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ABSTRACT Emotion&speech-based human facial animation technique can be considered as a useful
application in many artificial intelligent systems. Given a speech signal, the recognizer output a sequence
of the phoneme and emotion pairs. Thereby, we calculate the sequence of viseme and expression pairs
accordingly, which are subsequently transformed to a consistent and synchronous video describing facial
animation. This article introduces a novel facial animation technique that can intelligently generates real
human face animation videos by leveraging an emotional speech. More specifically, we first extract acoustic
features sufficiently discriminative to the emotion and phoneme pairs. And the corresponding sequence
of phoneme and emotion pairs are computed. Next, we propose a low-rank active learning paradigm for
discovering multiple key facial frames that can best represent the above phoneme and emotion pairs in
the feature subspace. We associate each phoneme and emotion pair with a key facial frame, based on
which the well-known morphing technique fits the associated key facial frames to a smooth animated facial
video. We focus on generating multiple transitional facial frames between pairwise temporally adjacent key
ones. Experiments demonstrated that the synthesized facial videos look real, smooth, and synchronous with
different male/female speeches.

INDEX TERMS Facial animation, low-rank, feature selection, morphing, active learning.

I. INTRODUCTION
Synthesizing facial animation video using human speech [1]
is an important technique that is pervasively applied in mod-
ern AI systems. As an example, this technique is helpful for
fully/partially hearing impaired people recognizing speech in
noisy environments. Besides, it is significant for synthesizing
human lip movements, which is a widely-used technique in
virtual reality. Further, as a computer-assisted multi-person
communication tool, speech-guided human facial animation
(e.g., AppleMemoji) is becoming a useful interface for online
chatting in remote collaborative circumstances.

In the literature, a rich variety of facial animation
frameworks have been proposed. We can boardly catego-
rize facial modeling and animation techniques into two
classes: geometric manipulations-guided techniques and
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image manipulations-guided techniques. Geometric manip-
ulations include the following techniques: key-framing and
geometric interpolations [2], [3], parameterizations [4], finite
element methods [5], modeling using facial muscless [6],
pseudo-muscle-based facial animation [7], spline-guided
approaches [8], and free-way deformations [9]. Compara-
tively, image manipulations denote techniques like image
morphing between pairwise photographic images [10], tex-
ture manipulations [11], image blending [12], and vascular
expressions [13], [14]. These video animation techniques
are practically guided by tracking/localizing visual features
or animation driven by performance [15]. In spite of the
various aforementioned methods, there are still challenges to
implement them into an emotional speech animation system
satisfying real-world requirements:

• Many approaches need complicated human interven-
tion in the model training stage. For example, the
system designers have to determine the key frames
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FIGURE 1. Pipeline of the proposed speech-driven real human facial animation system.

corresponding to each phoneme/emotion tag and how
many key frames need to be employed. Such human
intervention makes the accuracy of synthesized facial
video intolerantly dependent on the domain knowledge
of system designers. In practice, we expect a fully
automatic training stage of the facial animation system,
wherein no strong domain knowledge is needed.

• Owing to the popularity of portable devices like Apple
Watch andGoogle Pixel, more andmore communication
Apps are developed on mobile platforms, e.g., Skype
and Facetime. This stimulates the demand of developing
facial animation systems on mobile devices. However,
due to the limited computational capability, it is
difficult to develop a real-time mobile facial animation
App. Besides, no optimization have been proposed to
transform an off-the-shelf desktop animation system
onto mobile platforms.

• Most of the previous facial animations are based on
2D/3D cartoon figures. Toward a more natural human-
computer interface, animation based on real human
faces is preferred. This is a challenging task because
illumination, expression, and head position are difficult
to control when synthesizing a real human face. This
factors may lead to an unnatural face as shown in
practical speech animation systems.

To tackle these difficulties, we design an emotional speech
driven facial animation system that is trained in a fully
automatic way. Moreover, the animation system is based on
a real human face and can execute in real-time on mobile
devices. The flowchart of our designed animation system in
Fig. 1, which can be divided into three main components.
Part 1: For each recorded human speech with emotion,
the six well-known acoustic features [16] (e.g., MFCC
and LSF) are extracted in the first place. Thereafter, our
phoneme and emotion pairs from an emotional speech can be
rapidly and accurately calculated by a multi-label classifier.
Part 2: To match one phoneme emotion pair with a selected
representative faces, a low-rank active learning technique is
leveraged to discover multiple key facial images from the
recorded videos during training. In our implementation, these
videos are recorded by a volunteer from our Department.
She is a native Mandarin/English speaker. Herein, we divide
each video into multiple sentences, each associated with an

specific emotion (i.e., ‘‘happy’’, ‘‘surprise’’, ‘‘sad’’, ‘‘angry’’,
and ‘‘neutral’’) are used to speak the sentence. Our proposed
low-rank active learning algorithm is effective since it
exploits the underlying distribution of facial frames from a
video. Part 3: After matching the key facial frame to each
phoneme and emotion pair, toward a smooth synthesized
video, the morphing [35] technique is adopted to produce
a set of intermediate frames between key facial frames that
are temporally adjacent. To make our synthesized facial
expressions seemingly natural, illumination compensation is
applied to each facial frame.

Totally, our work has the following advantages: 1) an
intelligent platform for real human facial animation, which
is trained with little human intervention; 2) leveraging an
active learning paradigm for calculating key facial frames
from multiple recorded training videos; and 3) our system is
a general that can be trained from an arbitrary human face.

II. RELATED WORK
The proposed system is basically relevant to two topics
in modern artificial intelligence systems: 1) recognizing
emotion and phoneme using human speech, and 2) speech-
driven facial animation technique.

A. EMOTION AND PHONEME RECOGNITION BY SPEECH
Identifying emotion and phoneme pairs based on human
speech [16], [17] aims to understand human affective
attributes of each utterance by analyzing the acoustic
features engineered from human speeches. Practically, we can
formulate this task as a speech clip categorization problem.
To accurately and fast categorize different speeches into
emotion and phoneme pairs, researchers proposed a couple
of acoustic features. In the literature, machine learning
researchers proposed probabilistic generative models, e.g.,
Latent Dirichlet Allocation (LDA) and Long Short-Term
Memory (LSTM), to exploit the underlying distribution of the
aforementioned acoustic features. Afterward, they deployed
the softmax layer or the maximum posterior probability
estimation to recognize different emotion and phoneme
pairs [18], [19]. Another line of research focused on deriving
the so-called background models from the acoustic repre-
sentations, based on which the supervectors are calculated
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for categorization [20], [21]. Such categorization pipeline
has been pervasively utilized in domains like speakers local-
ization. Some researchers designed statistical algorithms to
learn the distribution of the acoustic representations. Herein,
the globally calculated statistical distributions are leveraged
to classify each emotion and phoneme pair. In practice,
support vector machine is treated as the most popular tool
for classify such global acoustic representations [22], [23].
Meanwhile, different classifiers, e.g., random forest [24]
and softmax [25], are also pervasively applied in speech-
based emotion and phoneme understanding. Noticeably,
however, the above methods largely rely on the possibly
high-dimension andmanually-designed acoustic features that
are selected by some prior knowledge.

B. FACIAL ANIMATION VIDEO DRIVEN BY SPEECH
In the literature, the synthesization of an aesthetically
pleasing facial video based on a the input human speech
was investigated comprehensively. Herein, an extensive
review of the previously published speech-guided facial
video synthesization is provided in [26]. The authors [27]
attempted to transform the two dimensional facial frames
into a natural facial video by rebuilding the 3D facial frames
using a morphing technique. Thereafter, they calculated
a so-called expression+viseme feature space using the
above synthesized 3D faces. The authors [28] proposed a
speech-driven-lips framework that simultaneously constructs
human speech co-articulation as well as the expression-
guided eigenspaces. A rich set of other methods [29] were
designed so as to produce expression-guided speech videos.
In [30], the authors proposed to intelligently predict lip-based
movement trajectory using human speech. The designed
system accurately calculates human lip movements from
the original human speech. Simultaneously, it can optimally
produce video animation trajectory by leveraging the well-
known HMM. The authors established a real-time framework
for automatically generating speech-guided facial gestures in
virtual contexts. More specifically, the method can produce
gestures such as multiple nods/ head movements and eye
blinks. The system is practically realized by incorporating
HMM, multiple pre-defined crteria, as well as some statistic
distributions. In conclusion, the above discussed facial
animation pipelines are not particularly designed toward
mobile platforms. Besides, to our best knowledge, only a
few animation pipelines can synthesize real-world human
faces. Evenworse, they cannot rapidly reduce the sub-optimal
illumination.

Besides, In [31], Yuan et al. presented crucial insights into
active learning applied in a visual context, particularly in
tracking applications. Based on active learning, the proposed
CNN-guided visual tracker can be conveniently trained by
leveraging a highly diverse set of training video frames.
In [32], Ren et al. systematically summarized the existing
deep active learning algorithms, associated with a compre-
hensive overview. They also presented the development of
deep active learning in different vision applications.

FIGURE 2. Left: the active shape model (ASM) model of a human face;
Right: projecting ASM facial features from all the facial frames (red dots)
onto manifold.

III. OUR APPROACH
A. ACOUSTIC FEATURES EXTRACTION
In our implementation, for a male/female speech set,
the entire feature combination is constructed by multiple
well-known acoustic feature dimensions, that is, pitch,
log energy, 3 format frequencies, 11 MFCCs, 16 PLCCs,
and 9 LSFs. We choose these acoustic features by cross
validation. The above 41-dimensional features are utilized to
train a multi-label classifier to classify each speech sentence
into the corresponding phoneme and emotion pairs. Such
pairs are utilized for synthesizing the speech-drive facial
animation video subsequently.

B. ACTIVE LEARNING FOR KEY FACES SELECTION
In order to build an optimal facial animation framework,
we typically record facial videos of a male/female speaking
English or Chinese during the system training stage. It is
observable that each video practically has large number of
facial frames. Practically, it is non-trivial to detect facial
frames which can best associate the phoneme and emotion
pairs. Previous AI systems typically employ pre-specified
key facial frames, which might be sub-optimal. Herein,
we select the key faces by leveraging a novel active learning
paradigm that are conducted in a completely automatic way.
In our implementation, the speech videos are captured by
a Mandrin speaker in a well-established recording studio.
Totally, we obtain 105 recorded speech videos, each lasts
about 420 seconds.

Theoretically, we treat active learning as a sample selection
paradigm, wherein multiple criteria were developed to select
highly representative sample. For our system, we discover
multiple key facial frames based on the aforementioned
recorded speech videos. Herein, the objective is that the
discovered key facial frames are best representative to frames
from the recorded speech videos.

Denote A = [α⃗1, · · · , α⃗n] ∈ R58×N as a collection of
facial video frames distributed on the underlying subspace.
Herein,N counts the training video frames. The objective is to
conduct subspace learning and active frames selection jointly.
We denote B ∈ R58×K as the selected K representative
frames.

In theory, we still adopt the strategy of minimizing the
overall reconstruction loss in the original space to select the
most representative samples. To this end, we take advantage
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of the following objective function:

minR∈RN×N ||A − AR|| + λ||R||l, (1)

Herein, λ ≥ 0 measures the significance of our designed
regularizer. For the above objective function, the left term
attempts to maximally rebuild the input facial frames,
wherein R is a matrix containing the rebuilding parameters.
Meanwhile, Meanwhile, the right term represents a pre-
defined regularizer with a particular matrix norm. Herein,
the objective is to acquire the top K key facial frames,
and thus the rebuilding terms toward the top K key frames
should be heavily weighted. In contrast, the remaining NK
unselected facial frames should be lightly weighted. Taking
a very particular case as an example, when all elements of
one row in R become zeros, that means these facial frames
are not recognized as the key facial frames. This is because
they are considered to have no contribution to rebuild the rest
facial frames. In this way, R is a matrix that is sparse in row,
as each row measures the importance of each facial frame in
rebuilding the remaining ones.

Toward a row-wise sparse matrix R, it is straightforward
to upgrade term ||R||l into term ||R|| + 2, 1 or term ||R||∞.
In our implementation, term ||R||2,1 is deployed. In practice,
we notice that term ||R||∞ is also an appropriate choice.
In theory, R has two key contribution in the above objective
function. i) a matrix containing the rebuilding parameters
and each column functions as the linear combination of the
key facial frames to rebuild a new one; and ii) a matrix
for representing itself. That is, each column ri ∈ RN is
considered as a feature for representing α⃗i. Herein, we treat
A as an unknown dictionary.
As we mentioned, the facial frames are practically

distributed on the underlying subspace hidden in a high-order
feature space. In this way, R is constrained to be a low-
rank matrix, based on which the above objection function is
updated as follows:

minR∈RN×N ||A − AR|| + λ||R||2,1 + ηrank(R), (2)

where η ≥ 0 denotes a weight to the corresponding term.
rank(·) calculate the matrix rank. We minimize term rank(R)
to achieve a low-rank matrix R. Therefore, we can recover
the low-rank geometry from the input matrix. Practically,
we notice that the above objective function is NP-hard.
Instead, we update rank(R) to the well-known nuclear norm
of matrix R [33]. This makes the problem a convex one, that
is,

minR∈RN×N ||A − AR|| + λ||R||2,1 + η||R||∗, (3)

Herein, ||R||∗ denotes the nuclear norm implemented for
the aforementioned rank function. Details of the solution is
presented in [34]. By leveraging the calculated R, we acquire
K representative frames to represent each facial video.

C. ANIMATION VIDEO GENERATION BY MORPHING
For one second, we practically generate three phoneme and
emotion pairs. The three pairs have three corresponding

FIGURE 3. Coordinates mapping from the source image to the destination
one.

key frames accordingly. In practice, three frames for each
second cannot ensure a smooth and natural synthesized facial
video, i.e., 24 frames for each second. Herein, the well-
known morphing [35] algorithm is leveraged for calculating
the intermediate faces for pairwise temporally adjacent key
frames.

Given two key facial frames as shown in Fig. 3, morphing
combines them by cross-dissolving their corresponding
image pixels (e.g., pixels from the lips in the two key
facial frames in Fig. 3). Before this, we have to locate the
corresponding pixels between pairwise key facial frames.
Given a pair of corresponding lines PQ and P′Q′ from the
destination and the source frames respectively, a mapping can
be derived from the coordinate of the destination frame pixel
X to that of the source frame pixel X ′:

u⃗ =
(X − P) · (X − P)

||Q− P||2
, (4)

v⃗ =
(X − P) · Pen(X − P)

||Q− P||
, (5)

X ′
= v⃗ ·

Pen(Q′
− P′)

||Q′ − P′||
+ u⃗(Q′

− P′) + P′ (6)

Herein, Pen(·) returns the vector that is perpendicular to,
as well as the same length to the input vector. u⃗ is the direction
along the line PQ or P′Q′. v⃗ calculates the distance between
X (a pixel) and PQ (a line) (or the distance from X ′ to P′Q′).

Denoting O and O′ as the origins of the destination and
the source frames respectively, we can obtain X = O + dX .
By putting (4) and (5) into (6), we obtain:

X ′
= O′

+
dX · (Q− P)
||Q− P||2

· (Q′
− P′)

+
Pen(Q− P) · Pen(Q′

− P′) · dX
||Q− P|| · ||Q′ − P′||

. (7)

Based on the above derivation, given a destination frame,
we start from its origin O and map each of its pixel
coordinates to that of the source frame. Two directions of
increments are used: dX1 = (1, 0) and dX2 = (0, 1).
By locating the pixels in the destination key facial frame to

those in the source one, we use cross-dissolve to obtain each
intermediate facial frame. Denote g1(x1, y1) and g2(x2, y2)
as the RGB values of the corresponding pixels (x1, y1) and
(x2, y2) in the source and the destination frames respectively,
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FIGURE 4. An example of illumination compensation for the intermediate
faces.

the RGB value of a pixel in the intermediate frame is:

g(x, y) = k · g1(x1, y1) + (1 − k) · g2(x2, y2), (8)

where k ∈ [0, 1] is the interpolation coefficient. We set
k = 0.4 according to our implementation.

For our built animation system, we notice that our
synthesized facial skins might be visually inconsistent. The
inherent reason is the illumination discrepancy from the
original and target human faces. Practically, to tackle such
shortcoming, we adopt a lighting compensation scheme
during our pixel cross-dissolve stage, i.e.,

g(x, y) =
g2(x, y)

η · (g1(x, y) − ḡ1) + ḡ2
, (9)

where η = σ (g2)/σ (g1), σ (·) is the variance of the RGB
color in a frame, and ḡ is the average RGB color of a frame.
As shown in Fig. 4, the illumination compensation scheme
makes the facial skin in the animation video more consistent.

IV. EXPERIMENTS
In this section, we test our designed animation system using
three empirical validations. The first set of experiments step-
by-step evaluates the important modules in our animation
system. The second set of experiments evaluates the perfor-
mance our system under different parameter settings. The
third set of experiments visualizes the synthesized animation
video and some intermediate results.

Our facial animation system for testing is briefed as
follows. During the training stage, we collected 5,600 English
speech sentences. These sentences are recorded by five
males and three females, whom are from our Computer
Sciences Department. Each sentence lasts approximately
42 ∼ 550 seconds. To accurately describe each speech
sentence, 41 well-known acoustic features are calculated.
To label the emotion of each speech sentence, we employ
five different emotion labels (‘‘anger’’, ‘‘happiness’’, ‘‘neu-
trality’’, ‘‘sadness’’, and ‘‘surprise’’) and the pre-defined
44 phonemes (as shown in Fig. 5). To refine the speech
sentences, a pre-emphasizing stage is deployed, including
blocking and Hamming windowing.

A. IMPORTANT MODULES EVALUATION
1) LOW-RANK ACTIVE KEY FACIAL FRAMES DISCOVERY
Here, our adopted key facial frames selection algorithm
is compared with multiple well-known frame selection
algorithms, that is, online clustering key frames extraction

FIGURE 5. The viseme-phoneme for Chinese pronunciation (the red text
denotes the recognition accuracy of the phonemes).

FIGURE 6. Reconstructing accuracy by leveraging different techniques as
aforementioned (PM means the proposed method).

(OCFE) [36] using the same ASM [37]-based facial feature
as ours, dictionary selection based key frame selection
(DSVS) [38], and motion-based key frame extraction
(MKFE) [39]. OCFE first leverages a clustering algorithm
to categorize the frames to different centers. Thereby, the
remaining frames are progressively integrated to cluster.
DSVS formulates video frame selection as a dictionary
selection by seeking sparsity. A key-frame-based dictionary is
calculated, wherein the training facial videos can best rebuild
the calculated dictionary. For MKFE, we predict camera as
well as object motion features for extracting the descriptors.
Each video is subsequently decomposed into multiple clips
based on different motion types. Accordingly, multiple rules
are leveraged for calculating the key frames.

The key frames of the training facial videos are calculated
in the first place. As shown in Fig. 6, the accuracy of
key frames generated by different algorithms are reported.
The accuracies indicate how the key frames can rebuild the
entire facial frames during training. A high reconstruction
accuracy means that key frames produced the method can
optimally capture the training facial videos. Meanwhile, for
each counterpart, we notice that some key frames capture
each face with highly similar viseme and expression pairs.
This observation is different from the principle that key facial
frames must be evenly distributed and can effectively capture
the facial videos.
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FIGURE 7. Key facial frames reconstruction error by leveraging different
values of η.

2) MORPHING-BASED FACIAL ANIMATION VIDEO
In this subsection, our designed animation system is com-
pared with the facial systems proposed by Deng et al. [28],
Kshirsagar et al. [29], Hofer et al. [30], and Zoric et
al. [40] respectively. Noticeably, either accuracy or ranking
is an optimal choice for this task. The reason is that these
methods are practically highly complicated for each observer
to provide. In our implementation, we leverage the well-
known paired comparison for user study. We use it to test the
effectiveness of the proposed facial animation system. Paired
comparison means, we present pairwise videos produced by
two different facial animation systems to each subject, with
the same input speech sentence.We preserve the above testing
results in the so-called preference matrix. As displayed in
Fig. 6, the element in row ‘‘Hofer’’ and the column ‘‘Zoric’’
is 12. This indicates that 12 subjects prefer the video produced
from Hofer et al. than that produced by Zoric et al..

B. SYSTEM PERFORMANCE UNDER DIFFERENT
PARAMETERS
This subsection evaluates the performance of our system
under different parameter settings, that is, the parameter µ

in the active key facial selection.
We evaluate the reconstruction error under different values of
η in (2). We set the number of selected key facial frames K to
10, 20, 30, and 40 respectively. Then, we tune η from 0.01 to
0.1 with a step of 0.01. As shown in Fig. 7, the reconstruction
error is minimal when η = 0.05. This is because η reflects the
importance of preserving the distribution of the facial frames
in the training videos. Emphasizing too much on this property
will increase the reconstruction error.

C. VISUALIZATION OF THE FACIAL ANIMATION RESULTS
In this subsection, we visualize the intermediate results of our
facial animation system. First, we show the facial features
extracted by the ASM [37] model in Fig. 8. We deliberately
use left oriented faces and each face is not in the middle of the
video. As can be seen, the ASM model can accurately locate
the faces. Then, we present the intermediate faces generated

FIGURE 8. Human faces detected by the ASM model in the training facial
videos.

FIGURE 9. The intermediate faces (blue rectangles) generated by the
morphing technique.

FIGURE 10. An exmaple of a male-face-based video animation
framework.

by the morphing technique in our proposed system. As shown
in Fig. 9, the leftmost and the rightmost facial frames are
the original frames while the rest frames are generated by
morphing. It is observed that these generated faces look very
natural and quite real to human faces.

V. CONCLUSION
In this work, we design a novel AI system to synthesize
aesthetically pleasing facial videos by leveraging human
speech sentences. More specifically, high quality acoustic
features for recognizing phoneme and emotion pairs are
identified using a multi-label SVM classifier. Afterward,
we leverage a novel low-rank active learning algorithm to
recognize the key faces from the large-scale training facial
videos. By associating each emotion and phoneme pair with
a key face, the well-known morphing algorithm fits the key
frames into a smooth and natural synthesized facial video.
Empirical results have shown that our method is efficient and
effective. And it is learned in a completely automatic way.
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