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ABSTRACT When implementing a super-resolution (SR) model on an edge device, it is common to train
the model on a cloud using pre-determined training images. This is due to the lack of large-scale training
data and computation power available on the edge device. However, such frameworks may encounter a
domain gap issue because input images to these devices often have different characteristics than those used
in training. Therefore, it is essential to continually update the model parameters through on-device learning,
which takes into account the limited computation power of edge devices and makes use of on-site input
images. In this paper, we present a fast and efficient on-device learning framework for an SRmodel that aims
to overcome the challenges posed by restricted computation and domain gap issues. Specifically, we propose
an architecture for training the SR model in a quantized domain, which helps to reduce the quantization
errors that accumulate during training. Additionally, we propose cost-constrained gradient pruning and
meta-learning-based fast training schemes to enhance restoration performance within a smaller number of
iterations. Experimental results show that our approach can maintain the restoration performance for unseen
inputs on a lightweight model achieved by our quantization scheme.

INDEX TERMS Gradient pruning, meta-learning, neural network acceleration, neural network compression,
neural network quantization, on-device learning, pruning, super-resolution.

I. INTRODUCTION
The advancement of deep learning has greatly enhanced
the performance of single-image super-resolution [1], [2],
[3], [4], [5], [6], [7], which has also motivated consumer
electronics manufacturers to implement SR models on edge
devices like TVs, smartphones, tablets, etc. To install an
SR model on an edge device, it is common to pre-train the
model on a cloud using pre-determined training images due
to the lack of large-scale training data and computation power
available on the edge device.

Typically, when preparing a large number of training image
pairs in the cloud, low-resolution images are generated by
filtering high-resolution images with bicubic or Gaussian
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kernels, followed by downsampling. However, the SR model
trained in this way may face a domain gap issue [8], [9] when
deployed on edge devices. This is because input images on
these devices often have different characteristics compared
to those used in training. Specifically, real-world images are
degraded by filteringwith unknown kernels different from the
synthetic Gaussian or bicubic. Such a domain gap problem
can make it challenging to achieve the expected restoration
performance. For example, Fig. 1 shows a conventional
scheme, which produces blurry SR output due to the domain
gap. In comparison, our method depicted in Fig. 2 yields a
better output for the same input.

To overcome the domain gap, it is crucial to regularly
update the model parameters by using input images on the
device that has limited computational power. This process is
known as on-device learning [10], [11], [12], [13], [14], [15].
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FIGURE 1. Conventional framework of super-resolution deep network.

FIGURE 2. Proposed on-device super-resolution deep network.

While on-device learning can help the model adapt to the data
and prevent a decrease in restoration performance, there are
three main challenges that make it difficult to implement this
technology in real-world scenarios.

First, edge devices are different from cloud servers in
that they have limited resources. Most edge devices are
constrained to use only integer operations and have much less
memory and/or computing power. Although there have been
efficient integer neural network models [16], [17], [18], [19],
[20], [21], [22], [23], they tend to show inferior performance
compared to floating-point (FP) arithmetic models due to the
accumulation of quantization errors. Therefore, it is essential
to reduce quantization errors occurring during training on
such devices, unlike conventional methods. Second, training
neural networks requires a backpropagation process, which
requires three times more computation than inference and a
lot of memory to store intermediate feature maps for gradient
computation. Due to such high computational demands of the
training process, it is challenging to train the model on an
edge device. Hence, it is required to reduce the resource for
the backpropagation. Third, the backpropagation is usually
repeated multiple times during the training process, and thus
there is a strong demand tominimize the number of iterations.

To address these issues, we propose an effective and effi-
cient framework for on-device SR model training, as shown
in Fig. 2. Precisely, we introduce a training method for
the SR model in the integer domain. It is not easy to
train conventional neural networks in the integer domain
on resource-constrained edge devices, and most existing
studies have focused on quantization for the inference of
neural networks. While the existing quantization methods
for the SR are suitable for inference [24], [25], [26], [27],

[28], they are not suitable for training the model in an
integer-only arithmetic environment. Our proposed method
treats all parameters of the network and all values used
for training as integers. This makes it easy to apply the
model to general hardware systems that use integer-only
arithmetic. Additionally, the proposed method minimizes the
accumulated quantization errors during the training process
compared with FP models.

Next, we propose a fast learning method that uses
gradient pruning [29], [30], [31], [32], [33], which is well-
suited for resource-constrained environments. By means of
pruning [34], [35], [36], [37], [38], [39], we can decrease
the amount of computation and memory needed for training,
and concentrate resources on the weights that are important
for the training process. Additionally, our gradient pruning
algorithm is designed particularly for resource reduction in
backpropagation.

Finally, we propose a meta-learning-based training method
that utilizes input images to the device as training data [40],
[41], [42], [43], [44], which helps in reducing the number of
backpropagations while quickly adjusting weights to reduce
the domain gap. By using the meta-learning method, we can
prepare various types of degraded images to obtain the
optimal starting point and quickly adapt to any quality of
degraded images.

II. RELATED WORK
A. SUPER-RESOLUTION
Numerous CNN-based networks have been proposed to
solve Single Image Super-Resolution (SISR) problems [1],
[2], [3], [45], [46]. Initially, the SR models were trained
using synthetic high-resolution (HR) and low-resolution (LR)
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image pairs, where the LR images are produced by filtering
HR images with bicubic or Gaussian kernels followed by
downsampling [1], [2], [3], [46], [47], [48]. Recently, many
methods have been developed to perform practical and
realistic SR, considering that the real-world LR images are
generated through unknown kernels [49], [50]. Meanwhile,
the zero-shot learning method has been proposed to train an
SR model by exploiting the input image itself as a training
image [9]. However, it requires numerous iterations to train
the network and also has limited performance due to the lack
of large-scale external datasets.

B. META-LEARNING
Meta-learning is a technique that enables a machine learning
system to learn from multiple training episodes and use
this knowledge to learn more efficiently in future training
phases [51], [52]. Model-agnostic meta-learning (MAML)
is a method that utilizes learning-to-learn by creating
simulations of multi-task scenarios [40], [42]. This helps
to acquire task-agnostic knowledge that can be applied to
new but similar tasks in test time. Reptile [41] is another
approach that simplifies the optimization problem ofMAML.
Instead of solving the second-order derivatives, it searches for
the average parameters of the models learned from multiple
episodes. The concept of meta-learning has been applied
in the field of SR to address the issue of domain gaps
in real-world situations. Specifically, the MZSR [53] has
demonstrated its superiority in handling scenarios where
LR images are degraded by multiple kernels. Additionally,
it provides a more efficient training phase during test time as
compared to traditional methods.

C. QUANTIZATION
Quantizing deep learning models is essential for their use
in resource-constrained environments that require integer-
arithmetic computations [54], [55]. However, training neural
networks in the integer domain is challenging due to the
greater sensitivity in gradients and errors during back-
propagation caused by the accumulation of quantization
errors. Several studies have focused on different methods
for training binary or ternary parameters [56], [57], [58],
[59], while others have tried to maintain performance in
an integer domain using integer-arithmetic operations [60],
[61]. To address this challenge, researchers have proposed
Quantization-aware training (QAT), which simulates the
floating-point network to act as an 8-bit integer network
during the training phase, while still maintaining the floating-
point in backpropagation [16]. Another method calledWAGE
has been developed to train a ternary network using 8-bit
integers, while the first and last layers remain as floating
points [62]. Finally, a new architecture called NITI has
been proposed, which is suitable for training with integer-
arithmetic operations [18].

Several studies have investigated the quantization of
SR networks to reduce the model size while preserving

its performance [26], [63], [64], [65], [66]. In particular,
the binary quantization method has been used for SR
networks [63], [64], and some researchers have explored the
possibility of implementing it in a partially or fully quantized
domain [26], [65], [66]. However, there has been no method
to train SR networks using integer-arithmetic environments
with these techniques.

D. PRUNING, SPARSE LEARNING, AND ON-DEVICE
LEARNING
Various pruning techniques [35], [36], [37], [38], [39],
[67], [68] have been developed to reduce the number of
parameters in a neural network, under the assumption that
there exist redundancies in the network. The main goal
is to eliminate the redundancies while achieving the best
possible performance [69]. Researchers have also explored
pruning methods in backpropagation to alleviate the training
burden [32], [33]. For more examples of pruning techniques,
Repr [70] temporarily pruned part of the parameters in
rotation to boost the training performance. MeProp [71]
has been suggested to prune the top-k activation gradients
for each layer of the MLP in terms of their magnitudes.
In addition, a study was conducted to prune the activation
gradients close to zero [30]. With the advancement of
hardware support in network sparsity, SDGP [29] structurally
pruned the gradient by exploiting the 2:4 sparsity supported
by hardware. It has been found in [72] that the distribution of
gradients is close to log-normal, and they used this knowledge
to set the threshold for gradient pruning.

There are other methods of reducing the training burden
besides gradient pruning. Specifically, TinyTL reduces mem-
ory usage during training by only learning bias while freezing
weight so that no intermediate activation is saved [12].
Experiments have even been conducted to implement the
network in a limited-resource environment. In [11], they
proposed skipping less important layers or sub-tensors.
Also, in backpropagation, they update only bias for skipped
layers but prunes gradient in the other. Besides, sparse-
MAML [31] combines sparsity and meta-learning to learn
which parameters to learn by learning adjustable masks.

III. OVERVIEW
The proposed method consists of two stages: offline and
online training. During the offline phase, pre-training is
carried out to facilitate more efficient learning in the
online phase. In the online phase, limited resources and the
characteristics of actual input images to the device are taken
into account, and on-device training is performed in the
integer domain.

The offline phase also consists of two main stages. The
first is the meta-learning step, which enables rapid adaptive
learning of real images. The second stage is the gradient
mask learning stage, which is used for fast learning based on
gradient pruning during online learning. In the online phase,
training data are generated from input images to the device,
which fine-tunes the model learned during the meta-learning
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process. Our learning method, based on integer arithmetic
and gradient pruning, is applied during the learning process,
taking into account the limited conditions of the edge device.

Before proceeding with the details of our training
methodology, we describe the relationship of an LR and its
corresponding HR image as

IkLR = (IHR ∗ k) ↓s (1)

where IHR represents a high-resolution image, ILR represents
a low-resolution image, k represents a degradation kernel, *
represents a convolution, and ↓s represents downsampling by
scale s.

IV. OFFLINE TRAINING
A. META-LEARNING
Meta-learning is a type of training that involves simulating the
training process itself. Unlike regular training or pre-training,
the goal of meta-learning is to identify the best starting point
for parameters. This helps the model to adapt to different data
characteristics more easily.

We consider a super-resolving model parameterized by θ ,
denoted as Fθ (·). Before the actual meta-learning step, the
model parameter θ is pre-trained with the large-scale DIV2K
[73]. Using bicubic degradation, it is trained with the paired
dataset (IHR, IbicLR), denoted as Dbic. The model is trained by
the loss expressed as

LDbic (θ ) = EDbic∼(IHR,IbicLR )
[∥IHR − Fθ (IbicLR)∥1], (2)

whereL is the pixel-wise L1 loss. The loss is used as a default
training loss throughout our algorithm.

Inspired by MAML [40], ZSSR [9], and MZSR [53],
we follow their process to achieve meta-learned parameters.
Specifically, a task Ti is sampled from a task distribution
p(T ). The task dataset Dmeta is synthesized and consists
of pairs (IHR, IkLR) with diverse kernel environments. In our
method, a kernel distribution p(k) is considered, where each
kernel in the distribution is an isotropic Gaussian kernel for
degradation kernel with random size and covariance.Dmeta is
divided into two groups: Dtr for task-level training and Dte
for task-level test.

In meta-learning, the model parameters θ are adapted
to a new task Ti and become the adapted parameters θi
after gradient descent updates. For one gradient update, the
adapted parameters are described as

θi = θ − α∇θLtrTi (θ ), (3)

where α is the learning rate for task-level training. The model
parameters θ are optimized for minimizing the average losses
across the task-level tests with respect to θi. For this, themeta-
objective is described as

argmin
θ

∑
Ti∼p(T )

LteTi (θi)

= argmin
θ

∑
Ti∼p(T )

LteTi (θ − α∇θLtrTi (θ )). (4)

In our paper, the stochastic gradient descent is used for
the meta-optimization across tasks. The updates of the model
parameters θ are described as

θ ← θ − β∇θ

∑
Ti∼p(T )

LteTi (θi), (5)

where β is the learning rate for the meta-learning.

B. GRADIENT PRUNING
Unlike weight pruning, the goal of gradient pruning is to
reduce the resources used in backpropagation while keeping
the size of the parameters. The parameters of the l-th layer out
of L layers are denoted as θ (l) ∈ Rfh×fw×cin×cout , where fh and
fw are the height and the width of parameter, and cin and cout
are the number of channel-in and channel-out respectively.

During the internal learning, the updates of θ (l) with the
gradient pruning are expressed as

θ (l)← θ (l) − γm(l)g(l), (6)

where γ is the learning rate for the internal learning, m(l)
∈

{0, 1}cout is the gradient mask, and g(l) ∈ Rfh×fw×cin×cout is the
gradient of the layer l. As a result, the number of calculations
can be reduced because the size of the gradient to be obtained
and the size of the updated parameters are reduced.

In our method, the gradient masks are obtained during the
backpropagation with the external dataset Dgp, and Dmeta is
used as Dgp. Also unlike the standard training, the model
parameters θ from the meta-learning are frozen, while the
gradient masks m are trained.

There may be multiple possible ways to find the masks.
The proposed method sets a certain constraint on the
computation or memory while maximizing the importance
score I. The s-th importance score in the layer l, denoted as
I(l)(s) , is defined as

I(l)(s) =

s∑
j=1

Î(l)(j) , (7)

where Î(l) ∈ Rcout is the L2-normalized gradients along the
filter axis, sorted in the descending order. The objective of the
proposed gradient pruning method is defined as

max
c(1),...,c(L−1)

L−1∑
l=1

c(l)∑
s=1

I(l)(s)

s.t.
L−1∑
l=1

R(c(l−1), c(l)) ≤ τ

c(l) ∈ C(l), (8)

where c(l) =
∥∥m(l)

∥∥
1 is the remaining number of filters in

the gradient mask, R denotes the cost function, τ denotes
the cost costraint, c(l) denotes the remaining number of
filters in the mask at the current training step, and C(l) ={
8, . . . , 8

⌊
c(l)out/8

⌋}
is the possible number of remaining

mask filters. The pruning in the last layer L is not considered
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since it is essential to reconstruct the output. Then, the
optimization problem in Eq. (8) belongs to a classic 0-1
knapsack problem, and it is solved by the meet-in-the-middle
algorithm [34].

Consequently, the mask is trained such that the sum of
the total gradient is maximized while satisfying the cost
function R. The cost function R is defined as the amount
of calculation used for the backpropagation and expressed
as

R(c(l−1), c(l)) = c(l)c(l−1) + c(l)c(l−1)out , (9)

where c(0) = c(1). Eq. (9) considers the cost for calculating
both activation gradient and weight gradient in the simplified
form. Specifically, the first term is the calculation cost of the
activation gradient propagating from layer l to the previous
layer l − 1, and the second term is the calculation cost of the
weight gradient in layer l.
Our cost-constraint optimization formula is modified to be

optimized for the gradient pruning, unlike the conventional
pruning method [35], [74], which was applied only to
the weight or simple optimization formula. Again, weight
pruning reduces the overall size of the network in inference,
while gradient pruning reduces the amount of computation
and memory resources that occur during training.

V. ONLINE TRAINING
A. RAPID INTERNAL LEARNING BASED ON GRADIENT
PRUNING
The zero-shot super-resolution is performed in the internal
learning step. The given input image ILR is downsampled
with its corresponding degradation kernel to generate Ison. For
degradation kernel, kernel estimation algorithms such as [75]
can be used. Few gradient updates with gradient pruning are
performed using a single pair of (ILR, Ison). The output SR
image is predicted by feeding the input image back to the
trained network.

The gradients are masked by the gradient masks m and
updated to the parameters θ as described in Eq. (6). Since the
pruned filters of the gradient are fixed, the pruned gradient
filters do not need to be calculated. Therefore, the input values
used for calculating the gradient of the corresponding filter
are no longer required, so they are removed. This reduces the
size of the resulting gradient tensor and also reduces the size
of the input tensor of the operation. In consequence, the meta-
learning parameters allow large performance improvement
within a few updates, and the gradient pruning reduces the
computation during training.

B. INTEGER-ARITHMETIC LEARNING
In the integer-arithmetic neural network, all values previously
expressed as FP are now expressed as 8-bit integer types
(INT8). Inspired by [18], we express one real number tensor
X ∈ Rn in two integer tensors: the value v ∈ Zn, and the
scale s ∈ Z, where n is the size of a flattened tensor into one

FIGURE 3. Comparison of distribution between static and dynamic
quantizations.

FIGURE 4. Gradient distribution collapses after scaling. Before updating
the weight, the scale of the gradient has to be matched with the scale of
weight. The distribution of the gradient is collapsed if the difference
between the two scales is large.

dimension. The quantization function Q is defined as

Q(X , s) =
⌊
27X/2s

⌉
= v, (10)

and the dequantization function DQ(v, s) is the reverse of the
quanziation function.

Generally, there are two ways to choose the scale in
Eq. (10): dynamic and static quantization. Dynamic quanti-
zation dynamically calculates the scale at run time. The scale
s for the dynamic quantization is expressed as

s = ⌈log2(max(|X |))⌉ . (11)

In contrast, static quantization fixes the scale s for each
tensor in advance. The scales are measured by feeding the
training dataset into the network in the offline stage and fixed
in the online stage. In detail, each scale for a given sample
is measured by Eq. (11), and the final scale is the maximum
scale over the dataset. Because it uses a fixed scale, further
computation for scale conversion does not take place.

As a result, the dynamic quantization allows the finer dis-
cretization based on the input distribution. The quantization
errors in the dynamic quantization are reduced compared
to the errors in the static quantization, as shown in Fig. 3.
We suggest using dynamic quantization, which shows better
restoration performance in our experiments.

The biggest difference from the existing integer neural
network is that both inference and training are performed in
the integer domain. Our integer model updates the integer
gradients to integer weights through backpropagation. The
scaling process is to match the scale of the gradient to the
scale of the weight, and it needs to be done before the update.
The value of scaled gradient vscaled is expressed as

vscaled = Q(DQ(vg, sg), sθ ) (12)

where vg denotes the value of the gradient, sg denotes the
scale of the gradient, and sθ is the scale of the weight. After
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TABLE 1. The average PSNR results on Set5 [76] degraded with Gaussian blur kernels followed by direct subsampling with ×4. The models are evaluated
after 10 iterations of internal learning.

TABLE 2. Acceleration rate of cost and memory for our proposed method.

the scaling process, the gradient update in integer arithmetic
is modified as

vθ ← Q(vθ − γmvscaled , sθ ) (13)

where vθ denotes the value of the weight, andm is the gradient
mask.

As shown in Eq. (12), the scaling is a trade-off between the
range of the scale s and the precision of value v. One has to
narrow the range for finer precision or vice versa. However,
when the difference between sg and sθ is large, the gradient
distribution is severely damaged, as shown in Fig. 4. This
phenomenon causes a problem in which the weights are not
updated or converged as intended.

To solve this problem, we propose storing the weight as
32-bit integers, denoted as θ̂ . The 32-bit weight θ̂ is expressed
with two integer tensors: the 32-bit value v̂θ and the 8-bit scale
sθ . The 32-bit integer value of the weight v̂θ is defined as

Q32(θ, sθ ) =
⌊
231θ/2sθ

⌉
= v̂θ , (14)

where Q32 is the quantization function for 32-bit integer.
Since v̂θ is stored at 32-bit, it allows for higher precision
compared to 8-bit weight. As a result, when scaling the
gradient, the distribution can be preserved without causing
any damage to it. More specifically, the stored 32-bit weight
is copied and converted back to 8-bit for the convolutional
operations during forward propagation.

In a general integer operation, the result of the back-
propagation is accumulated as 32-bit in the accumulator
and quantized back to 8-bit to obtain 8-bit gradients. The
proposed method preserves the 32-bit gradients v̂g without
quantizing back to 8-bit in the accumulator. As a result, the
scaling equation in Eq. (12) and the gradient update to the
8-bit integer weight in Eq. (13) are modified as

v̂scaled = Q32(DQ32(v̂g, sg), sθ ),

v̂θ ← Q32(v̂θ − γmv̂scaled , sθ ). (15)

It is worth mentioning that there is a method called
quantization-aware training (QAT) [16] that is used for

Algorithm 1 Offline Training
Input: High resolution dataset DHR, degradation kernel

p(k), and cost constraint τ
Input: α, β : learning rates
Output: Model parameter θ and gradient mask m
1: Pretrain θ with Dbic synthesized by bicubic downsam-

pling of DHR
2: Generate task distribution p(T ) using DHR and p(k)
3: while not done do
4: Sample task batch Ti ∼ p(T )
5: for all Ti do
6: Update adapted parameters θi with gradient
7: descent (Dtr ): θi = θ − α∇θLtrTi (θ )
8: end for
9: Update model parameter θ with Dte:
10: θ ← θ − β∇θ

∑
Ti∼p(T ) LteTi (θi)

11: end while
12: Synthesize Dgp
13: while not done do
14: Compute importance score I by Eq. (7)
15: Compute possible cost usingR in Eq. (9)
16: Find gradient mask m by solving Eq.(8) using
17: meet-in-the-middle algorithm [34]
18: end while

training a quantized network. However, this method trains
networks in a simulated environment on a server, and the
trained inference system is implemented on the edge devices
later. This means that it is a method developed for creating an
integer network that performs better in the quantized domain,
but it does not take into account the domain gap problem.
On the other hand, our proposed method solves the domain
gap problem by utilizing on-device integer arithmetic training
in actual edge environments.

VI. ALGORITHMS
The full offline training algorithm is outlined in Algorithm 1.
Lines 2-11 present the meta-learning process where the
model parameter is trained by the meta-objective. Lines 12-
18 are the gradient mask learning obtained by optimizing the
cost-constraint gradient pruning

Algorithm 2 demonstrates the process of online training.
Internal learning, gradient pruning, and integer-arithmetic
learning are all combined together to perform online training.
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Algorithm 2 Online Training
Input: LR test image ILR, meta-learned model parameter θ ,

gradient mask m, the number of gradient updates n and
learning rate γ

Output: Super-resolved image ISR
1: Compute 32-bit model parameter θ̂ by quantizing θ by

Eq. (14)
2: Generate LR son Ison by downsamplingwith correspond-

ing degradation kernel
3: for n steps do
4: Quantize activations using Eq. (10)
5: Evaluate loss L(θ̂ ) = ∥ILR − Fθ̂

(Ison)∥1
6: Update model parameter θ̂ using Eq. (15)
7: end for
8: return ISR = Fθ̂

(ILR)

As a result, the final super-resolved image ISR is obtained
after a few gradient updates n.

VII. EXPERIMENTS
A. TRAINING DETAILS
We adopt an 8-layer CNN architecture with residual learning,
which is the same network used in ZSSR [9] and MZSR [53].
However, all biases in the architecture are removed, which
makes the number of parameters 225K. DIV2K [73] is
used as the training dataset, and we set the extracted image
patches to 64. We employ ADAM optimizer [77] to meta-
train the network and employ stochastic gradient descent
(SGD) optimizer for the rest. Also, the bicubic method [45],
[50] is used for subsampling. Our method is evaluated by
measuring the Y channel of YCbCr colorspace with famous
super-resolution benchmarks: Set5 [76], BSD100 [78], and
Urban100 [79]. For the experimental setting for online
training, the ground-truth degradation kernel is used to
estimate the degradation kernel of the input image. However,
existing off-the-shelf kernel prediction algorithms such as
DCLS [75] can be used in actual usage. All of our
experiments are conducted in Pytorch environment [80].

B. RESULTS
To show the efficacy of the proposed method, the average
PSNR is measured on Set5 [76] degraded with Gaussian
blur kernels and downsampled by ×4. The result is shown
in Table 1. As a result, the pre-trained model trained with
the degraded datasetDmeta shows slightly better performance
than the model trained with the bicubic dataset Dbic.
Obviously, the degraded dataset is close to the test dataset
compared to the bicubic dataset, so it is essential to choose the
training dataset close to the test environment if it is possible.

Next, the initial PSNR of the pre-trained model is 29.26dB,
which is higher than bicubic interpolation (27.41dB) and our
proposed method’s initial point (16.25dB). After the internal
learning, the PSNR of our proposed method increases to
30.11 dB. The results show that meta-learning successfully

TABLE 3. Average PSNR results of static and dynamic quantization
applied to the different networks on Set5 with ×4.

allows the models to quickly adapt to the degradation of the
input image.

Our quantization method is applied to the pre-trained
model and our proposed model. The pre-trained model yields
29.64dB, which is decreased by 0.12dB compared to the FP
model, and our proposed model shows 29.89dB, which is
decreased by 0.22dB. As a result, both quantized models
are successfully trained in the integer domain. Therefore,
our method reduces the quantization errors and prevents the
models from being collapsed during integer training.

Computational costs and memory usage in internal learn-
ing are calculated to evaluate the effectiveness of our gradient
pruning method applied to the models. The calculation of the
memory used for backpropagation is theoretically acquired
by

Memory =
∑
l

(h(l)w(l)c̃(l)outbitF + c̃
(l)
out c̃

(l)
intbitθ

+ h(l)w(l)c(l)in bitF )/8, (16)

where h and w are the height and width of the intermediate
feature maps, respectively, c̃in and c̃out are the number of in
and out-channels after pruning, respectively, and bitF and
bitθ are the bit of the network without the weight and the
weight, respectively. For the experiment, the height and the
width are set to 32, and the original network is calculated with
all bits set to 32. The cost of backpropagation is calculated by

Cost =
∑
l

bitF {h
(l)w(l)c(l)in (2c̃

(l)
out − 1)

+ c̃(l)in c̃
(l)
out (2h

(l)w(l)
− 1)}, (17)

which is similar to the calculation of multiply-accumulate
(MAC).

The effectiveness of our gradient pruning method is
evaluated as shown in Table 1 and Table 2. At 27% and
50% pruning ratio, the PSNRs are decreased by 0.04dB at
most compared to the unpruned models. In addition, the
cost is accelerated by ×6.20 for the pruning ratio of 50%,
and the memory is reduced by ×5.25 compared to the FP
model. In an extreme setting, our proposed model in our
8-bit environment at a pruning ratio of 85% shows 29.79dB,
and it is 0.1dB lower than the unpruned model. Consequently,
our gradient pruning shows that it is able to accelerate the
cost and the memory usage during internal learning while
preventing the domain gap problem even in an integer-
arithmetic environment.

The visualizations in Fig. 5 match with the former result.
The resulting images of the pre-trained model show that
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FIGURE 5. Visualization of the initial point and after 10 iterations of each model. Top row images are trained with Dbic , and bottom row images
are trained with our offline and online training process.

TABLE 4. Average PSNR results on integer-arithmetic super-resolution
model trained on Dbic with ×4 and without meta-learning and online
learning.

TABLE 5. Comparison of gradient memory during backpropagation
between FP model, standard 8-bit model, and our proposed integer
model. The size of height and width is fixed to 32.

the restoration performance improves after internal learning.
However, our proposed method shows better restoration
performance in the end after internal learning, even if the
initial images have artifacts. In addition, the images in our
8-bit environment improve after internal learning in both the
pre-trained and ours, which means that our integer-arithmetic
learning successfully reduced the quantization errors.

VIII. DISCUSSIONS
A. INTEGER LEARNING
Depending on quantization methods, the distribution is
modified differently, and dynamic quantization can effec-
tively prevent degradation caused by quantization errors
compared to static quantization. Fig. 6 compares training
losses between static and dynamic quantization on a standard
8-bit network and our 8-bit network from scratch using
Set5 as a train set. The loss indicates that dynamic versions
converge better than static versions, which also means
that dynamic quantization has smaller quantization errors

FIGURE 6. Comparison of training loss between the standard 8-bit and
our 8-bit method with static or dynamic quantization.

compared to static quantization. Table 3 shows the restoration
performances after training, and both results indicate that
PSNR with dynamic quantization is higher than that with
static quantization, as expected. In particular, the dynamic
version of the standard integer network has 0.34dB higher
PSNR than that of the static version. When it is applied to our
integer network, the PSNR is 30.75dB, which is very close to
that of FP version 30.83dB. Thus, dynamic quantization is
suitable for handling quantization errors during training by
keeping the highest precision at all times, and it is used as a
default setting.

Again, our proposed 8-bit network is compared to the
standard 8-bit network trained from scratch with Set5 in
the aspect of the training loss. When the 32-bit weight is
applied to the 8-bit network, the training loss converges
more effectively, as shown in Fig. 6. Our 8-bit network
with dynamic quantization converges the best, whereas others
have already saturate in the earlier step.

Our proposed network trained from scratch is evaluated
on various SR datasets in a bicubic downsampling scenario,
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TABLE 6. Comparison of restoration performance between our gradient pruning model and layer-wise model. K % of the front layers are pruned for the
layer-wise model so that it performs similarly to fine-tuning. PSNR is measured after 10 iterations of internal learning.

TABLE 7. Comparison of acceleration rate between our gradient pruning
model and layer-wise model in terms of cost and memory.

as shown in Table 4. In all cases, our network shows better
performance than the standard 8-bit network. Furthermore,
its PNSR is close to that of the FP version. For Set5, the
FP model shows 30.83dB while the 32-bit weight network
yields 30.75dB, which is very close to the original version.
Therefore, applying 32-bit weight and dynamic quantization
can be an effective method from the viewpoint of reducing
degradation due to quantization errors for the SR tasks.

Memory usage for the network with 32-bit weight and with
the standard 8-bit is calculated, as shown in Table 5. The 8-bit
network reduces memory usage by 4, while the 32-bit weight
network reduces by 3.51 compared to the original. Using
the 32-bit weight allows the recovery of image restoration
performance at the cost of small additional memory usage.

B. GRADIENT PRUNING
Our method is compared to layer-wise pruning to test the
feasibility. For layer-wise pruning, K% of the front layers
are pruned such that the last layers are trained for fine-
tuning. The results in Table 6 show that our method has better
restoration performance in all pruning ratios. In particular,
the PSNR of the layer-wise model at 50% pruning ratio
is 29.49dB, whereas our method is 0.25dB higher. In this
observation, our gradient pruning successfully distinguishes
between the important and the redundant gradient filter from
the optimization.

Computational cost and memory usage are calculated to
test the reduction in resource usage during training. The
result is shown in Table 7. The cost and the memory of the
layer-wise model and our proposed method show the close
acceleration ratio in a similar pruning ratio. At 50% pruning
ratio, the cost and thememory of the layer-wise are×1.49 and
×1.42, respectively, whereas those of the proposed method
are ×1.52 and ×1.37. The cost of the proposed method at
50% is more accelerated compared to the layer-wise method,
and their performances in the memory show the opposite
aspects. The aspect is due to our cost-constraint gradient
pruning algorithm, which allocates the sparsity of the mask
between layers for better restoration performance at specific
cost constraints.

FIGURE 7. Sparsity investigation of the different pruned models
according to the depth of the layer.

The sparsity of each layer in our gradient pruning
method is investigated, as shown in Fig 7. Obviously, the
models of higher pruning ratios have more sparse masks
overall. Particularly, the first layers of the models have a
sparse mask compared to the masks in the other layers.
Our cost-constraint gradient pruning method penalizes the
computation happening at the earlier layers because the
pruned masks in the earlier layers generally reduce more
resources than the later layers. The second and third layers
show less sparsity compared to the other layers, which could
be a further research topic.

C. META-LEARNED INITIAL POINT
We visualized the result at the initial point and after
10 gradient updates between the network trained with Dbic
and the network meta-learned withDmeta in Fig. 5. The result
of the network trained with Dbic at the initial point shows
decent quality compared to that of the meta-learned network,
and the performance slightly improves after the gradient
updates. Obviously, it is targeted for super-resolving images
with bicubic degradation at the inference, and it does not
consider adapting and super-resolving images with unknown
degradation.

On the other hand, the image at the initial point of the
meta-learned network is distorted to a degree. To explain
the case, the meta-learned initial point is where the network
can easily adapt to various degradations in a few gradient
updates, and it does not aim to super-resolve the given
image without adaptation. Accordingly, it quickly adapts to
the given image with unknown degradation after gradient
updates. Also, the report in [53] showed similar results for
the initial point, which can be seen as the characteristics of
MZSR [53].
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IX. CONCLUSION
In this paper, we have proposed an efficient, lightweight,
on-device learning framework for super-resolution neural
networks. We achieved this by combining meta-learning,
gradient pruning, and integer-arithmetic learning, to over-
come the domain gap problem. Our proposed method uses
32-bit integer weight instead of 8-bit weight, which helps to
overcome the distribution collapses due to the scaling process
during updating weights. Also, we use dynamic quantization
to reduce quantization errors during training. We use cost-
constraint gradient pruning to accelerate the training process
and reduce resource usage, while optimizing the restoration
performance under a certain cost. Lastly, we combine meta-
learning to adapt to the degradation of the given input images.
In future work, we plan to implement the proposed system
into hardware that is ready to be implemented into an edge
device.
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