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ABSTRACT Path planning is one of the important components of the Unmanned Aerial Vehicle (UAV)
mission, and it is also the key guarantee for the successful completion of the UAV’s mission. The traditional
path planning algorithm has certain limitations and deficiencies in the complex dynamic environment.
Aiming at the dynamic complex obstacle environment, this paper proposes an improved TD3 algorithm,
which enables the UAV to complete the autonomous path planning through online learning and continuous
trial and error. The algorithm changes the experience pool of TD3 algorithm to priority experience replay,
so that the agent can distinguish the importance of empirical samples, improve the sampling efficiency of
the algorithm, and reduce the training time. The average TD3 is proposed, and the average value of Q1Q2
is taken when the target value is updated to solve the problem of overestimating the Q value while avoiding
underestimating the Q value, so that the improved algorithm has better stability and can adapt to various
complex obstacle environments. A new reward function is set up, so that each step of the UAV action can
receive reward feedback, which solves the problem of sparse reward in deep reinforcement learning. The
experimental results show that this method can train the UAV to reach the target safely and quickly in a
multi-obstacle environment. Compared with DDPG, SAC and traditional TD3, the path planning success
rate of this algorithm is higher than that of the other three algorithms, and the collision rate is lower than that
of the comparison algorithm, which has better path planning performance.

INDEX TERMS UAV, path planning, deep reinforcement learning, prioritized experience replay, average
TD3 algorithm.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) are radio-controlled aircraft
operated remotely or through self-contained program control
devices. Because of its small size, low cost, easy to use
and other advantages, it is widely used in various fields [1].
UAV path planning plays a vital role in establishing the
UAV mission model and serves as a crucial guarantee for
the successful completion of the UAV mission. Its purpose
is to plan the optimal flight path in a given scenario,
considering the path length, terrain environment, threat
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information, UAV maneuverability constraints and other
related factors [2]. A well-designed path planning algorithm
can enable UAV to accomplish tasks at a minimal cost,
particularly in complex and dynamic environments. The path
planning mentioned in this paper is a point-to-point planning
method, which is characterized by obstacle avoidance, the
shortest and smoothest running path. In contrast to coverage
path planning, complete coverage path planning involves
determining a path that traverses all points in a given region
or spatial range while simultaneously avoiding obstacles [3].
In recent years, scholars have conducted a lot of research

in the field of UAV path planning algorithms, and proposed
a variety of path planning algorithms. These algorithms have
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their own characteristics in application fields, advantages and
disadvantages. According to the different research methods,
UAV path planning algorithms can be divided into two cat-
egories: one is based on non-learning algorithms, including
classical path planning algorithms and intelligent optimiza-
tion algorithms; the other is learning-based algorithms, such
as deep reinforcement learning algorithms [4].

The classical path planning algorithms, such as Artificial
potential field (APF) [5], [6], Rapidly-exploring random tree
(RRT) [7], [8], A* algorithm [9], [10], Voronoi diagram (VD)
[11], [12], [13], Probabilistic road map (PRM) [14], and
so on. The main reason why these classical path planning
methods can be successful is that they are easy to implement.
At the same time, they show good results in path optimization,
fast solution generation and static environment with simple
obstacles. However, the time complexity of these algorithms
is relatively high, and the performance is easily reduced when
dealing with high-dimensional space path planning. In addi-
tion, they are also easy to fall into local optimums, which may
lead to large deviations in path planning results. Intelligent
optimization algorithms, such as Genetic algorithm (GA)
[15], Particle swarm optimization (PSO) [16], [17], [18],
Gray wolf optimization (GWO) [19], Differential evolution
(DE) [20], etc. These algorithms are simple to implement in
UAVpath planning, have global search ability, and show good
robustness for large-scale optimization problems. However,
in the path planning process, they may fall into local optimal
solution. In addition, the computational complexity of these
algorithms is high, the performance depends largely on the
choice of parameters, and the convergence speed is relatively
slow.

The above path planning algorithms are based on
search-based and sample-based methods to generate viable
paths within a given environment. However, with the increase
of environmental complexity and uncertainty, the feasibility
of these methods is greatly reduced. In addition, after the
front-end path search, the above method also needs to
optimize the back-end trajectory, which leads to a high time
complexity of the algorithm. In practical applications, the
utilization of the aforementioned methods faces significant
limitations when the UAV needs to adapt to unfamiliar
environments. Currently, enabling real-time collision-free
path planning for UAVs from start to end in unknown envi-
ronments remains a formidable challenge. In such unfamiliar
environments, UAV lack knowledge of the environment and
the environment is very likely to change all the time, which
requires UAV to have the capacity to perceive, decide and act,
as well as the ability to explore and learn. For this reason, it is
particularly crucial to design a method that enables UAV to
learn autonomous path planning in an unknown environment.
In recent years, the Deep reinforcement learning (DRL)
method with autonomous learning ability has successfully
solved the path planning problem of UAV in unknown
environments. As a decision-making control method different
from traditional machine learning algorithms, DRL enables

agents to adapt to the environment through online learning
and continuous trial and error without any guidance signal
in an unknown environment. Because DRL achieves the
saliency of the target effect through training, it has attracted
the attention of many researchers and has begun to be applied
in the field of UAV path planning.

Han et al. [21] proposed an improved Deep Q-network
(DQN) that utilizes priority and exponential sampling meth-
ods, enhancing sampling algorithm stability and performance
by adjusting the random uniform sampling of UAV flight
experience samples. Xie et al. [22] introduced an improved
Deep recurrent Q-Network (DRQN) that combines reward
and Q values using a novel action selection policy to
mitigate inaccurate neural network predictions during early-
stage training. The improved DRQN algorithm exhibits low
computational complexity, significantly improving learning
efficiency and stability. Runjia et al. [23] proposed a multi
critic-delayed Deep deterministic policy gradient (DDPG)
method that utilizes average estimation of multi evaluation
networks to decrease the DDPG’s reliance on the evaluation
network. The method employs delayed learning to mitigate
overestimation and target network error accumulation, result-
ing in superior path planning performance compared with
traditional DDPG. Hu et al. [24] proposed the REL-DDPG
algorithm in their research, which is a DDPG algorithm based
on the concept of relevant experience learning. Compared
to the traditional DDPG algorithm, this algorithm shows
significant improvements in terms of convergence speed
and effectiveness. Bohao and Wu [25] proposed an enhance
DDPG. This algorithm guides the UAV to track targets by
designing a new reward function and smoothens the trajectory
of the UAV using penalty terms. Additionally, the algorithm
approximates the environmental state using a long short-term
memory network, thereby enhancing the algorithm’s approx-
imation accuracy and data utilization. Zhang et al. [26]
proposed an improved Twin-delayed deep deterministic
policy gradient (TD3) algorithm, which utilizes a twin stream
actor-critic network architecture. This algorithm extracts
environmental features from observations and their variations
to handle the stochasticity and dynamics of obstacles in
the environment. Experimental results demonstrate that
the algorithm exhibits good path planning performance in
dynamic environments. Lee et al. [27] proposed a new Soft
actor-critic (SAC) algorithm called SACHER. Experimental
results show that SACHER is capable of generating optimal
paths for UAV. Yan et al. [28] set up a dual deep Q network
(D3QN) algorithm based on global situation information.
This method uses a set of situation diagrams as input to
approximate the Q value corresponding to all candidate
actions. In addition, it combines ε-greedy strategy and
heuristic search rules to select actions. Experiments show
that the algorithm shows good performance under both
static and dynamic task settings. Peng et al. [29] studied a
UAV-assisted mobile edge computing network, and adopted
a DRL framework for the problem of size explosion. A Dual

38018 VOLUME 12, 2024



X. Luo et al.: UAV Path Planning Based on the Average TD3 Algorithm With Prioritized Experience Replay

deep Q-learning network (DDQN) algorithm is proposed to
realize the path planning of UAV. The simulation results
verify the effectiveness of the path planning scheme.

DRL algorithms have been applied to tackle the
autonomous path planning problem of UAV, yielding
improved outcomes. However, existing algorithms such as
DQN, DRQN, DDPG have overestimation of Q value, while
TD3 algorithm has underestimation of Q value. And in
practice, there are some problems to be solved and optimized
in path planning using DRL in complex environments, such
as long exploration period, sparse rewards, low sample
utilization, and convergence stability. Aiming at these
problems, this paper proposes an Improved TD3 (I-TD3)
algorithm that enables UAV to exhibit better path planning
performance in complex and dynamic obstacle environments.
The difference of this paper is that the traditional TD3
algorithm takes the minimum value of Q1Q2 when updating
the target value, and the algorithm of this paper takes the
average value ofQ1Q2 when updating the target value, which
enhances the stability of the algorithm and enables theUAV to
adapt to various obstacle environments; for the low utilization
of samples, this paper changes the experience pool of the TD3
algorithm into the Priority experience replay (PER), which
improves the algorithm’s utilization of samples and reduces
the training time; in the face of the DRL reward sparsity
problem, a new reward function is set so that each step of
UAV action can receive reward feedback.

The main contributions of this paper are as follows:
(1) Using the OpenAI Gym of DRL as a simulation

platform, a three-dimensional continuous simulation environ-
ment is customized. The established simulation environment
can visualize the training process and help analyze the
behavior of the UAV. The simulation results show that the
proposed algorithm has strong stability and a high success
rate, and can effectively solve the path planning problem of
UAV in a dynamic environment.

(2) The priority experience replay is used as the experience
replay pool of the TD3 algorithm, so that the agent can
distinguish the importance of the experience sample, reduce
the training time, improve the sample utilization rate, and
improve the efficiency of the experience pool extraction
experience.

(3) This paper proposes an average TD3 algorithm.
Different from the traditional TD3 algorithm, when updating
the target value, the algorithm in this paper takes the average
value of Q1Q2 instead of the minimum value. On the basis of
solving the problem of overestimating Q value, the situation
of underestimating Q value is avoided, so that the improved
algorithm has better stability and can adapt to various
complex obstacle environments.

(4) We re-set the new reward function to ensure that the
UAV receives reward feedback at every step of the action.
This improvement not only solves the problem of sparse
feedback in DRL, but also greatly improves the convergence
speed of the algorithm. This allows the UAV to complete its
mission in an efficient manner.

The rest of this paper is organized as follows: The second
part introduces some background knowledge of Markov
decision process (MDP) and DRL. In the third part, the
algorithm proposed in this paper is described in detail.
In the fourth part, we describe the state space, action
space and reward function of UAV path planning. The
path planning process of UAV based on this algorithm is
also described. The fifth part describes the experimental
environment, experimental details, experimental settings and
parameter settings, and analyzes the simulation results. The
sixth part summarizes and prospects this paper.

II. BACKGROUND
A. MARKOV DECISION PROCESS
MDP refers to a random process withMarkov property, which
is a sequential decision model. The model was proposed
by Bellman in 1957 to solve problems with uncertain and
dynamic characteristics, such as robot navigation problems
and asset portfolio problems. An agent is a machine learning
agent in MDP. It can perceive the state of the external
environment and make corresponding decisions accordingly,
and constantly adjust its own decisions by applying actions
to the environment and relying on the feedback from the
environment. The environment in the MDP model covers
everything outside the agent, and its state changes due to the
influence of the agent ’s behavior, and these changes can be
fully or partially perceived by the agent. After each decision,
the environment will provide corresponding rewards to the
agent [30], [31], [32]. The MDP is shown in Fig. 1.

MDP can be expressed as: MDP = (S,A,P,R, γ ), Where
S is the set of all possible states in the problem, and A is
the set of all actions that the agent can take in the problem.
P is a state transition probability function, which is used to
calculate the probability of taking an action in a state to the
next state.R is a reward function, which is used tomeasure the
reward obtained by taking an action agent in a certain state.
γ is the discount factor, also known as the attenuation factor,
γ ∈ [0, 1] which is used to weigh the impact of future rewards
on cumulative rewards. As shown in the Fig. 1, in the learning
phase, the agent receives the state St from the environment
and performs the action At according to the learning policy
π ; then the environment returns a reward value Rt to the
agent, and the purpose of the agent is to learn the policy
of maximizing the reward from the environment. Repeating
this process, the final agent update policy maximizes the
cumulative reward return Gt .

The policy function:

π∗(s|a) = P[s = St |a = At ]. (1)

The reward function is defined as follows:

R(s|a) = E[Rt+1|St = s|At = a]. (2)

The cumulative reward value:

Gt = Rt+1 + γRt+2 + · · · + γRt+k . (3)
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FIGURE 1. Markov decision process.

The state-value function:

Vπ = Eπ [Gt |St = s]. (4)

B. DEEP REINFORCEMENT LEARNING
DRL is an algorithm that seamlessly combines Reinforce-
ment learning (RL) and Deep learning (DL). By utilizing
MDP, it effectively characterizes the interaction between the
agent and the environment. The primary goal of DRL, akin to
MDP, is to determine the optimal policy that permits the agent
to achieve its objective within the current environment, while
maximizing the rewards obtained from executing that policy.
Throughout the training process, DRL allows the agent
to actively interact with the environment, make informed
decisions by selecting actions, and subsequently receive
informative feedback using a reward mechanism. Continu-
ously exploring and pursuing greater rewards, it ultimately
achieves an outstanding action selection policy [33].

FIGURE 2. The framework of DDPG.

Taking DDPG as an example, it is a DRL algorithm
based on AC framework, utilized for addressing problems
in continuous action spaces. DDPG combines deep neural
networks with deterministic policy gradients, enabling the
learning of continuous action policies. The DDPG algorithm
primarily consists of two networks: the actor network and the
critic network. The actor network functions as a deterministic
policy function, taking the state as input and producing the
corresponding action as output. The critic network serves as

a Q-value function that evaluates the value of the current state
and action [34]. The DDPG framework is illustrated in Fig. 2.

III. IMPROVED TWIN DELAYED DEEP DETERMINISTIC
POLICY GRADIENTS
At present, the traditional UAV path planning algorithm
has certain limitations. When the UAV is in an unknown
environment, it is necessary to plan the map globally every
time, resulting in slow planning and time-consuming, and
it is difficult to find a safe path. Therefore, how to make
the UAV have the ability of autonomous learning and
adapting to environmental changes in planning is particularly
important. The DRL algorithm has the advantages of model-
free, online learning, and offline policy, which breaks the
limitations of traditional algorithms and enables UAV to
perform autonomous path planning in unknown environ-
ments. Simultaneously, DRL has the capability to govern the
continuous actions of UAV, aligning it more closely with the
practical requirements of UAV path planning.

To address the UAV path planning problem, the TD3
algorithm, a DRL approach built upon policy gradients,
has been employed in this study. Its advantage lies in
the fact that it is updated with the policy as the target,
and it is directly fitted to the policy during the training
process, which realizes the output of the continuous action
space, and it can reduce the training time and speed up
the convergence of the algorithm because it does not need
to calculate the action values. If the DRL method based
on the value function is used, although it can solve the
continuous or high-dimensional state space problem well, its
action space is discrete, the planned path is not smooth, and
it may be necessary to optimize the trajectory of the back-
end, which is still a great limitation in UAV path planning.
Meanwhile, encountering the random strategy problem, the
value function-based method may produce large changes in
each update during training, and is not easy to converge.

A. TWIN DELAYED DEEP DETERMINISTIC POLICY
GRADIENTS (TD3)
The TD3 is a DRL algorithm that utilizes deterministic
policies. It builds upon the DDPG algorithm and introduces
three key techniques [35], [36]:

1) Dual network: Two sets of Actor-Critic frameworks are
used, and the target value is calculated by taking theminimum
value from the critic network, preventing overestimation of
the network.

2) Target policy smoothing: When calculating the target
value, adding noise perturbations to the outputs of the
target policy to make the training more stable and facilitate
convergence.

3) Delayed update: The actor network is updated after
multiple updates to the critic network. This delayed update
method can reduce error accumulation and make the training
of the actor network more stable and reliable.

The TD3 algorithm consists of 2 actor networks and 4 critic
networks. The critic target network evaluates the sampled
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states st+1 and actions ãt to output Q(st+1, ãt ). During the
updating process, the target values are updated based on
the maximum Q-value, which can introduce some errors
with each update. Over multiple updates, these errors can
accumulate, resulting in overestimation of the values for
certain states. To address this issue, the TD3 algorithm uses
two critic networks to evaluate the Q-values. During the
update process, select the smaller Q-value to update the target
value.

ytarget = r + γ min
i=1,2

Qθ ′i
(st+1, ãt ). (5)

The TD3 uses a delayed update method when updating
network parameters. After every d updates to the critic
network parameters, the actor network parameters are
updated. The update formula for the critic network is as
follows:

∇θiJ (θi) =
1
N

∑
t

∇θi (ytarget − Qθ ′i
(st , at ))2. (6)

The update formula for the actor network is as follows:

∇φJ (φ) =
1
N

∑
i

∇atQθi (st , at )|at=πφ (st )∇πφ(st ). (7)

The update formula for the target network is as follows:

φ′ = τφ + (1− τ )φ′

θ ′i = τθi + (1− τ )θ ′i
τ ∈ [0, 1]. (8)

B. IMPROVED TD3 (I-TD3)
When extracting samples from the experience pool for
training, the TD3 currently utilizes a random sampling
method, resulting in low learning efficiency. Additionally,
in an attempt to address the issue of overestimated Q
values, the TD3 algorithm updates the target value using the
minimum value of Q1Q2, resulting in an underestimation
of the Q value. This paper aims to enhance the existing
algorithm by introducing priority experience replay to the
TD3 algorithm’s experience pool. This modification enables
the agent to distinguish the importance of empirical samples,
leading to improved learning efficiency and reduced training
time. The proposed approach, referred to as average TD3,
updates the target value by taking the average value of Q1Q2.
This avoids underestimation and overestimation of the Q
value, resulting in enhanced algorithm stability. Furthermore,
the reward function is adjusted to provide feedback at each
step of the UAV’s action, effectively tackling the problem of
reward sparsity in DRL.

1) PRIORITY EXPERIENCE REPLAY (PER)
In the training process of DRL, it is necessary to store
the input and output data of the network, thus requiring
the establishment of an experience replay buffer to store
experience data. When the data is replayed, the agent updates
the network parameters according to the previously observed

empirical data. The form of the data is (st , a, r, st+1), and all
the data in the experience pool are randomly sampled during
the update. Priority experience replay (PER) is to extract the
most valuable experience when extracting experience, but
it cannot only extract the most valuable, otherwise it will
cause over-fitting. It should be that the higher the value, the
greater the probability of extraction, and the lowest the value,
it will also be extracted with a certain probability. The key to
the priority experience playback mechanism is to play back
very successful or extremely failed experiences at a higher
frequency, and these experience samples have higher learning
value [37], [38], [39].

In DRL, TD-error represents the discrepancy between the
current Q value and the target Q value, reflecting the degree
of learning required by the agent. The larger the TD-error
difference, the more the experience samples need to be
updated, accelerating the agent’s task completion. Therefore,
TD-error is used to differentiate the importance level of
experience samples, and TD-error is defined as follows:

δj = r + γQθ ′i
(st+1, ãt )− Qθi (st , at ). (9)

Sampling probability of experience samples:

P(j) =
pα
j∑

i p
α
i , α ∈ [0, 1]

, (10)

among them, pj is a priority index based on TD-error, α is
a priority adjustment parameter. Tomaintain sample diversity,
random factors are taken into consideration when selecting
experience samples, which means that even experience
samples with small TD-error values have the possibility
of being chosen. When α takes 1, the TD-error value is
directly used; when α takes 0, it is the original uniform
random sampling. The priority indicator is based on a ranking
approach.

pj =
1

rank(j)
, pj > 0. (11)

The agent tends to update experience samples with high
TD-error, which modifies the original probability distribution
and introduces errors into the model. Consequently, the
model may fail to converge during neural network training.
To mitigate this issue, importance sampling is employed to
correct weight changes:

Wj = (
1

M · pj
)β , (12)

in the above equation, M is the number of experience
replay pools, and parameter β is the degree of correction
error. According to the above process, the data that interact
with the environment can distinguish the importance of the
experience sample and enhance the learning efficiency of the
experience sample.

2) AVERAGE TD3
The TD3 algorithm solves the overestimation of DDPG,
but there is also a case of underestimation. In order to
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solve this problem, this paper proposes an average TD3
algorithm to solve the problem of overestimation and avoid
underestimation.

The overestimation of the DDPG algorithm comes from
two aspects: bootstrapping and maximization. If the overes-
timation is uniform, it will not affect the final decision of the
agent; If it is non-uniform, the final decision of the agent
will be significantly influenced by it. However, in fact, the
overestimation of the network is usually non-uniform.

When updating the critic network, assuming that the data
sampled from the experience pool is (st , at , rt , st+1), Firstly,
we will compute the target values y:

ytarget = r + γ min
i=1,2

Q′
θ ′i
(st+1, at+1). (13)

Owing to network overestimation, therefore:

Q′
θ ′i
(st+1, at+1) ≥ Q∗(st+1, at+1), (14)

where Q∗
θ ′i
(st+1, at+1) denotes the true optimal state action

value of the state action to (st+1, at+1). We then letQθ ′i
(st , at )

approximate y, so that Qθ ′i
(st , at ) is estimated, that is:

Qθ ′i
(st , at ) ≥ Q∗(st , at ). (15)

When the critic network is updated, the state-action
values get overestimated. To address the problem, the
TD3 algorithm selects the minimum value from Q1Q2 to
perform parameter updates. This ensures that the algorithm
does not suffer from this issue. However, because the
minimum value is chosen as the target value during each
update, it may result in the underestimation of Q-values.
Therefore, this paper selects the average value of the Q1Q2
to update the target values. This modification allows the
improved algorithm to solve the problem of overestimated
Q-values while avoiding the occurrence of underestimated
Q-values.

ytarget = r + γ averagei=1,2Qθ ′i
(st+1, at+1). (16)

IV. UAV PATH PLANNING BASED ON I-TD3 ALGORITHM
A. STATE SPACE
During the process of DRL, the UAV determines which
actions to take based on the received state information
from the environment. Therefore, designing a suitable state
space is of utmost importance. The state space should
accurately represent the current state of the UAV and provide
information about significant environmental elements such
as obstacle position, shape, and target position. Thus,
we define the state space as a combination of sensor-detected
environmental information and the UAV’s own state.
In this paper, we employ LIDAR for obstacle detection, and

the environmental observations are depicted in Fig. 3 and 4.
Fig. 3 shows the LIDAR’s horizontal plane laser distance,
while Fig. 4 shows the LIDAR’s vertical plane laser
distance. The scanning angle range is denoted by π , and
the distance between the two laser beams at the angle is
π
6 . (d1, d2, · · · , d7) and (d8, d9, · · · , d14) represent the ray

lengths of the sensor on the horizontal and vertical planes,
respectively. d4 and d11 denotes the same laser line, so d4 =
d11. If the LIDAR detector is unable to detect any obstacles
within a specified range, the emitted ray’s length will be
equivalent to the maximum distance that can be detected.

Environmental information is defined as:

se = [ξi, di]T , i = 1, · · · , 14, (17)

ξi is a hot code. If the sensor detects an object of limited
distance, it is 1; otherwise, 0.

Taking a quadcopter with an X configuration as an
example, the state of the UAV can be measured in real-time
using GPS and gyroscopes.

su = [x, y, z, vx , vy, vz, β, d0]T , (18)

FIGURE 3. Laser distance on the horizontal plane of the UAV.

FIGURE 4. Laser distance on the vertical plane of the UAV.

where (x, y, z), representing the real-time position of theUAV,
(vx , vy, vz) denotes the speed of x, y, z the UAV along; d0 is
the straight-line distance between the UAV and the target, β
represents the angle between the direction of d0 and the y-
axis.

In order to expedite the completion of the navigation
task and improve convergence speed, we have changed the
position of the UAV to its relative position with respect to
the target. As a result, the state space of the UAV has been
redefined.

su = [xtarget − x, ytarget − y, ztarget − z, vx , vy, vz, β, d0]T .

(19)
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FIGURE 5. The state space of the UAV.

In summary, the state is defined as:

S = [sTe , sTu ]. (20)

B. ACTION SPACE
The propellers of the four-rotor UAV consist of two posi-
tive propellers and two negative propellers, symmetrically
distributed in the four corners of the UAV frame [40].
During operation, the propellers generate a downward airflow
through high-speed rotation, which provides an upward lift
force to the UAV. By analyzing the forces acting on a
quadcopter’s basic flight attitude, we can conclude that
the UAV achieves various flight attitudes by adjusting the
different rotational speeds of its four motors [41]. Therefore,
the flight control board can control the UAV’s flight attitude
and position by altering the lift and torque through different
input voltages to the brushless motors, based on external
demands.

This paper considers the forces in various directions of
UAV as executable actions, enabling the UAV to achieve
functions such as takeoff, landing, forward movement,
backward movement, and lateral movement. Simultaneously,
the UAV’s steering is controlled by the rotation angle.

FIGURE 6. The action space of the UAV.

In the Fig. 6, 300 · aForward , 300 · aRight , and 100 · aUp
respectively represent the forces acting upon the UAV in the
directions of the Y-axis, X-axis, and Z-axis. They can control
the UAV’s movement in the forward/backward, left/right, and
upward/downward directions. α = α − 2aRatation represents

the variation in the UAV’s rotation angle along the Z-axis.
Therefore, the action space is represented as:

A = [aForward , aRight , aUp, aRation]T

aForward , aRight , aUp, aRation ∈ [−1, 1]. (21)

C. REWARD FUNCTION
The reward function is a crucial component of DRL.
Designing a reasonable reward function not only improves the
convergence speed of the training process but also enables the
UAV to efficiently and safely accomplish its tasks [42], [43].
The reward function r(st , at ) represents the environmental

feedback for taking action at in a state st , and it can be used
to evaluate the quality of the action taken in the current state.
If the reward r(st , at ) is large, it means that acting in the
current state is good for achieving the task and the probability
of acting in the next policy update will increase. Otherwise,
the probability decreases. The reward function in this paper
aims to guide the UAV to the target location while ensuring
its safety. The reward function is set as follows:

R = rstep + rangle + robs + rdis, (22)

rstep = −0.01, (23)

rangle =


1, β ∈ [0,

π

2
),

0, β =
π

2
,

−1, β ∈ (
π

2
, π],

(24)

robs =


−0.1 · (dsafe − di), if di < dsafe,
−5, if collides with obstacles,
0, else,

(25)

rdis =

{
5, if d0 < 5,
−0.1, normalized(d0), else,

(26)

The reward function consists of four components:
1) To expedite the UAV’s navigation mission, a penalty of
−0.01 is imposed on it at each step.

2) When β ∈ [0, π
2 ), the UAV is flying in the direction

close to the target point, so it gets a positive reward. When
β = π

2 , the UAV is neither close to nor far from the target
point, so There are neither rewards nor punishments. When
β ∈ (π

2 , π], the UAV is moving away from the target, so it
gets a penalty.

3) Tomake the UAV avoid colliding with an obstacle, when
the distance between the UAV and the nearest obstacle is less
than dsafe, the UAV will suffer a distance penalty. When the
UAV collides with an obstacle, it will suffer a penalty of −5.
When the distance between the UAV and the nearest obstacle
is greater than dsafe, the obstacle poses no threat to the UAV,
so it will not receive any penalty. The value of dsafe is 10.
4) To incentivize the UAV to reach the designated target

zone quickly, a function that measures the distance between
theUAV and the target has been set. If the distance is negative,
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the UAV will incur a penalty of −0.1. Upon reaching the
target point, the UAV will be rewarded with a value of 5.

D. STATE NORMALIZATION
The state space introduced in Section IV-A involves state
values of different units and scales, so the state values of
the input network need to be preprocessed. In this article,
normalization method is employed to process the state
values. In the state space, all state values except ξi require
preprocessing.

ktarget − k =
ktarget − k
kmax − kmin

, k = x, y, z, (27)

vk =
vk

vmax,k
, (28)

β =
β

π
, (29)

d0 =
d0√∑

(kmax − kmin)2
, (30)

di =
di

max laster length
, (31)

Among them, kmax and kmin denote the upper and lower
boundary values, respectively, along the k-axis for the task
scene, and vmax,k denotes the maximum achievable velocity
of the UAV in the direction of the k-axis.

E. DESIGN OF UAV PATH PLANNING METHOD BASED ON
I-TD3
When the UAV first interacts with the environment, it cannot
distinguish between obstacles and targets. It adjusts its policy
based on reward values and penalty values received from
environmental feedback during the exploration process, ulti-
mately accomplishing the path planning task. The framework
of the path planning algorithm is illustrated in Fig. 7.

When the UAV explores the environment, the exploration
of the action space can be increased by adding Gaussian
noise. Simultaneously, the explored experiences are stored
in the form of tuples and placed into an experience replay
pool. During network training, PER is introduced to prioritize
the learning of important experiences, thereby reducing
training time. When updating the target values, we choose
the average value of Q, which makes the algorithm more
stable. In the end, the UAV is able to autonomously plan
paths and successfully complete various tasks in complex
environments.

The pseudo-code for the I-TD3 algorithm is as follows:

Algorithm 1 The I-TD3 algorithm

Initialize actor network πφ ,and critic networks Qθ1 ,Qθ2

with random parameters α, β, φ, θ1, θ2,T ,minibatch k

Initialize target networks φ′← φ, θ ′1← θ1, θ
′

2← θ2

Initialize replay bufferM
for t = 1 to T do

select action at ∼ π (st )+ ϵ,ϵ ∼ N (0, δ), reward r and

new state st+1
Store (st , at , rt , st+1) inM
set the priority Pt = maxi<t Pi
if t > M then

for j = 1 to k do

Based on P(j) sampling empirical samples

j ∼ P(j) =
Pα
j∑
i P

α
i

Calculate the relevant importance sampling

weightsWj

Wj = ( 1
M ·P(j) )

β

Calculate δj

δt = r + γQθ ′i
(St+1, ãt )− Qθi (st , at )

Update the empirical sample priority based on the

TD-error

Pj← |δj|

end for

computation the critic network:

ãt ← πφ′ (st )+ ϵ

ytarget ← r + γ averagei=1,2Qθ ′i
(st+1, ãt )

Update critic θi← minθi
1
N

∑
(y− Qθi (s, a))

2

if t mod d then

Update φ by the deterministic policy gradient
`

φ J (φ) =
1
N

∑ `
aQθ1 (s, a)|a=πφ (s)

`
φ

`
πφ(s)

Update target network:

φ′ = τφ + (1− τ )φ′

θ ′i = τθi + (1− τ )θ ′i
end if

end if

end for

V. EXPERIMENTS AND RESULTS
A. EXPERIMENT PLATFORM AND SETTINGS
OpenAI Gym is used as the simulation platform. OpenAI
has developed and maintained a Python library called Gym,
which serves as a toolkit for developing and comparing DRL
algorithms. Gym allows testing and learning the performance
of DRL algorithms and is compatible with other numerical
calculation libraries such as TensorFlow and Torch. Gym
provides commonly used DRL environments and also allows
for customization. The simulation environment based on
Gym customization is depicted in Fig. 8.

The simulation environment we have developed is a
rectangular area measuring 400 × 400 × 100. Within this
environment, the starting point of the UAV is represented by
the blue area, while the destination is denoted by the green
area. Additionally, random obstacles are scattered throughout
the white areas of the environment. These obstacles are
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FIGURE 7. Framework diagram of UAV path planning based on I-TD3 algorithm.

FIGURE 8. The simulation environment.

positioned in mid-air and are intended to train the UAV’s
ability to avoid collisions in the Z-axis direction. In our
experiment, the UAV is capable of flying at a maximum speed
of 20 and has a maximum stride of 1000. It maintains a flying
height ranging from 20 to 100, while the target it aims to reach
is a sphere with a diameter of 20. The task of the UAV is to
start from the blue area without collision and eventually reach
the green area.

B. SIMULATION ENVIRONMENT
For training and testing the performance of the I-TD3
algorithm, two experimental environments are established:
Environment I and Environment II. Environment I consists of
four static environments, and E1 is set up with five cylinders
with dimensions of 15× 100; E2 sets 5 cylinders of size 15×
100 and 5 cubes of size 30 ×30× 50; E3 sets 5 cylinders of
size 15×100,5 cylinders of size 15 × 50, and 5 cubes of size
50×30×50; E4 Set 5 cylinders of size 15× 100, 5 cylinders
of size 15 × 50, 5 cubes of size 30 × 30 × 50, and 5 cubes
of size 50 × 30 × 30.

Environment II consists of four dynamic environments, E5
sets five cylinders with dimensions of 15 × 100 and five
cubes with dimensions of 30 × 30 × 50, where half of the
obstacles move in the negative direction of the Y-axis at the
speed of 10, and once the obstacle reaches the boundary of
the task space, it initiates backward movement and proceeds
to repeat the procedure; E6 differs from E5 in that obstacles

FIGURE 9. The convergence curve of average rewards obtained from the
training environment E1.

move at a speed of 20; E7 Set 5 cylinders of size 15× 100 and
5 cubes of size 30 × 30 × 50, with all obstacles moving at
speed 10; E8 differs from E7 in that all obstacles move at
speed 20.

C. TRAINING AND RESULTS
The training of the UAV involves exploring and adjusting its
action policy based on environmental feedback to ultimately
achieve path planning and obstacle avoidance. At the begin-
ning of each training session, the network parameters are
initialized, and start and end points are randomly generated
within the corresponding region. Training will end if any of
the following conditions occur: (1) the training step reaches
1000, (2) the UAV collides with an obstacle, or (3) the
UAV reaches the destination. DDPG, TD3, SAC [44] and
the proposed algorithm are used to train the UAV in the
environment E1. In the training process of 2000 rounds, the
average reward curves of the four algorithms are shown in
Fig. 9.
We observe that during the initial training phase, the UAV

explores the environment randomly, resulting in a very low
average reward. As the UAV gathers more data, it starts
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FIGURE 10. The average success rate of Environment I.

TABLE 1. Experiment parameters.

training the network to update its policy. With an increase
in the number of training sessions, the average reward value
gradually increases, and the average reward curves for all
four algorithms converge at around 200 episodes. Toward
the end of training, the average reward curve approaches
approximately 0. Compared with DDPG, TD3 and SAC
algorithms, the proposed algorithm has faster convergence
speed and more stable convergence process.

In DRL, parameters refer to various adjustable variables,
which directly affect the structure, algorithm efficiency and
training process of deep neural networks. The selection and
adjustment of these parameters are very important for the
performance, convergence speed, stability and final learning
effect of the algorithm. Usually, a series of experiments are
conducted to determine the best combination of parameters
to achieve better performance and learning results. In this
paper, through the adjustment of multiple rounds of training
experiments, the experimental parameters used are deter-
mined, and the specific values are listed in Table 1. The
setting of these parameters makes the algorithm converge
rapidly in the training process, greatly shortens the training
time, ensures the stability of the algorithm, and has superior
generalization ability and strong adaptability, which can
adapt to the simulation environment constructed in this paper.

D. TESTING AND RESULTS
After conducting 2000 episodes of training on DDPG, TD3,
SAC, and the I-TD3, the policies are then evaluated in two
experimental environments: Environment I and Environment
II. In Environment I, where all obstacles are stationary, the
algorithm’s ability to sense the relative motion trend between
the UAV and obstacles is evaluated. In Environment II, where
all obstacles are dynamic, the UAV’s real-time decision-
making capability is tested, as the trained policies are fully
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FIGURE 11. A typical case of I-TD3 algorithm successfully reaching the target area in Environment I.

TABLE 2. Test results under Environment I.

TABLE 3. Test results under Environment II.

utilized. In addition, no random actions occur during the
testing phase.

The evaluation metrics for assessing algorithm perfor-
mance include Average Reward (AR), Loss Rate (LR),
Collision Rate (CR), and Success Rate (SR). AR represents
the average reward value over the entire testing period,
indicating the average quality of the test; LR represents the
percentage of rounds out of the 2000 episodes in which the
UAV did not reach the target or collide with obstacles, while
CR represents the percentage of collisions between the UAV
and obstacles in 2000 episodes. SR indicates the percentage

of successful target findings. The test results of DDPG, TD3,
SAC and I-TD3 in Environment I are shown in Table 2.

We can see that the I-TD3 has the highest success rate in the
four experimental environments of Environment I. With the
increase of the complexity of the experimental environment,
the advantages of the algorithm are more obvious. The
number of obstacles gradually increases from E1 to E4, and
the success rate decreases in turn. However, the success rate
of the I-TD3 algorithm is the lowest (6%), while the SAC
(6.15%), DDPG (8.4%) and TD3 (10.75%) are higher. Due
to the limited training fragments and the randomness of the
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environment, the success rate of the algorithm did not reach
100%, but still achieved good results. Finally, compared with
TD3 and SAC algorithms, the I-TD3 has a higher success
rate, but the average reward is lower. This is because in more
cases, our algorithm makes the UAV neither find the target
nor collide with obstacles, resulting in extremely low reward
values. The results show that the I-TD3 is more adaptable to
complex environments than DDPG, SAC and TD3.

Fig. 10 shows the success rate per 100 episodes in four
static environments of Environment I. Fig. 11 displays a
typical scenario in which the UAV, using the I-TD3 algorithm,
successfully reaches the target point in Environment I.

Next, these algorithms will be tested in Environment II.
The results of DDPG, TD3, SAC and I-TD3 in different
dynamic environments are shown in the Table 3.

As evident from the table, the success rate of the four
algorithms shows a decline as the presence of dynamic
obstacles increases. While there may be slight deviations in
selecting optimal behavior in a static environment, the impact
is relatively minimal. However, in a dynamic environment,
particularly when obstacles are moving at high speeds, it can
lead to disastrous consequences. In these four algorithms,
from environment E5 to E8, with the increase of dynamic
obstacles, the success rate of DDPG decreased by 7.9%,
SAC decreased by 6.35%, TD3 decreased by 6.5%, while
the success rate of the I-TD3 decreased by 3.25%. In the
table, we can see that the success rate of the algorithm in
this paper is much higher than that of DDPG, TD3 and SAC
in the environment E5 to E8, and the collision rate is also
the lowest among the four algorithms. This is due to the
proposed algorithm’s ability to quickly perceive changes in
the surrounding environment, enabling the UAV to avoid
obstacles and make timely decisions. The results suggest
that the I-TD3 demonstrates a high degree of adaptability in
dynamic environments.

VI. CONCLUSION
This paper proposes a UAV path planning method based on
DRL, which enables it to complete the path planning task
autonomously in a multi-obstacle environment. We introduce
priority experience playback as the experience replay pool
of TD3 algorithm, which improves the utilization of sample
data. At the same time, the average TD3 algorithm is
proposed, which avoids the underestimation of Q value
and improves the stability of the algorithm on the basis of
solving the problem of overestimation ofQ value. In addition,
we design a new reward function so that the UAV can
obtain reward feedback for each step of action, which solves
the problem of reward sparseness in DRL. We tested the
algorithm in a custom simulation environment. The results
show that the algorithm can train the UAV to reach the target
area safely and quickly in a multi-obstacle environment,
and has good path planning performance. Compared with
DDPG, TD3 and SAC, the proposed algorithm shows better
stability and generalization ability in complex dynamic
environments.

The experimental results of this algorithm are good, but
there are still some shortcomings. When the simulation
experiment is set up, the dynamic obstacles set up are moving
at a uniform speed. In the actual flight environment, the
obstacles encountered are not all moving at a uniform speed
according to the prescribed line, but are random speeds
and random routes. Therefore, the experimental environment
closer to reality will be considered to test the performance
of the I-TD3. Currently, this paper exclusively focuses
on addressing the path planning issue for a single agent.
Nonetheless, in our future research, we will delve into the
path planning problem for multiple agents. Doing so will
enable us to further explore and understand the collaborative
path planning of UAV clusters, facilitating the achievement
of more intricate tasks.
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