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ABSTRACT An improved YOLOv8 detection method is proposed for detecting distracted driving behavior
and driver’s emotion. Unlike the commonly used YOLOv8 method, an attention mechanism named MHSA
and a CNN module are synthesized to ensure improved performance in terms of accuracy and convergence,
where MHSA is used to detect distracted driving behavior and CNN is used to detect driver’s emotion. The
FER2013 dataset and collected dataset are used to train the improved YOLOv8. The training results show
that the proposed YOLOv8 demonstrates improved performance compared with the commonly used YOLO
based methods. Finally, the validity of the proposed YOLOv8 method is illustrated through implementations
in Jetson Nano platform, where the TensorRT and DeepStream methods in the Jetson Nano device are used
to optimize the volume and operational speed of the proposed YOLOv8 method, respectively. Test results
show that the proposed YOLOv8 method can yield better real-time and accuracy properties.

INDEX TERMS YOLO, multi-head self-attention, CNN, visual object classes, distracted driving behavior,
driver’s emotion.

I. INTRODUCTION
Traffic accidents account for nearly 1.2 million human fatal-
ities worldwide each year with even greater number of
non-fatal injuries [1]. Traffic accidents involving commer-
cial vehicles also cause excessive property damages and
environmental risks, especially when transporting hazardous
cargos [2]. The developments in various vehicle stability
enhancement and driver-assist systems have contributed to
a steady decline in road accidents. The economic and social
costs of fatal as well as non-fatal traffic accidents, however,
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continues to be excessive and unacceptable. Advancements
in active safety devices have helped reduce the number and
severity of accidents attributed to road- and vehicle-related
factors, while the driver-related behavioral factors constitute
the primary causal factors. These include reduced cognition,
inattention/distractions, changes in emotions, fatigue, poor
assessment of road or traffic condition, over speeding, and
inadequate following distance [3]. It has been reported that
nearly 60% of road accidents are directly caused by factors
related to driver, while these contribute to about 95% of all
accidents [4]. The human driver behavior and emotions are
thus key factors to be considered in designing safer road-
vehicle systems [5].
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Some of the advance driver assist systems (ADAS) incor-
porate monitoring of abnormal driving behaviors and provide
some form of warning [6], while the implementations have
been highly challenging as these require accurate and real-
time identifications. Monitoring of one or more measures
of driver’s behavior has been attempted via the Vehicle Ad
Hoc Network (VANET) [7]. Al-Sultan [8] expanded the
VANET by integrating a real-time probabilistic model based
on the dynamic Bayesian network (DBN). The dynamic
driver behavior was inferred by incorporating contextual
information related to the driver, vehicle, and the environment
to detect four behavioral measures, namely, drunkenness,
fatigue, aggressive and normal. Owing to the large number of
parameters and considering that VANET operates as a mobile
AD hoc network (MANET), the contextual information trans-
mission to a real-time probabilistic model via dedicated
short-range communication (DSRC) imposes considerable
computational demand. Reducing the number of parameters
is thus vital for realizing a computationally efficient network.

The computational efficiency may be further enhanced
by making use of optimal combinations of image as well
non-image features recognitions related to desired behavioral
factors. For instance, Shahverdy et al. [9] proposed that a dis-
tracted behavior may be related to non-image vehicle motion
features such as acceleration, throttle, speed, and engine rpm
(revolutions per minute) Shahverdy et al. [10] further intro-
duced a lightweight one-dimensional convolutional neural
network (CNN) based on vehicle motion signals to clas-
sify driver behaviors in a computationally efficient manner.
A number of studies have employed multi modal physi-
ological signals [11], driving performance indicators [12],
and eye movements [13] to detect negative emotions and
behaviors of drivers. For instance, an algorithm to by using
Changes in electroencephalogram (EEG) bands have been
used to detect level of driver fatigue [14]. In addition, Lin
et al. [15] proposed an EEG-based driver fatigue estimator
on the basis of a linear regression model to predict alertness
level of the drivers. The model was formulated using digital
band power spectrum, correlation and principal component
analyses of the EEG signals. Lethaus and Rataj [16] utilized
the eye movement features to predict driver behavior in view
of anticipated actions.

Advances in image processing techniques such as machine
vision can facilitate identifications of negative emotions and
abnormal driving behavior in an efficient manner. Ucar and
Oguchi [17] used the following distance together with path
deviation to detect a distracted driving behavior. Zheng et al.
[18] proposed an improved CornerNet Sade scheme to detect
driver distractions caused by smoking or eating while driving.
A machine vision based distracted driving behavior detection
method via a fast Region-CNN (R-CNN) model was devel-
oped in [19]. The key driving behavior features were analyzed
using the class activation mapping method.

Real-time object detection network, ‘you only look once’
(YOLO) [20] is considered as a major breakthrough in the

object detection regime that solved the object detection as a
simple regression problem. The network is many times faster
than the popular two-stage detectors like Faster-RCNN,while
it compromises the accuracy. A number of alternate YOLO
networkswith different architectures have evolved to improve
detection accuracy. For instance, Qin et al. [21] developed
a method, called ID-YOLO, to judge the distracted driving
behavior by detecting the primary object being observed
by the driver. Hnewa and Radha [22] developed an inte-
grated multiscale domain adaptive YOLO (MS-DAYOLO)
framework for real-time object detection in a highly effi-
cient manner. The proposed network solved the domain
shift problem encountered by many deep learning applica-
tions at a substantially faster rate. The deep learning models
employing YOLOv3-tiny, YOLOv3-tiny-3l, YOLO-fastest,
YOLO-fastest-xl have been reported in [23] for detecting dis-
tractions such as head turning, drowsiness, eating, and phone
usage. The algorithm performed at a rate of 30 frames/s when
implemented on the NVIDIA GPU-based embedded plat-
form. The relative real-time performance of different YOLO
object detection models, including YOLOv5, YOLOv6,
YOLOv7, and YOLOv8 have been reported in a number of
studies [24], [25], [26]. These have shown superior perfor-
mance of YOLOv8 compared to the other models in terms
of accuracy and efficiency, while it required relatively fewer
parameters. The studies have also emphasized the importance
of considering requirements of specific tasks when selecting a
model.

This study proposes a methodology for detecting emo-
tions and distracted driving behavior using an improved
YOLOv8 network. A multi-head self-attention (MHSA)
module [27], [28], [29] together with convolutional neu-
ral network (CNN) module [30], [31], [32] is synthesized
to detect distracted driving behavior and driver’s emotions.
In addition, the improved YOLOv8 network is optimized
using TensorRT [33] and DeepStream [34] methods for
deployment on the Jetson Nano. The main contributions
of this paper include: (i) YOLOv8 network integrating the
MHSA module is presented so as to minimize information
loss and enhance accuracy of behavior recognition; (ii) a
methodology for accurate detections of driver’s emotions is
developed by integrating the CNN coupled with the region
of interest (ROI) in the YOLOv8 network; and (iii) the pro-
posed improvedYOLOv8 is optimized for speed andminimal
number of parameters for implementation on the Jetson. Nano
platform.

The remaining paper is organized as follows. The dis-
tracted driving behavior and driver’s emotions detection
methods based on an improved YOLOv8 are presented in
Section II. The experimental implementations, methods and
results obtained from the proposed network are presented
and discussed in Section III. Verification of the proposed
scheme is presented in Section IV considering the experi-
mental, and the major findings are briefly summarized in
Section V.
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II. DISTRACTED DRIVING AND DRIVER’S EMOTION
DETECTION
Figure 1 illustrates the framework developed for real-time
identifications of distracted driving behavior and driver’s
emotions. The framework is based on an improved YOLOv8,
which is realized by integrating MHSA (multi-head self-
attention) and CNN modules to enhance detection accuracy
and computational efficiency. The framework is a lightweight
detection algorithm for real-time detections. The framework
is based on distractions caused by drinking, smoking and
phone usage, in addition to various emotions reflecting anger,
fear, disgust, etc. Figure 4 shows the integration of MHSA
and CNN modules into the YOLOv8 network, which is pre-
sented as the improved YOLOv8 in the detection framework
in Fig. 2. The annotation files were built using the dataset
constructed according to the distracted driving behavior and
driver’s emotions information. The labeled datasets were sub-
sequently preprocessed and iteratively trained. The detailed
methods used to build the framework are described below.

A. IMPROVED YOLOv8 MODEL
1) ATTENTION MECHANISMS MODULE
Owing to relatively large number of parameters associated
with the YOLOv8, the accuracy as well speed of detections
has been of concern [35]. In this study, the MHSA module is
integrated into the backbone network of YOLOv8 to realize
real-time detections. MHSA is a multi-head self-attention
mechanism used to model dependencies at different locations
in an input sequence. It divides the input sequence into multi-
ple heads and computes the attention weighting of each head
to yield the final weighted output. Each head possesses its
own query, key, and value, which are derived from the input
sequence through linear transformations (usually a full-join
layer). The attention weights are subsequently used obtain the
two weighted sum leading to output. You can see howMHSA
works in Fig.1. Furthermore, Figure 3 describes a summary
of the MHSA process.

br =

∑T

i=1

⌢aT ,i · vi (1)
⌢
αT ,i = softmax(αT ,i (2)

αT ,j =
qTranposeT · ki√

dq,k
(3)

qi = WQai (4)

ki = WKai (5)

vi = WV ai (6)

ai = Wxi (7)

The input to MHA consists of three vectors: a query vector,
a key vector and a value vector. For a given query vector,
the MHA weights and sums the key vectors, the weights are
calculated from the similarity between the query and key
vectors, and the resulting weighted sum is multiplied by the
value vector for output.

In the MHSA design, each head focuses on a particu-
lar input within the sequence, and it represents complex

FIGURE 1. Structure of the MHSA attention mechanism.

functions. The similarities among different head are thus
generally obtained from the dot products or bilinear relations
to yield:

MultiHead(Q,K ,V ) = Concat(headi,. . . ,headh)W
o (8)

where Q, K and V represent the query, key and value vec-
tors, respectively. The transformation matrix W o is used to
transform the output of each head (headi; i =1,..,h). The
self-attention mechanism is employed to compute headi by
an Attention function, such that:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (9)

where QWQ
i , KW

K
i and VWV

i are the query, key and value
transformation matrices of the ith head, respectively. The
Attention inMHA (multihead attention) is computed from the
self-attentive mechanism, as:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (10)

where dk is the dimension of the key vector and superscrip
‘T’ represents the matrix transpose. The softmax similarity,
normalized by the dimension, yields the weight of each key
vector. The computed key weights applied to the value vector
are summed to yield Attention output.
The MHSA layer is inserted after the convolutional layer

of the BackBone of YOLOv8 (Fig. 4), so as to ensure that
the input to the backbone network is correctly passed to
the MHSA layer, and the output of the MHSA layer is cor-
rectly passed to subsequent layer. The forward propagation
in YOLOv8’s transmits the input to the MHSA layer at the
appropriate location through the backbone network.

2) EMOTION DETECTION USING CNN MODULE
The convolutional neural network (CNN) possesses many
advantages over YOLO in feature learning, local feature
capture, data expansion, pre-training, and adaptability to
classification tasks [36]. In facial emotion detection, YOLO
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FIGURE 2. Framework designed for identifying distracted driving and driver’s emotions.

(You Only Look Once) is a target detection framework
belonging to convolutional neural networks (CNN), whereas
facial expression detection focuses on recognizing and
classifying emotions conveyed through facial expressions.
In contrast, YOLO is designed to locate and classify objects
within an image by dividing it into a grid and predicting
bounding boxes and class probabilities for each grid cell.
Although both involve CNNs, their goals and outputs differ.
The CNN architecture for facial expression detection is likely
optimized for facial feature extraction and emotion classifica-
tion, while YOLO is geared towards detecting various objects
in an image. The advantages of CNN include its ability
to automatically learn feature representations, model spatial
relationships in images, and perform end-to-end training on
large-scale datasets, making it highly effective in tackling
complex visual tasks. CNN is considered especially suitable
for tasks requiring higher sensitivity and fine-grained feature
extractions such as facial emotion detections with greater
classification accuracy.

It should be noted that specific feature graphs are used
within each layer of YOLOv8 network to perform target
detections. Furthermore, each layer is responsible for detect-
ing targets of a specific size and aspect ratio. For instance,
one detection layer may be used for detecting small objects,
while another for large objects. The driving emotion detection
module, developed using CNN, is thus inserted in a YOLOv8
layer in order to discriminate among different emotions.
Combining the CNN-based sentiment classification model
with YOLOv8 involves two steps. Firstly, sentiment analysis

is conducted using textual data, with an independent training
of the CNN model for sentiment analysis. Subsequently,
YOLOv8 is applied for object detection on images or videos,
identifying various objects within the scene. If emotions are
associated with specific regions or objects in the images
(e.g., emotions expressed in text within the image), the sen-
timent predictions from the CNN model are then linked to
the detected objects in the image, associating sentiment labels
with specific regions or objects, such as emotions expressed
in detected text. Finally, the results from both models are
integrated, providing a comprehensive understanding of the
content by combining sentiment information with detected
objects. As shown in Fig.4, the CNN convolution module
is inserted into the head detection head of YOLOv8 to
form an emotion detection layer, and the ROI region in the
object detection algorithm can be used efficiently. YOLOv8
effectively shares ROI so that the same feature map can be
shared among different detection layers, including the emo-
tion detection layer. These sharing permits realize real-time
detection of driver’s emotions.

The CNN network considered for emotions detection com-
prises of several layers, as shown in Fig. 5. These include:
(i)an input layer that receives 48 × 48 pixels grayscale facial
images; and (ii) a series of convolution layers consisting of 32
and 64 filter layers of 3× 3 convolutions, and 128 spiral filter
layers of 3 × 3 convolutions. Considering the nonlinearity
in the network, each convolutional layer is activated by the
ReLU function. The feature graph dimension following each
convolution layer is further reduced by amaximum pool layer
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FIGURE 3. Summary of MHSA workflow.

FIGURE 4. Improved YOLOv8 network integrating multi-head self-attention (MHSA) and convolutional neural network (CNN).

with a pool size of 2 × 2. The reduced feature map is subse-
quently flattened to 1-D vectors, which are fed into the fully
connected layer consisting of 64 units with ReLU activations.
The layer is subject to regularization at a rate of 0.5 to avoid
overfitting. Finally, the softmax activation function generates
the probability of a class of emotion through classification
of the fully connected layer with the number of units equal
to the number of classes (7: anger, disgust, fear, happy, sad,
surprised, normal). The model uses the cross-entropy loss
function for multi-class classifications and is optimized using
the Adam optimizer [37].

III. EXPERIMENT DESIGN AND DATA ANALYSIS
A. EXPERIMENTAL PLATFORM
The experimental platform, designed in the study, consists of
two stages. In the first stage, the hardware and software were

developed for identifying distracted driving behavior and
driver’s emotions, as described in section II. The second stage
involved deployment of, the algorithm in the Jetson Nano
developer hardware, which included camera serial interface
(CSI). Table 1 summarizes the configurations of the designed
experimental platform in a laboratory environment.

B. DATASET CONSTRUCTION
1) DISTRACTED DRIVING BEHAVIOR DATASET
The data collections were performed in the laboratory using
the video stream and photo information from an i-phone.
A total of 20 subjects participated during data collection
for the distracted driving scenarios (drinking, smoking and
phone usage). The image data corresponding to each scenario
were annotated using software to generate XML (extensible
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markup language) files as described in [38]. As an example,
Fig. 6 illustrates the images and XML file generated using
LabelImg. Each file contains location coordinates and sce-
nario classification. Subsequently, a dataset containing the
distracted driving behavior was established, for the purpose
of training.

2) DRIVER’S EMOTION DATASET
The dataset relevant to chosen emotions was taken from [39].
The study reported a comprehensive facial emotion recogni-
tion (FER) dataset to train and evaluate emotion identification
algorithms. The dataset contains a diverse collection of dif-
ferent human facial expressions images, which are regarded
as indicators of various human emotional states. The images
in the FER dataset were labeled considering seven basic
emotions: anger, disgust, fear, happiness, neutrality, sadness,
and surprise. It includes still images and frames extracted
from video sequences, and provides a comprehensive repre-
sentation of emotions in a variety of contexts.

3) DATASET INTEGRATION
The datasets established for distracted driving behavior and
driver’s emotionwere integrated to build a single compressive
dataset containing 10 subsets, as seen in Table 2 together with
the number of images (sample size) for each classification.

C. MODEL TRAINING AND RESULTS
The integrated dataset was divided into training and a test
subset considering 9:1 proportion. A unity value of the
pre-training weight was used so as to test the effectiveness
of the improved YOLOv8 network. The SGD (stochastic
gradient descent) optimizer was used to adjust the learning
rate of each training parameter, while the learning rate decline
mode was set to cos. The hyperparameter method was used
to optimize training parameters for simultaneous training
of different layers. The initial learning rate was taken as
0.01 with 640 × 320 pixels input image size and the batch
size of 16. Furthermore, multi-threaded data readingwas used
to enhance training speed. The training model was compiled
using the Adam optimizer together with a cross-entropy loss
function for classification. The optimizer permitted updating
of the weights during training. The Epoch was set to 300 and
220 for the driving distractions and driver’s emotion data
subsets, respectively, and the corresponding weight files were
saved.

Training results are shown in Fig.7 in terms of the
loss values as a function of the epochs. The training loss
for the distracted driving detection includes box, cls, dfl
losses in addition to the total loss, as seen in Fig. 7(a).
The individual as well total losses decline rapidly with
increasing epoch, suggesting convergence of the improved
YOLOv8. Training loss of the emotion data subset also
decreases rapidly with increasing number of iterations,
as seen in Fig.7 (b), which shows the convergence of the
facial emotion recognition method using the proposed CNN
module.

D. QUANTIZATION AND DEPLOYMENT OF MODULES
Quantization is a process of approximating the continuous
values of a signal to a finite number of discrete values and
is essential for optimizing models for reducing the comput-
ing demand. In this experiment, the INT8 precision of the
TensorRT is used to linearly quantify the improved YOLOv8
model. This further reduces the size of the model engine
file. Fig. 8 shows the process of modeling quantification.
The quantization process involves converting valid values and
weights from the original FP32 format to the lower precision
INT8 format using linear mapping.

In the quantization process, the convolution layer operation
is performed to obtain the INT32-bit activation value. Then,
this INT32 activation value is re-quantized back to the INT8
format as the input of the next layer. In the last layer of the
network, inverse quantization is used to convert the activation
value back to the original FP32 format.

Xint = clip(
[
X
S

]
+ Z ; −2b−1, 2b−1

− 1) (11)

The conversion from FP32 to INT8 format can be
expressed using (11), where X represents the original FP32
value, Z represents the zero point of the mapping, S is the
scale factor, [.] is a mathematical function for approximate
rounding, rounding up, rounding down, etc.; Xint is an inte-
ger value after quantization. The rounding function can be
approximate rounding, rounding up, rounding down, etc.
Equation (12) shows the functions used for rounding.

clip(x; a, c) =

 a, if x < a,
x, if a ≤ x ≤ c,
c, if x > c.

 (12)

X = S(X − Z ) (13)

X = S(clip
[
X
S

]
+ Z ; −2b−1, 2b−1

− 1) − Z )

(14)

when Z = 0,Xmin = −2b−1S,Xmax = (2b−1
− 1)S.

Notably, equations (13) and (14) can be used to implement
the inverse quantization process that converts the quantized
value back to its original FP32 format. By applying linear
quantization with INT8 precision, the size of the model
engine file is reduced while still maintaining acceptable accu-
racy. This allows for higher peak performance on deployed
hardware and introduces minimal additional computational
overhead.

Several different types of behaviors and emotions were
tested using the trained model, and the test results are shown
in Fig.9. As can be seen that the driver distracted driving
behavior and driver’s emotion can be accurately detected.

IV. ANALYSISI OF RESULTS
A. COMPARISON MODEL PARAMETERS
On the same experimental platform, the improved algorithm
model was compared with several YOLO series models. The
results for the number of parameters and the size of the weight
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FIGURE 5. Layered structure of CNN module using for emotion recognition.

TABLE 1. Configuration of the designed experimental platform.

FIGURE 6. An example image and the resulting XML file generated by LabelImag doftware.

files are shown in table 5. As can be seen from the table,
model parameters and weight parameters of the improved
network model are lower than those of YOLO series mod-
els. In terms of model parameters, the maximum reduction
is 79.11%, and the lowest is 62.15%. In terms of weight
parameters, the maximum reduction is 79.33% and the lowest
is 62.47%. In summary, the number of parameters and weight

parameters of the improved model are lower than those of
YOLO series models and a lightweight network is realized.

B. COMPARISON OF MODEL DETECTION ACCURACY
In order to verify the accuracy and effectiveness of the
proposed model, accuracy (Precision), recall rate (Recall)
and F1 value are used as measurement indicators. Specific
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FIGURE 7. The training loss vs epochs: (a) distracted driving data subset; and (b) emotion recognition data subset.

FIGURE 8. INT8 convolutional layer inference flow.

TABLE 2. Subsets of the overall dataset and the sample sizes.

calculation methods are expressed as

precision(P) =
TP

TP+ FP
(15)

recall(R) =
TP

TP+ FN
(16)

F1 − score =
2P ∗ R
P+ R

(17)

where P is the accuracy rate, R is the recall rate, F1 is the
harmonic mean of the accuracy rate and the recall rate. TP
indicates that positive samples are correctly detected, FP
indicates false detection, FN indicates missed detection and
TN indicates that negative samples are correctly detected.
Specific representation is shown in Table 3.

APi is the area enclosed by the P − R curves of single-
category data, such that

APi =

∫ 1

0
Pi(Ri)dRi (18)

To verify the effect of using the MHSA attention mecha-
nism module to improve accuracy, the following comparative
experiments were conducted using the same network to
train and validate the YOLOv8 before and after using the
MHSA attention mechanism module. The results are shown
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TABLE 3. Expression of specific indicators.

TABLE 4. MHSA attention mechanism module before and after use comparison table.

FIGURE 9. Detection results.

TABLE 5. Comparison table of the number of parameters and weight file size.

in Table 4.
√

means that the MHSA attention mechanism
module is used, × means that the MHSA attention mecha-
nism module is not used.

The mean Average Precision (mAP) represents the average
of all APs and the average detection accuracy of all categories

of objects, which is defined by

mAP =
1
n

n∑
i=1

APi (19)
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FIGURE 10. The mAP of the driver distracted driving behavior and driving emotion method.

FIGURE 11. A comparison of the results of multiple detection algorithms.

TABLE 6. Comparison of FPS.

In (19), the mAP (Mean Average Precision) is the com-
bined weighted average of all values in (11), and the

guaranteed accuracy is obtained by combining all values
in (18).
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During the training process, the mixed data sets of dis-
tracted driving behavior and driver’s emotions were iterated
300 times and 220 times on the same hardware, respectively.
The mAP of distracted driving behavior and driver’s emotion
model is shown in Fig.9. It can be seen that the accuracy
of distracted driving behavior and driver’s emotion finally
reached 0.814 and 0.733, respectively, indicating that the
model can accurately classify distracted driving behavior and
driver’s emotion.

In addition, Figure 11 shows the mAP of the improved
YOLOv8, YOLOv3, YOLOv4, YOLO5s, YOLOv7 and the
original YOLOv8 under the same conditions. We can see that
the accuracy of the improved YOLOv8 is higher than other
detection algorithms. At the same time, Table 6 compares the
FPS of the original model with that of the improved model,
and it can be intuitively seen that the detection speed has
increased from 20 (FPS) of the original models to 25FPS.

To sum up, compared with other detection algorithms, our
improved detection algorithm not only ensures the detection
accuracy, but also makes the model lighter and has higher
real-time performance. This meets the industry’s need for
real-time performance and accuracy. It offers the possibility
of safe driver assistance deployment.

V. CONCLUSION
In this paper, we propose an improved algorithm based on
YOLOv8 to detect distracted driving behavior and driver’s
emotion. Three conclusions can be drawn from the training
and experimental results of the proposed improved YOLOv8
algorithm: (1) The proposed algorithm adopts the MHSA
(Multi-Head Self-Attention) structure, that is, the multi-head
attention-self-attention mechanism module is inserted into
the fully connected layer of YOLOv8. Compared with the
existing attention mechanism module methods, the proposed
method has higher accuracy. (2) Compared with the existing
method of simultaneously detecting the distracted driving
behavior and driver’s emotion with a single detector, the
proposed CNN Convolutional neural network module inser-
tion method has model-free and adaptive characteristics, and
shows improved performance in terms of convergence speed
and accuracy. (3) The proposed improved YOLOv8 method
was deployed on the Jetson Nano platform, where TensorRT
and DeepStream methods performed well in terms of model
volume and computing speed. In our future work, we will
focus on designing driver detection models that consider
more applicable scenarios.
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