q̈1q̈2
q̈3

 (26)

Then, substitute equations 25 and 26 into equat-
ion 17(d, e & f). Finally, 2nd order rotational dynamics of
the quadrotor in terms of a quaternion can be obtained as

q̈1 =
1
Jxx

(
1
2
U2 − Cap q̇1

)
q̈2 =

1
Jyy

(
1
2
U3 − Caq q̇2

)
q̈3 =

1
Jzz

(
1
2
U4 − Car q̇3

) (27)

In the suggested control strategy, the attitude controller
takes control action based on the deviation of the actual
quaternion from the desired quaternion. Even though the
attitude controller is designed to track only the vector part of
quaternion, from the property of unit quaternion, the actual
scalar part of quaternion qo will be converged to its desired
qod by the following relation:

qo =

√
1 −

(
q12 + q22 + q32

)
(28)

By assigning those virtual control inputs, now quadrotor
dynamics become fully actuated since there are six control
inputs such as Ux , Uy, Uz, U2, U3, and U4 for control-
ling six degrees of freedom quadrotor maneuvering along
x, y, z, q1, q2,&q3 direction, respectively. Therefore, each
trajectory of the quadrotor can be controlled separately by
corresponding control input.

To design flight controller, state variables can be defined
as follows, x = [x, ẋ, y, ẏ, z, ż, q1, q̇1, q2, q̇2, q3, q̇3] =

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]′ where x, y,
and z are linear position and ẋ, ẏ and ż are speeds along
x, y, and z axis, respectively; whereas q1, q2, and q3 are
orientation in quaternion and q̇1, q̇2, and q̇3 are quaternion
rates along roll, pitch, and yaw direction, respectively. Thus,
this state vector has two parts namely the position control rep-
resented by the vector [x, ẋ, y, ẏ, z, ż], and orientation control
represented by vector [q1, q̇1, q2, q̇2, q3, q̇3]. By rewriting
equation 23 and 27 in state space equation form, the final
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quadrotor dynamics model, which is defined from fixed IF,
is obtained as

ẋ = f (x,U ) = f (x) + g(x)U (29)

ẋ =



ẋ1 = x2

ẋ2 =
1
m

(
Ux − Cdx x2

)
ẋ3 = x4

ẋ4 =
1
m

(
Uy − Cdyx4

)
ẋ5 = x6

ẋ6 =
1
m

(
Uz − Cdzx6

)
ẋ7 = x8

ẋ8 = a1U2 − d1x8

ẋ9 = x10

ẋ10 = a2U3 − d2x10

ẋ11 = x12

ẋ12 = a3U4 − d3x12

(30)

where
• a1 =

1
2Jxx

, and d1 =
Cap
Jxx

,

• a2 =
1

2Jyy
, and d2 =

Caq
Jyy

,

• a3 =
1

2Jyy
, and d3 =

Car
Jzz

.

Based on this setup, the novel quadrotor UAV control
approach that this research study contributed is shown in
Figure 3.

FIGURE 3. Hierarchical hybrid control architecture of the quadrotor.

To tackle the aforementioned problem of the absence of
direct actuation control for the position of the quadrotor,
the linearized model is established in equation 23 by using

the NDI method. Thus, Feedforward ANN-based MRAC
(NNMRAC) is designed for position control of the quadrotor
as a control architecture in Figure 4. To obtain input-output
data for ANN training, conventional MRAC for linearized
systems is designed, first. Then, by exporting input-output
data of adaptation law of MRAC system to MATLAB®

workspace, FFNN is trained to estimate position controller
parameters.

FIGURE 4. NN-based MRAC of quadrotor position control architecture.

On the other hand, the attitude controller has one to
one relationship between control inputs and corresponding
outputs i.e., there are direct actuation controls for the attitude
that drive the quadrotor in the desired direction. Hence, RNN-
based STR (RNNSTR) is designed to control the attitude
of the quadrotor as shown in Figure 5. In this control
architecture, the RNN plant model acts as a Black-box
identifier which is trained first to generate one step ahead
prediction of plant output, and the process is known as system
identification. Then, by inserting trained plant model network
parameters into the appropriate locations in the overall
control architecture, the controller network will be trained.
Here, the controller network is trained to generate control
action that will drive estimated plant output toward reference
input by following the desired reference model response [43].
When the controller network is trained, the plant model
network is considered as a fixed network. To stabilize
the system, control input must be one step delayed to
separate the two processes since system identification must
be accomplished before the controller takes control action
without overlapping.

Since both direct and indirect adaptive control approaches
are implemented to design closed-loop controllers for the
quadrotor, the overall proposed quadrotor control architecture
becomes a hybrid control system as shown in Figure 3.

B. QUADROTOR POSITION CONTROLLER DESIGN
To design a Neural Network-based MRAC, the following
two steps have been followed. The first step is designing
conventional MRAC for second-order systems, which is
described in equation 23. The second step is training FFNN
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FIGURE 5. RNNSTR of quadrotor attitude control architecture.

offline first to estimate the controller parameters and then
implementing online learning algorithm to update network
parameters in real-time.

1) CONVENTIONAL MRAC DESIGN OF 2ND ORDER SYSTEM
The implicit assumption in the design of the MRAC system
is that the control designer is sufficiently familiar with the
plant and its operating environment under consideration so
that the designer can specify the desired behavior of the
plant in terms of the output of a reference model. In the
MRAC technique, the reference model describes system
performance; and the adaptive controller forces the system
to behave like the reference model. Here, the parameters of
the adaptive controller are adjusted based on the deviation
of actual plant output from the desired reference model
output. As shown in Figure 4, MRAC system has two
loops. The first loop is a normal or inner loop, which is an
ordinary loop consisting of a plant and nominal nonadaptive
controller, that is used to track the set point and stabilize
the system [44]. The second loop is parameter adjustment
or outer loop that adjusts controller parameters in such a
way that driving reference model response tracking error
toward zero.

Mathematical techniques like MIT rule and Lyapunov
direct method can be used to develop adaptation rules. Even
thoughMIT rule is a widely used straightforward technique to
designMRAC to achieve satisfactory results during controller
performance evaluation, it is very sensitive to the changes
in the amplitude of the reference input. Hence, it can’t
guarantee global stability inMRAC system [45]. On the other
hand, Lyapunov direct method is a well-known method that
can be applied to ensure the overall stability in the MRAC
system [46]. It is based on establishing some positive definite
or Lyapunov function of tracking and estimation error, first,
and then adaptation laws are derived in a way that makes
the gradient of the candidate Lyapunov function negative.

In this way, the candidate Lyapunov function will decrease
as time goes forward and derived adaptation laws give
bounded asymptotic convergence of control parameters so
that the controller can ensure global stability of the overall
system.

Since the translational dynamics of the quadrotor in
equation 23 is a 2nd order system, MRAC is designed for
2nd order system. To design MRAC, the plant dynamics with
matched uncertainty is given as

ẋ = Ax + B(U − θ∗Tφ(x)) (31)

where f (x) = θ∗Tφ(x) is matched uncertainty, θ =

[θ1, θ2 . . .] are unknown constant vector, and [φ1(x), φ2(x) . . .]
are vector of known bounded basis functions. The reference
model for 2nd order system is given as

ẋm = Amxm + Bmr (32)

The ideal control law is defined as

U∗
= kr∗r − kx∗x + θ∗Tφ(x) (33)

where U∗ is the ideal control law, and kr∗, kx∗, and
θ∗ are final constant estimated values of controller
gains when the plant model output perfectly tracks
the reference model response. The actual control law
that perfectly cancels out the matched uncertainty is
defined as

U = krr(t) − kxx(t) + θTφ(x) (34)

where kr , kx , and θ are actual adaptation parameters.
Estimation errors is defined as: k̃x = kx − kx∗, k̃r = kr − kr∗

and θ̃ = θ − θ∗. To drive the adaptation law by using the
Lyapunov direct method, let’s choose the positive definite
Lyapunov candidate function of tracking and estimation error
as [9]

V (e, k̃r , k̃x , θ̃ ) = eTPe+ |b|

(
k̃r

2

γr
+ k̃xγx−1k̃x

T
+ θ̃T γθ

−1θ̃

)
(35)

The gradient of the Lyapunov candidate function can be
obtained as

V̇ (e, k̃r , k̃x , θ̃ )=−eTQe+ 2|b|k̃r
(
−reT P̄sgn(b) + γr

−1 ˙̃kr
)

+ 2|b|k̃x
(
xeT P̄sgn(b) + γx

−1 ˙̃kx
)

+ 2|b|θ̃T
(
−φeT P̄sgn(b) + γθ

−1 ˙̃
θ
)

(36)

The adaptation laws, which make closed-loop error dynamics
uniformly stable, for 2nd system can be obtained by
making the gradient of the Lyapunov function negative
as follows: 

k̇r = γrreT P̄sgn(b)

k̇x = −γxxeT P̄sgn(b)

θ̇ = γθφeT P̄sgn(b)

(37)
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In most cases, if A and B are known, then kx and/or
kr can be designed by any standard non-adaptive control
techniques to stabilize the closed-loop system and enable
plant output to follow a reference input [9]. Since all the states
of the quadrotor can be obtained with the help of sensors
onboard platforms, all the states of the quadrotor dynamics
can be assumed to be available. Therefore, by considering the
adaptation parameter kx as a full-state feedback gain, kx will
be designed from robust non-adaptive servo LQR control as
a control architecture in Figure 4.

• Reference model for 2nd order system is designed based
on desired transient response of ts = 3 second settling
time and 5% maximum overshoot:

xm =
4

s2 + 2.76s+ 4
r (38)

• Translation quadrotor dynamics in state space form
rewritten as

ẋ1 = x2

ẋ2 =
1
m

(
Ux − Cdx x2

) (39)

• Since the objective control design is minimizing track-
ing error, error dynamics to design LQR becomes

ż1 = z2

ż2 = −
Cdx
m
z2 −

Ux
m

(40)

Ux = ULQR + Uadaptive (41)

where ULQR is non adaptive controller with fixed gain kx ,
and Uadaptive is adaptive control with adaptive parameters
kr and θ . By using a similar approach, Uy and Uz are
designed to control the position of the quadrotor along y and z
directions.

2) FFNN TRAINING TO ESTIMATE POSITION CONTROLLER
PARAMETERS
ANN with a sufficient number of network parameters
has well-proved properties to universally approximate any
smooth arbitrary functions to an acceptable level of accuracy.
This is the core property of ANN for its superiority over
other approximation methods. Furthermore, once trained,
ANN requires less computation time and memory storage to
perform its tasks [47]. However, choosing the right number
of ANN parameters is the main problem in training ANN
since there is no defined rule to select it. Therefore, most
of the time ANN parameters are chosen by trial and error,
keeping in mind that the smaller the numbers are, the better
the network is in terms of memory storage and processing
time. To estimate position controller parameters, a three-layer
ANNwith 10 neurons in the hidden layer is trained and tested
with 5000 samples of simulation data, and its performance is
shown in Figure 6.

FIGURE 6. Trained FFNN training, validation and test performances.

C. DESIRED ALTITUDE AND QUATERNION COMPUTATION
Desired U1 and qd are derived by rewriting equation 22
(a,b&c) and using unit quaternion relation, as follows:

Ux
U1fGE

= 2(q1d q3d − qod q2d ) (42a)

Uy
U1fGE

= 2(q2d q3d + qod q1d ) (42b)

Uz + mg
U1fGE

= qod
2
− q1d

2
− q2d

2
+ q3d

2 (42c)

1 = qod
2
+ q1d

2
+ q2d

2
+ q3d

2 (42d)

To derive U1, square both side of equations 42(a-c), and then
take sum as follows:[

Ux
U1fGE

]2
+

[
Uy

U1fGE

]2
+

[
Uz + mg
U1fGE

]2
= [2(q1d q3d − qod q2d )]

2
+ [2(q2d q3d + qod q1d )]

2

+ [qod
2
− q1d

2
− q2d

2
+ q3d

2]
2

=

[
qod

2
+ q1d

2
+ q2d

2
+ q3d

2
]2

For unit quaternion rotation, qod
2
+ q1d

2
+ q2d

2
+ q3d

2
= 1.

Hence, [
Ux2 + Uy2 + (Uz + mg)2

] 1

U1
2fGE 2

= 1 (43)

U1 =
1
fGE

√
Ux2 + Uy2 + (Uz + mg)2 (44)
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From desired rotation around z-axis ψd , corresponding
desired quaternion is obtained by using axis-angle relation-
ship in [29] as follows:

q3d = sin(
ψd

2
) (45)

To obtain the desired scalar quaternion qod , take the sum of
equation 42(c & d), first as

Uz + mg
U1fGE

+ 1 = 2qod
2
+ 2q3d

2 (46)

2qod
2

=
Uz + mg
U1fGE

− 2q3d
2
+ 1 (47)

Then, substitute equation 44 & 45 into equation 47. Finally,
qod can be obtained as

qod =
1

√
2

√√√√ Uz + mg√
Ux2 + Uy2 + (Uz + mg)2

− 2sin2(
ψd

2
) + 1 (48)

To derive q1d and q2d , first, rewrite equation 42(a & b) as
follows:

1
U1fGE

[
Ux

Uy

]
= 2

[
q3d − qod

qod q3d

][
q1d

q2d

]
(49)

From the 2×2matrix inverse property, the inverse is obtained,
first as[

q1d

q2d

]
=

1
2U1fGE

∗
1

qod 2 + q3d 2

[
q3d qod

−qod q3d

][
Ux

Uy

]
(50)

Then, substitute equations 44, 45 & 48 into equa-
tion 50. Finally, q1d and q2d can be obtained as
follows:

q1d =

sin(ψd2 )Ux +
1

√
2
Uy
√

Uz+mg√
Ux2+Uy2+(Uz+mg)2

− 2sin2(ψd2 ) + 1

Uz + mg+

√
Ux2 + Uy2 + (Uz + mg)2

(51)

and

q2d =

sin(ψd2 )Uy −
1

√
2
Ux
√

Uz+mg√
Ux2+Uy2+(Uz+mg)2

− 2sin2(ψd2 ) + 1

Uz + mg+

√
Ux2 + Uy2 + (Uz + mg)2

(52)

Equations 44, 45, 48, 51, and 52 are dealt with inside the
conversion block as shown in Figure 3.

D. QUADROTOR ATTITUDE CONTROLLER DESIGN
To make the response of the attitude controller fast relative
to the position controller response, a reference model
with a settling time of 2 seconds and zero overshoot is
selected as

ym =
4

s2 + 4s+ 4
r (53)

As expressed earlier in Figure 5, the overall RNNSTR
architecture consists of two separate networks, which are

trained separately to perform different tasks. One is trained
to estimate the model, and the other is trained to generate
control actions that drive the system toward reference input.
In this scenario, the first step is estimating the plant model
by generating input and output data of the system model
in equation 27. To train the plant model network, first,
the maximum-minimum input of the system is obtained
from equation 18 by considering 75% of the maximum
speed of the BLDC motor running at 10000 RPM that
yields 1.1/−1.1 Nm torque; and the desired output is seated
to lay in the range of [−1 1] quaternion unit. Then,
5000 samples of input-output data are generated with a
sampling time of 0.05 seconds. Finally, a three-layer ANN
with 10 neurons in the hidden layer is configured and
trained. The performance of the trained plant model network
on training, validation, and testing datasets is shown in
Figure 7, 8, and 9. As can be seen from these figures, the train-
ing, validation, and testing data errors are minimal i.e., the
plant model network estimates the quadrotor rotation model
precisely.

FIGURE 7. Plant model network training performance.

The second step is training the controller network by gen-
erating input-out data of the reference model in equation 53.
To train the controller network, 4000 data are generated
by considering the maximum/minimum size of the desired
quaternion unit 1/−1. Here, before training the controller
network, plant network parameters are set into appropriate
places of the overall network configuration. In this step,
only controller network parameters are updated whereas
plant network parameters remain fixed. The desired reference
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FIGURE 8. Plant model network validation performance.

FIGURE 9. Plant model network testing performance.

model response and tracking performance of RNNSTR for
uniform random reference input signal on the training dataset
is shown in Figure 10. The result shows that the plant
network output(green) precisely tracks the reference model
output(blue).

FIGURE 10. Tracking performance of RNNSTR on generated dataset.

These results, which are shown in Figures 7 to 10,
are RNNSTR attitude controller training to control q1
rotation only. By applying the same procedure for
q2 and q3, RNNSTR attitude controllers are designed
as well.

E. ONLINE LEARNING ALGORITHM
Offline learning is not always applicable for real-time
implementation. In some scenarios, online learning is needed
to update the parameters of the network in real-time.
However, using the initial set of network parameters from
offline training increases the convergence rate and ensures
the stability of the system [48]. Therefore, to increase
the performance of the trained network in position and
attitude control architectures in Figure 4 and 5, both learning
methodologies are applied in this study. Here, offline training
is deployed to get the initial set of weights and biases
of the network and then, the online learning algorithm is
developed to update those weights and biases in real-time.
These weights and biases are updated only when the output
error exceeds a certain predefined threshold value. To update
weight and biases online, a generalized BPA is utilized
as follows:

• Once the network output yi is obtained, output layer delta
δj is computed, first. Then, output layer weights wji and
biases bj are updated as

δj = yi(1 − yi)eo

wji(k + 1) = wji(k) + µδj(k)xi(k)

bj(k + 1) = bj(k) + µδj(k)

(54)

where delta δ in ANN represents the rate at which the
error changes with respect to the output of a particular
neuron.
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• Then, the error at the hidden layer is obtained as

eh =

No∑
j=1

Mo∑
h=1

wkhδj (55)

where µ is the learning rate, No is the maximum number of
output nodes, Mo is the maximum number of hidden layer
neurons, wkh is the weights of hidden to the output layer,
and eh is the error at each node in the hidden layer. Once
hidden layer error and delta are computed, the delta rule in
equation 54 is applied similarly to update the hidden layer
weights and biases. In this study, the network is deployed to
retrain online by BPA when the error exceeds ±0.0005, and
the flow chart for the online learning algorithm is shown in
Figure 11.

FIGURE 11. Online learning algorithm flowchart.

F. LQR CONTROLLER DESIGN FOR QUADROTOR UAV
LQR is an optimal linear control algorithm that oper-
ates in a dynamic system by minimizing a suitable cost
function. It is often used when information about the

system is completely known and undesirable disturbances
like wind that can affect the system are absent. LQR
computes the maximum gains to minimize the cost func-
tion, which enhances the performance of the system.
Generally, high control effort is required to achievemaximum
state regulation so that the system states are driven strongly to
a stable state [37]. To design LQR, Jacobian approximation is
utilized to linearize the nonlinear quadrotor dynamics that can
be written as

Ż = AZ + BU (56)

where ZϵR6 and UϵR are error state variable and input,
respectively and the cost function J for which the controller
seeks to minimize is given as [49]

J =

∫
∞

0
(ZTQZ + UTRU ) (57)

where Q = QT ≥ 0 and R = RT > 0 are positive definite
symmetric matrices that weigh the relative importance of the
existing error as well as the energy expenditure to stabilize
the system [50]. By applying the optimality principle to the
optimal control problem, the goal of LQR is to minimize the
cost function given in equation 57, and the equation is reduced
to a simple Riccatti equation as

PA+ ATP− PBR−1BTP+ Q = 0 (58)

where P = PT ≥ 0 is a positive definite symmetric matrix
obtained from equation 58. The optimal state feedback gain
matrix is obtained as

k = R−1BTP (59)

and the closed-loop LQR controller that drives the cost func-
tion towards zero as time goes to infinity is manipulated as

U = r − kX (60)

where r is the reference input, and X is state vector of the
system. The closed-loop control architecture that is deployed
to design the LQR controller is shown in Figure 12

FIGURE 12. LQR control architecture of the quadrotor UAV.

To design LQR, the quadrotor dynamics is linearized at a
hovering position. Thus, the linearizedmodel of the quadrotor
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translation dynamics from equation 23 is obtained as
ẍ =

Ux
m

ÿ =
Uy
m

z̈ =
Uz
m

(61)

Position error dynamics in state space form are obtained
as

Żp = ApZp + BpUp (62)

ėx
ëx
ėy
ëy
ėz
ëz


︸ ︷︷ ︸

Żp

=



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

Ap



ex
ėx
ey
ėy
ez
ėz


︸ ︷︷ ︸

Zp

+



0 0 0
−2.1368 0 0

0 0 0
0 − 2.1368 0
0 0 0
0 0 − 2.1368


︸ ︷︷ ︸

Bp



0
Ux
0
Uy
0
Uz


︸ ︷︷ ︸

Up

(63)

where Zp is a position error vector, which is the difference
between the desired and actual state of the system. By using
try and error finally, theweightingmatrixQ andR are selected
for position controller as

Q =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , R =

1 0 0
0 1 0
0 0 1

 (64)

The optimal state feedback gain matrix for position controller
can be obtained as

kp =

1 1.3914 0 0 0 0
0 0 1 1.3914 0 0
0 0 0 0 1 1.3914

 (65)

Similarly, the attitude controller is designed by linearizing
attitude dynamics, which is given in equation 66. At the
hovering position, the linear model for rotational dynamics
can be obtained as 

q̈1 =
1

2Jxx
U2

q̈2 =
1

2Jyy
U3

q̈3 =
1

2Jzz
U4

(66)

Attitude error dynamics in state space form are obtained as

Ża = AaZa + BaUa (67)
ėq1
ëq1
ėq2
ëq2
ėq3
ëq3


︸ ︷︷ ︸

Ża

=


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

Aa


eq1
ėq1
eq2
ėq2
eq3
ėq3


︸ ︷︷ ︸

Za

+


0 0 0

−102.9654 0 0
0 0 0
0 − 102.9654 0
0 0 0
0 0 − 56.8117


︸ ︷︷ ︸

Ba


0
U2
0
U3
0
U4


︸ ︷︷ ︸

Ua

(68)

where Za is the attitude error vector. The Weighting matrix
Q and R for attitude control design are selected as the
same as that of position controller, which is described in
equation 64. The optimal state feedback gain matrix for the
attitude controller can be obtained as

ka =

1 1.0097 0 0 0 0
0 0 1 1.0097 0 0
0 0 0 0 1 1.0174

 (69)

By using the values of the optimal state feedback gain matrix
in the equation 65 and 69, LQR in equation 60 is designed
to stabilize and control the position and attitude of the
quadrotor.

IV. SIMULATION RESULTS AND DISCUSSION
A. HELICAL TRAJECTORY TRACKING
A helical trajectory is obtained by using the following desired
trajectories: xd = cos t , yd = sin t , zd = t , and ψd =

−0.5 rad. The tracking performance of the controller is
shown as

FIGURE 13. 3D helical trajectory tracking performance.
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FIGURE 14. Translational trajectory tracking for helical path.

FIGURE 15. Desired quaternion tracking for helical path.

FIGURE 16. Required control efforts to track helical path.

FIGURE 17. 3D main trajectory tracking.

Figure 13, 14 & 15 illustrate that within a finite time,
both translational and rotational trajectories converged to

FIGURE 18. Translational main trajectory tracking in nominal scenario.

FIGURE 19. Quaternion-based rotational trajectory tracking in nominal
scenario.

FIGURE 20. Control efforts in nominal scenario.

a desired reference model response, so the suggested
controller effectively stabilize the quadrotor system with
a high tracking precision. Furthermore, the control efforts
that enabled the quadrotor to achieve this task successfully
are shown in Figure 16. By manipulating equation 18
with the rated speed of the BLDC motor, the maximum

VOLUME 12, 2024 36197



M. M. Madebo et al.: Robust Tracking Control for Quadrotor UAV With External Disturbances and Uncertainties

FIGURE 21. 3D main trajectory tracking in the presence of Matched
uncertainty.

FIGURE 22. Translation tracking in the presence of matched uncertainties.

control effort for U1, U2, U3, and U4 can be obtained
as 13.07 N, 1.47 Nm, 1.47 Nm, and 0.25 Nm, respec-
tively. Compared with these, the utilized control efforts
to take control action are minimal and smooth.1 These
prove the feasibility of the derived control algorithm. Here,
minimal control effort is explicitly stated, in compari-
son with the control effort that can be obtained when
the actuator of the quadrotor rotates at its rated speed.
Hence, the proposed control algorithm guarantees accurate
desired reference model trajectory tracking by stabilizing
the quadrotor system at the expense of appropriate control
efforts.

B. MAIN TRAJECTORY TRACKING
The main trajectory is developed specifically for aerial pho-
tography from the quadrotor by considering altitude = 9 m,
quadrotor speed = 2 m/s, and lateral overlap i.e., the area
of one image includes the area already captured in another
image = 20%. The generated 3D trajectory and controller
tracking performance are shown in Figure 17.

1Minimal and smooth control effort indicate better functional safety and
economical use of the control system [51], [52]. Relatively large control
effort requires large power from an electronic speed controller (ESC) that
limits flight time since the quadrotor has a limited energy source, this makes
the control systemmore expensive related to battery size; and oscillation rate
in the control signal determines the intensity of wear of moving mechanical
parts that probably damage and reduce aging of mechanical parts of the
actuator.

FIGURE 23. Rotation tracking in the presence of matched uncertainties.

FIGURE 24. Control efforts in the presence of matched uncertainties.

As can be depicted in Figure 18 & 19, the rotational and
translational quadrotor trajectory precisely track the desired
reference model response. Moreover, 3D trajectory tracking
in Figure 17 proves that the controller guarantees accurate
desired reference model response tracking by perfectly
stabilizing the quadrotor when it flies on the top of the field as
a desired stated path. Furthermore, the control inputs results
in Figure 20 show that the control efforts required to drive
the quadrotor are smooth and minimal which proves the
feasibility of the proposed control algorithm.

C. MAIN TRAJECTORY TRACKING PERFORMANCE IN THE
PRESENCE OF MATCHED UNCERTAINTY
Aerodynamic drag coefficients and inertia depend on the
speed of the quadrotor, the density of air, and the altitude
of flight, so it is crucial to design a controller that can
tolerate these parametric uncertainties in the quadrotor
model. Therefore, to validate the robustness of the proposed
control algorithm in the presence of parametric variations
that can be considered as a matched uncertainty, parametric
variations with time are conducted as follows: Jxx = 2Jxxo ,
Jyy = 2Jyyo , Jzz = 2Jzzo , cdx = cdy = cdz = (1 + 0.1t)cdo ,
and cap = caq = car = (1 + 0.01t)cao where subscript ’o’ is
included to indicate parameters at the nominal scenarios.

In Figure 21-23, the tracking errors are acceptable, this
implies that the proposed controller tolerates parametric
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FIGURE 25. Tracking performance for quickly varying disturbance for case-1.

FIGURE 26. Tracking performance for slowly varying disturbance for case-2.

variations in the system by guaranteeing accurate desired
trajectory tracking in the presence of parametric variations.
This proves the robustness of the proposed control technique
since the controller keeps the tracking error within the

acceptable range. However, to track the given trajectory, the
pose of the quadrotor in Figure 23 is different than that of
the nominal scenario in Figure 19. Moreover, as time elapse
increases, parametric variations become large and large also
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demanding larger control efforts at the turning point as shown
in Figure 24. Hence, the proposed controller guarantees
accurate desired trajectory tracking with the expense of
additional control effort relative to the nominal operation in
Figure 20.

D. PERFORMANCE ANALYSIS IN THE PRESENCE
UNMATCHED UNCERTAINTY
Quadrotor maneuvering in the field is exposed to external
disturbance from the wind, so performance analysis is done
by applying unknown external disturbances as unmatched
uncertainties for case-1: d = sin(3t) and case-2: d =

sin(0.03t). Comparison is done based on the tracking per-
formance of online ANN-based MRAC, offline ANN-based
MRAC, conventional MRAC, and LQR control approaches.
Notice that the disturbances that have been considered here
are arbitrary functions since the uncertainty is assumed as
unmatched, the controller doesn’t have knowledge about it.

In Figure 25, for quickly varying disturbance in case-1, the
error is very large for LQR and conventional MRAC; and in
the case of online ANN-basedMRAC and offlineANN-based
MRAC the tracking errors are within a specified range i.e.,
|e| ≤ 0.0005, which shows the robustness of the ANN-based
control system. Furthermore, from Figure 26, for slowly
varying disturbance in case-2, the proposed controller with
online tuned ANN parameters, outperforms other presented
control strategies. Moreover, in both scenarios, LQR has
poor external disturbance rejection capability compared to the
presented adaptive control strategies. Therefore, these results
prove that online learning algorithms enhance the external
disturbance rejection capability of the control system.

V. CONCLUSION AND FUTURE WORKS
A neural network-based MRAC is proposed in this article
for the position and attitude control of the quadrotor in
the presence of external disturbances and uncertainties.
To design the suggested controller, first, quadrotor flight
dynamics is modeled by considering every phenomenon
that has a significant effect on the quadrotor UAV maneu-
vering. Then, the proposed controller is designed, and for
performance comparison, the LQR controller is designed as
well. Finally, to validate the effectiveness of the suggested
control approach, numerical simulations have been carried
out in nominal scenarios and the presence of matched and
unmatched uncertainties. The simulation results validate the
effectiveness and superiority of the proposed control tech-
nique in achieving high tracking precision and disturbance
rejection capability in the nominal scenarios and the presence
of matched and unmatched uncertainties. Furthermore, the
utilized control efforts to achieve the desired tasks are
minimal and smooth. These prove functional safety and
economical use of the overall control architecture, so the
proposed controller is feasible for real-time implementation
of the quadrotor platform. Therefore, the future works
of this study will be implementing a fully autonomous

quadrotor prototype using the proposed intelligent flight
control technique.
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