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ABSTRACT The competitive edge of renewable energy depends on financial support from central planners.
An effective intervention with reasonable burden on taxpayers requires anticipating the choice of profit
maximizing investors regarding capacity installation and electricity generation from certain locations for
solar, wind and fossil-based power plants in response to technology, cost, price and incentive parameters. A
10-year generation expansion planning horizon is favored, during which capacity factors, cost projections,
and electricity prices remain reasonably predictable. Investment costs within the horizon are accounted
for using a depreciation model. Scenarios are considered for technology, costs, demand, wholesale prices
and depreciation rates for investigating outcomes of intervention by investment subsidies and generation
incentives. A mixed-integer model is devised for optimal investor decisions. Pareto analysis is conducted
for each scenario setting over the optimal solutions at different incentive and subsidy rates for wind and
solar plants considering three criteria: cost of intervention, renewable shares in installed capacity and overall
energy generation. Under a moderate scenario, sharing 20% of the commissioning and operation costs, the
central planner elicits nearly 30% increase in the shares of renewable plants in installed capacity to 72%,
and electricity generation to 80%. An overall optimistic scenario achieves 75% renewables with similar
interventions, while an overall pessimistic scenario attains 60%. Most of this variability is accountable to the
depreciation scheme, scenarios on renewable technology and cost are partially effective, while fluctuations
in demand, wholesale prices, technology and cost of the natural gas alternative are shown to have negligible
impact on outcomes of the intervention.

INDEX TERMS Generation expansion planning, incentive policies, mixed-integer programming, multicri-
teria, Pareto optimal, renewable energy.

I. INTRODUCTION
Growth in energy output is one of the core requirements for
economic development and social progress [1]. Electricity is
used in almost every daily activity and industrial application,
leading to a significant increase in energy demand driven by
increasing population, urbanization, industrialization, tech-
nological advances, and improved welfare. However, the
adoption of renewable energy sources to meet this escalating
demand has been slower in comparison. In 2015, 90% of
the energy demand was met by the production from fossil
fuels such as coal, petroleum, and natural gas (NG) [2].
This reliance on fossil-based resources raises concerns about
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depletion, population outgrowth, and, most importantly, the
environmental and health risks associated with them.

Renewable energy sources have the potential to meet
two-thirds of the global energy demand and contribute to
reducing greenhouse gas emissions, aiming to limit global
warming to 1◦C [3]. In alignment with this potential, there
has been a steady increase in the installed capacity of renew-
able energy modalities, particularly wind and solar energy.
According to the International Renewable Energy Agency
(IRENA, see Table 1 for a list of acronyms, abbreviations
and notation used), renewable energy resources accounted
for a quarter of worldwide electricity production in 2017
[4]. Unfortunately, this proportion falls short of what is
required to effectively address global warming and environ-
mental degradation. Despite three years of constant levels
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TABLE 1. Acronym, index, parameter and variables of the mixed-integer programming problem, and their definitions.
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TABLE 1. (Continued.) Acronym, index, parameter and variables of the mixed-integer programming problem, and their definitions.

from 2014 to 2016, CO2 emissions due to energy production
increased by 1.4% in 2017. A critical barrier to this transition
is the high initial commissioning and capacity installation
costs for renewable power plants [5].

Numerous studies have analyzed policies and programs
for the development of renewable energy, discussing the
effectiveness of these programs and optimizing incentive
policies. Aquila et al. [6] compares various incentive policies,
including price guarantees and net meters, in the context of
Brazil, discussing the advantages and disadvantages of each.
Zhao et al. [7] systematically analyze incentive policies that
have contributed to the massive growth of renewable energy
in China, considering modalities such as wind, photovoltaic
(PV), small hydroelectric, biomass, and geothermal. The
study highlights the role of research and development sup-
port, financial/taxation, tariff, and other incentive programs
in ensuring the growth of renewable energy production.
Sheikhhoseini et al. [8] devise a tariff supportive scheme for
the growth of residential PV energy usage, pointing out the
increase in photovoltaics with increasing support. Yılmaz and
Öziç [9] emphasize the importance of exclusive renewable
energy incentives that should accompany geographic circum-
stances of the location.

Wiser and Pickle [10] provide insights to policymakers
on the important nexus between renewables policy design
and finance. Gifford et. al. [11] present recommendations on

the optimal characteristics of a model to calculate rates for
cost-based incentives and feed-in tariffs (FITs). Yılmaz Bala-
man et. al. [12] focus on the three main financial incentive
schemes to promote renewable energy sector in the United
Kingdom for electricity, heat and fuel production from renew-
ables, namely FIT, renewable heat incentive and renewables
obligation certificate, considering the fact that optimal pol-
icy design depends on effective analyses of the impacts of
incentives on the performance of renewable energy systems.
Marcantonini and Ellerman [13] analyze the German expe-
rience in promoting renewable energy over the past decade
to identify the ex-post cost of reducing CO2 emissions in
the power sector through the promotion of renewable energy,
specifically, wind and solar.

In addition to the policies aimed at transitioning to renew-
ables, several studies examine the measurement of the effects
of increasing renewable energy investments on the envi-
ronment and the economy. Zheng et al. [14] analyze the
reduction in CO2 emissions resulting from renewables using
quantile regression and pathway analysis. The results indicate
that each 1% increase in the share of renewables reduces
CO2 emissions by 0.028-0.043%. Li et al. [15] focus on
economic growth, applying a fixed effect test and panel
vector error correction model on South Asian Association
for Regional Cooperation countries covering the years 1995-
2018. The study compares geothermal, hydroelectric, and
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wind energy modalities, highlighting hydroelectricity as the
most promising renewable resource for promoting economic
growth. Inglesi-Lots [16] takes a combined perspective on
welfare and growth. The analysis in this study, based on panel
data, indicates that renewable energy has a significantly pos-
itive effect on economic growth, emphasizing the importance
of renewable energy incentives not only for environmental
concerns but also for economic growth. Zhao et al. [17]
additionally consider social acceptance and commercializa-
tion factors alongside economic and environmental aspects,
comparing geothermal, wind, biomass, and solar modalities.
The study suggests that hydrogen is the most effective energy
resource, with its production based on wind energy effec-
tively meeting demand and replacing fossil resources.

Bekar [18] takes a geopolitical perspective on the effects
of investments in renewables and notes that geopolitical risks
involved slow down the transition. Marks-Bielska et al. [19]
investigate views of the society on renewable energy and find
that the high initial costs of equipment purchase and instal-
lation are major barriers for transitioning to renewables. The
authors suggest incentives on investment and tax subsidies as
a remedy.

There are several models that approach renewable invest-
ments from firm dynamics, microeconomic analyses and
financing aspects. Nie et al. [20] approach promotion
of renewables by an investigation of bank loans accom-
panying government subsidies under a microeconomics
model. Castillo-Ramirez and Mejía-Giraldo [21] devise a
mixed-integer programming (MIP) model for optimizing the
generation portfolio of a company including renewables to
minimize the income tax that the company incurs. Shrimali
and Baker [22] model firm dynamics in a multiperiod setting
where myopic investors base their decisions on the levelized
cost of energy. They model investor behavior and technology
change for the reduction of greenhouse gas emissions under
dynamics of learning-by-doing and economies-of-scale. Gar-
cia et al. [23] formulate dynamics for FITs and renewable
portfolio standards (RPS). While FITs aim to incentivize,
RPS encourage or directly mandate certain levels of renew-
able share in generation. The study points out that RPS and
incentives should be well tailored to specific modalities and
target sites in order to promote renewable without hindering
certain sites of social value and conventional modalities.

The spectrum on the design of policies for increasing
installed capacity and generation from renewable energy
modalities, along with their regulation in the energy mar-
kets, involves governmental interventions for facilitating
efficiency and viability of renewables in the energy mar-
ket with trading mechanisms, aiding investors to cope
with risks involved in renewables, or increasing profitabil-
ity of renewables with FITs [24]. Where FITs may cause
overcompensation due to drift of market prices beyond expec-
tations, particularly causing inefficiencies when prices are
low [20], variable compensation mechanisms such as feed-
in-premiums (FIP) are considered. It is not uncommon that
incentives such as FIT and FIP are also referred to as

production or generation subsidies, that is, compensated by
the government based on the amount produced (often in
megawatt-hours -MWh). The other kind, subsidies paid with
respect to the capacity installations (in megawatts -MW,
or megawatts-peak) can be called capacity subsidies. These
subsidies can be used for direct effect: The former can be
used for a direct effect on aims regarding externalities of
generation, such as reducing greenhouse gas emissions, and
increasing market share of renewables in the electricity sup-
ply and the latter can be used for aims involving capacity
installation related externalities, such as learning spillovers or
learning-by-doing, that is, improvement of technology with
increasing installations and hence reducing costs [25], [26].
While, generation subsidies are more effective in increasing
renewable shares in the market output, Ying et al. [27] discuss
that taxation of non-renewables for subsidizing renewables
is important for renewable transformation, however it is
important to keep the renewable energy generating companies
within a competitive setting for energy efficiency and lower
prices for consumers. A good policy design should differen-
tiate with respect to modalities, with specific subsidy rates
for PV and wind, in order to avoid overproduction in one
modality. This, achieves efficiency with reducing intermit-
tency problems and reduces dependency on storage systems
that compensate for overproduction [28].
Various studies suggest optimal plans for energy invest-

ment, management, and production. Zhou et al. [29] under-
take the problem of ‘‘generation expansion planning’’ (GEP)
with a bilevel model. The lower-level program involves
a cost minimizing agent planning capacity expansions on
coal power plants, wind power plants, alongside consid-
ering capacities of the coal transportation and electricity
transmission networks, in order to meet electricity demands
on nodes. The higher-level program minimizes the cost of
the intervention program, which involves taxes on variable
operation and maintenance (O&M) costs for existing and
new coal plants along with subsidies on variable O&M
and fixed O&M costs for existing and new wind plants.
Additionally, taxes for new coal plant installations and sub-
sidies for new wind plant installations are considered. Dang
et al. [30] include constraints on emissions and share of
renewables in energy portfolio in their GEP model, consider
subsidy/penalties on investment, operating costs of installed
capacities and electricity generation costs. The cost minimiz-
ing investor is directed to renewables by policy intervention,
and heuristic approaches are used to tackle the problem with
a large number of integer variables. Huang et al. [31] con-
sider optimal electricity production portfolios under demand
uncertainty with the aim of minimizing costs. Niknam et
al. [32] jointly minimize costs and emissions by modeling
output, demand, and prices under a stochastic programming
framework. Shiina and Birge [33] also devise a stochastic
model for scenario-based optimal solutions under uncer-
tainty, with a focus on cost minimization. Their model seeks
investment and capacity installation plans to meet increasing
electricity demand while minimizing costs. Karimi et. al. [34]
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discuss production tax credit alternatives, incentives that are
functions of plant capacity and the biomass cofiring ratio.
Ko et. al. [35] evaluate the effect of imposing a renewable
energy certificate incentive in off-peak periods on mitigating
wind power fluctuations. Here, batteries are utilized with the
purpose of improving reliability and increase profits from
the sales of energy. Saeidpour Parizy et. al. [36] propose a
co-optimization algorithm to find the minimum incentives
that result in the desired level of renewable energy source
penetration in energy supply chain and optimal distribution
of power sources in the electric power grid.

A problem receiving attention in renewable energy incen-
tive analysis has been the coping with intermittency problem
and curtailment, when solved renders renewables more effi-
cient and increases their penetration. Regulation of and
incentives for reducing intermittency is critical [37], which
requires modeling the energy retail dynamics at a higher
temporal resolution. Choi and Lee [38] consider PV and wind
technologies and their impacts, in a setting where produc-
tion subsidies are used to plan the generation expansion in
Jiangsu, China for 2020-2050, which also considers flexibil-
ity requirements for handling variability and intermittency of
PV and wind renewable sources. Several studies address the
problem of variability, intermittency and uncertainty involved
in renewable energy plants with integration of energy stor-
age systems [39], electric vehicle systems [40], aspects that
can be incorporated into the generation expansion context.
When the penetration level of renewables is high, fluctuations
in renewable energy generation are dealt with by opera-
tion constraints, which increase utilization of renewables
in the grid [41]. The curtailment problem is solved within
a GEP setting adding regulation capacity and speed con-
straints that assures expanding generation meets regulation
requirements within generation and demand variations [42].
Another power system operation is unit commitment, hourly
planned and integrated into cost minimizing GEP involving
fossil fuel/thermal, hydroelectric and wind modalities reso-
lution, CO2 emission charges and allowances, and reserve
margin constraints [43]. One cost-oriented study considers
investment and operations of thermal, wind and PV plants
incorporating construction, share and utilization constraints
for renewables, and pointing out optimal capacities of con-
sidered modalities [44].
The motivation behind this study is to foster the growth

of renewable energy, providing incentives using limited
financial resources, particularly under the auspices of a
competitive setting with profit-seeking electricity genera-
tion companies. Our primary goal is to promote renewable
energy utilization through strategic deployment of the cen-
tral incentive program. However, certain limitations must be
acknowledged, including the absence of a stochastic model
for parameters, attributed partly to the discrete nature of
available data presented in extreme and moderate scenar-
ios. Another assumption in line with the data at hand is
nationwide wholesale electricity pricing. With local electric-
ity pricing and incorporation of transmission networks to the

model, an extension applying location specific incentives,
possibly incorporating transmission expansion planning (cf.
[45]), becomes feasible. Further constraints include the lack
of degradation models for generation equipment, as well
as limited temporal resolution aspects in unit commitment
and dispatching problems. We address these by assuming
reasonable average measures pertaining to the aggregate level
of planning undertaken in this study, presenting scenarios that
explore incentive program prognoses under a broad repre-
sentation of outcomes covering for fluctuations in aggregate
level parameters and details not incorporated. These scenarios
encompass extreme pessimistic and optimistic scenarios, and
combine multiple conservative/advanced ends of mathemati-
cal program parameters.

Existing studies that employ GEP with strategies for pro-
moting renewables have been closely examined, as presented
in Table 2. These studies vary in their incorporation of mod-
eling aspects, approaches to promoting renewables, solution
methodologies, and the use of real or synthetic data in case
studies. While common aspects such as the presence of wind
and solar modalities; MIP tools; multi-level modeling of
agency; and a combination of strategies such as FIT, FIP,
RPS, carbon tax, green certificate trading are evident; our
study stands out by profit-oriented considerations incorpo-
rating both production and investment subsidies. In contrast
to the prevalent cost minimization orientation, our approach
includes a multi-objective analysis, emphasizing cost of the
intervention, end-of-planning horizon installed capacity, and
the share of generation from renewables.

In contrast to findings presented in Table 2, our study
makes a distinctive contribution by integrating profit-oriented
considerations encompassing both production and investment
subsidies to facilitate renewable energy growth. We stand
apart by incorporating future electricity prices within a
competitive market framework, scrutinizing profit-oriented
investment and generation decisions, and adjusting produc-
tion incentives according to electricity wholesale prices. Our
multi-objective analysis focuses on program cost, installed
capacity, and the share of generation from renewables, further
emphasizing the uniqueness of our approach.

Central to our study is the incorporation of scenario-
based data, predictions of the future of energy technologies
across conservative, moderate, and advanced scenarios. This
approach addresses uncertainties inherent in the renewable
energy landscape, providing a comprehensive understanding
of potential outcomes under different technological advance-
ments and settings for evolution of the electricity market.

Our study recognizes the pivotal role of profitability in
attracting necessary finances for renewable energy invest-
ment, especially in developing countries. Given the chal-
lenges posed by uncertain energy market prices and high
initial investment costs, we emphasize the role of gov-
ernments in facilitating investment through direct financial
support in the form of subsidies for capacity installations
and electricity purchase price incentives. Our objective is to
devise an effective program that promotes significant growth
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TABLE 2. A table of related studies involving multiobjective GEP, renewable promotion or electricity market price modeling.
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in installed renewable capacity while concurrently incentiviz-
ing profit-maximizing energy companies to favor renewable
energy in their production.

The multiperiod GEP model developed in this study dis-
tinguishes itself through its emphasis on profit maximization.
This focus underscores the significance of devised electricity
purchase price incentives in augmenting fixed and variable
investment subsidies. Unlike the common approach in exist-
ing GEP models focusing on costs or restricting incentive
calculations to the amount of electricity generated, this study
integrates revenue generated from sales and incorporates
associated future price estimates, providing a more nuanced
perspective on the dynamics of renewable energy invest-
ments. Notably, the devised model exploits revenue-based
generation incentives, considering the drift in electricity
wholesale prices, rather than the quantity-based generation
subsidy factors employed in the existing literature.

A distinctive feature of this study is the relatively short
planning horizon of 10 years, requiring meticulous consid-
eration of depreciation rates for capital investment costs
in profit calculations. This approach acknowledges the
dynamic nature of technology and market conditions, making
long-term planning challenging. However, despite the shorter
time span, the analysis still accounts for capital investment
costs using a reasonable depreciation model that reflects
investor attitudes toward risk in project returns and the recov-
ery of investment costs. We explore this risk aversion aspect
under various scenarios by incorporating a flexible deprecia-
tion model.

Additionally, the investigation includes a comprehensive
case study on GEP with renewable incentive optimization in
the Turkish market. This dimension has not been explored in
the existing literature up to the knowledge and investigation
of the authors. The case exemplifies mid-latitude regions
abundant in high irradiation locations suitable for PV instal-
lations but having limited spots with intense wind. In such
cases, renewable transformation resorts to PV along with the
wind plant installations. This poses a challenge, given current
economic advantage of wind and the more costly endeavor of
incentivizing PV, necessitating a careful allocation of finan-
cial resources.

Moreover, the Pareto analysis of incentive and subsidy
policies introduces a novel dimension, evaluating their effec-
tiveness based on the total cost of the incentive program, the
share of renewables at the end of the planning horizon, and
the share of renewables in total electricity generation out-
put. This approach ensures a balanced consideration between
cost-effectiveness and the achievement of renewable energy
targets, embodying a forward-looking strategy against emis-
sions and environmental burdens associated with increasing
energy demand.

The remaining of the article is organized as follows.
Section II provides a definition of the GEP and elaborates on
the various aspects involved. Section III introduces the MIP
model formulated for the GEP, outlining the key parameters,
variables, and constraints. Section IV focuses on the data

collection and analysis process, including formation of sce-
narios for investment and O&M costs, capacity factors (CFs)
for potential power plant project locations, electricity demand
and pricing. This section also presents computational results
for the Pareto analysis of optimal solutions for different levels
of incentive and subsidies applied to wind and PV power
plants. The MIP model presented in Section III is used within
the framework of Section IV, starting with data collection
and analysis for forming scenarios, deriving optimal investor
behavior under each scenario and different incentive settings,
and analyzing Pareto optimal incentive policies for the deci-
sion making of the central planner. The workflow of this
framework is presented in Fig. 1. The paper concludes with
Section V, summarizing the findings and highlighting the key
implications of the study.

II. PROBLEM DEFINITION
In the GEP, the government has the role of a central planner,
aside from planning the incentive (incentive and subsidy are
used interchangeably and together are often referred to as
incentive(s)) program. Sites for the installation of energy
generation capacities for differentmodalities, includingwind,
PV, and the combustion turbine natural gas plant, are deter-
mined by the government, acting as a central planner. The
government also investigates and determines limits for max-
imum yearly capacity installation for each plant location.
Investors -who are actually represented by a single profit
maximizing agent- assess the cost components for capacity
installations and operation throughout the planning horizon,
along with the output and revenue potential to plan the
capacity installations for each modality and location. In the
planning horizon, spanning H years, the central decision
maker determines the subsidies for capacity installations,
fixed O&M expenses, and the electricity purchase price
incentives, expressed as a percentage of the respective trans-
action. Wind and PV power plants do not have variable O&M
expenses [46], as the periodic maintenance and cleaning
operations depend on their peak capacities (in ₤(Turkish
Liras)/MW/year), i.e., they are accounted as fixed O&M
costs.

The investor in the energy sector is treated as a single
agent who invests in renewable power plants and/or the con-
ventional natural gas power plant to meet the projected and
increasing demand while maximizing profit. Amixed-integer
programming model is formulated to analyze the investor
choice. The model investigates how specific levels of subsi-
dies and incentives in wind and solar energy impact capacity
installations in these modalities compared to fossil fuel-based
production throughout the planning horizon. It also examines
the effect incentives on the share of renewable modalities in
the electricity generation throughout the planning horizon.

The costs of electricity generation consist of three
components. Upon construction or capacity installa-
tion, fixed and variable costs are incurred. Fixed costs
(f ti , for location i, period t− Table 1 includes a list of
parameter and variables) cover administrative, design,
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FIGURE 1. The workflow for data collection, analysis, optimization, computation of Pareto efficient frontier and
interpretation of results. The optimization model is run for each combination of hyperparameters and scenario in the policy
and scenario sets, and for each scenario, Pareto optimal solutions in terms of incentive program cost, end-of-horizon
installed renewable capacity and share of renewables in overall electricity generation are found (green). Policy set consists
of hyperparameter combinations, where each hyperparameter takes value from sets of levels for generation incentive and
investment subsidy rates specific to PV and wind, set by the central planner (orange). The scenario set (brown) combines
conservative, moderate and advanced scenarios for evolution of costs -fixed O&M, fixed and variable investment, technology
-capacity factors (gray), electricity prices (navy), and depreciation model (black). Data available on costs and technology are
readily available in such a scenario format, however, to derive scenarios for evolution of wholesale electricity market prices,
a time series model is fit on historical prices, simulated paths are generated, and 10, 50, 90 percentiles of path values in
each period are taken for conservative, moderate and advanced scenarios. Scenarios on technology and costs represent
evolution of parameter values through the planning horizon, and apply as factors on the plant specific capacity factor and
cost values. The central planner sets a specific capacity installation limit to each location, and for each location, specific
O&M, investment cost and capacity factor parameters are determined (blue), which require information on local irradiation
levels for PV and wind profiles for wind plants (red).
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planning, and structural expenses that are indepen-
dent of the capacity installation size. Variable costs
(r ti , for location i, period t), per MW of installed capacity,
primarily include equipment such as turbines, generators,
PV panels, inverters, mounting systems, and cabling costs,
which scale with the installed capacity. The third cost com-
ponent is based on the existing installed capacity in a year,
the fixed O&M cost (oti , for location i, period t), per MW
per year, which includes maintenance or cleaning of the
equipment such as wind or combustion turbines, PV panels,
inverters, and plant infrastructure. Variable O&M costs (qti ,
for location i, period t ,) are accounted for per units of elec-
tricity produced at the plant (per MWh generated), which are
negligible for PV and wind plants. For the natural gas plant,
unit electricity generation cost includes the variable O&M
cost besides the fuel cost. Electricity purchase prices are
specific to mode of the day, where modes different demand
levels and the pricing scheme (ptj , for mode j, period t) is
the main motivator of accounting for electricity demand in
modes. Additionally, it is possible that different renewable
energy modalities (wind and PV) receive different incentives,
therefore the retail price π t

ij in period t is specific to both the
plant i and mode j.

Under this cost and price structure, the investor decides
each year on howmuch new capacity to install for each energy
production modality at each available location, represented
by the variable x ti , for location i, period t ,in MWs of installed
capacity. The expense for increasing installed capacity is the
variable cost scaled to the size in MWs of the installation
(r ti x

t
i ), in addition to the fixed cost, f

t
i v

t
i (v

t
i is a binary variable

indicating whether there is a capacity installation in location i
in period t), which varies based on the modality-location pair.
The investor also decides how much electricity to produce
from each plant in each mode throughout the year to meet
the demand, as represented by the variable ytij, for location i,
mode j, period t ,in MWhs of electricity generated. All modal-
ity and locations have specific accessibility factors, i.e., the
rate of electricity energy output that can be yielded from the
installed capacity of the plant during the specific mode. Only
the natural gas plant has a positive production cost per unit
electricity generated (qti ). In the energy market considered in
the computational analysis section, there are threemodes: day
(06:00-17:00), peak (17:00-22:00) and night (22:00-06:00).

The energy retail price is a critical parameter for the prof-
itability of the energy investor. It is taken as a yearly average
for each mode, regardless of the plant type or location of
usage. It is possible to apply different incentive and subsidy
levels to wind and PV, thus by modality specific electricity
price incentives, price becomes specific to plant types. A 10%
incentive corresponds to an incentive multiplier of 1.1, which
might be applied to one or both of wind and PV modalities
over electricity purchase prices throughout the planning hori-
zon. The central planner sets the yearly subsidy rate, which
multiplies the variable capacity installation cost. A subsidy
rate of 5% would reimburse the investor 5% of the variable
cost incurred in capacity installation, resulting in an effective

variable installation cost rate of 95% of the original market
price. Incentives and subsidies apply to renewables but not to
the conventional method of electricity generation.

The demand parameters for the investment horizon con-
sider the additional demand that arises with and after the
initial year of planning. Therefore, the investor builds new
plants and installs generation capacity to meet the growing
demand. The projected demand for each year must be sat-
isfied by production from the capacity installed during the
previous years of the planning horizon.

In this research, our primary focus is directed towards
understanding how the equilibrium between investment
subsidies and wholesale price incentives influences the
extended investment strategies of power generation com-
panies. We specifically delve into the interplay between
incentives and anticipated wholesale prices, investigating
their impact on long-term decision-making. Decisions made
at an hourly or sub-hourly resolution, such as unit com-
mitment, addressing flexibility constraints, and mitigating
issues like curtailment, may not have a direct bearing on
overarching, long-term planning. This holds true as long
as the parameters governing long-term planning accurately
capture system behavior, preferably optimized concerning
these short-term challenges. Consequently, we make the
assumption that plant capacity factors encapsulate the aver-
age behavior in plant output. Similarly, our consideration
of wholesale prices revolves around predicting yearly aver-
ages, aligning with the temporal scope of long-term planning,
rather than daily fluctuations in the electricity market.
To account for uncertainty, our model incorporates scenarios.
We establish conservative, moderate, and advanced scenarios
for electricity price predictions, aligning with available data
on investment costs, O&M costs, and capacity factor predic-
tions for various generation technologies. These aspects are
also available under corresponding conservative, moderate,
and advanced scenarios [46], which provides an opportunity
for a comprehensive analysis of prospects of incentive pro-
grams under different scenarios.

Hereby, we define the key aspects of our problem and
formulate it as a mixed integer programming model in the
following section.

III. THE MIXED-INTEGER PROGRAMMING MODEL
In the literature, various capacity expansion models have
been proposed. One such model is the multiperiod stochastic
programming model by Shiina and Birge [33], which aims to
meet expanding demand through new installations and pro-
duction at different plant locations while minimizing costs.
However, in this study, the focus is on a profit-maximizing
investor rather than a cost minimizer as in the referred study.
While the capacity installation and electricity generation plan
is still constrained to meet the demand, cost minimization is
not the only choice for an objective, and in this case, profit
maximization is more plausible with private sector investors.
The government plays a role in regulating capacity installa-
tions by planning and approving plants to be commissioned
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at different locations, ensuring that profit-maximizing deci-
sions driven by incentive plans effectively meet the projected
demand.

Choosing a deterministic counterpart instead of analyzing
plans in a multistage stochastic setting has several reasons.
Firstly, a deterministic decision tool allows for analysis under
a non-probabilistic discrete set of scenarios. In this case, the
data for generation technologies, including cost and capacity
factor (efficiency) predictions, are available under such set
of pessimistic/optimistic extremes and a moderate scenario.
Where assigning probabilities to scenarios and analyzing
probabilistic dependence of parameters might become chal-
lenging, it is possible to use the data at hand to analyze
comprehensive scenarios. For instance, a comprehensively
optimistic scenario is when market prices and CFs follow
the optimistic scenario on the high end while investment and
O&M costs follow their corresponding advanced scenarios
on the low end. Analyzing multicriteria incentive program
performance under such comprehensive pessimistic, mod-
erate and optimistic scenarios is a very practical approach,
and allows for the interpretation of risks and opportunities
on the two ends. Thus, we derive scenarios from the time
series models fit onto historical electricity wholesale mar-
ket data [47], in accordance with the cost and technology
data [46]. Additionally, the availability of data points for
estimation is a crucial factor. In cases where the number of
historical data points is small, volatility in the short data span
can result in a highly dispersed simulation tree. Consequently,
we primarily employ a vector autoregressive VAR(p=5) time
series model that captures the pattern in the data, while
converging to the average in the long run. Summing up,
we employ a deterministic mixed-integer program to model
investor behavior under different levels of incentives and sub-
sidies, analyzing possible scenarios in a case-by-case basis
using the model devised. By adopting this approach, we can
effectively examine investor decision-making process and its
implications on capacity expansion, thus elucidating the per-
formance of the incentive program with respect to the share
of renewables in the final installed capacity, share in overall
electricity generation, and total incentive program cost.

Table 1 summarizes the index, parameter and variables
of the mixed-integer programming model devised in this
study. Accordingly, the mixed integer programming model
for optimal investment and production at a specific level of
incentive and subsidy is:

max
∑H

t=1

∑n

i=1

∑m

j=1
(π t

ij − qti )y
t
ij −

∑H

t=1
1t

×

∑n

i=1

(
f ti v

t
i + r ti x

t
i
)
−

∑H

t=1

∑n

i=1
otiw

t
i (1)

s.t. x ti≤C
t
i v
t
i i = 1, . . . , n, t = 1, . . . ,H (2)

w1
i = x1i i = 1, . . . , n (3)

wti = wt−1
i + x ti i = 1, . . . , n t = 2, . . . ,H (4)

ytij≤a
j
iw
t
i i = 1, . . . , n j = 1, . . .m t = 1, . . . ,H (5)∑n

i=1
ytij = d tj j = 1, . . . ,m t = 1, . . . ,H (6)

vti∈ {0, 1} i = 1, . . . , n t = 1, . . . ,H (7)

wti≥0 i = 1, . . . , n t = 1, . . . ,H (8)

x ti≥0 i = 1, . . . , n t = 1, . . . ,H (9)

ytij≥0 i = 1, . . . , n j = 1, . . . ,m t = 1, . . . ,H (10)

(1) is the objective function maximizing the profit composed
of one income and three cost terms. Generation cost per unit
energy is specific to natural gas and does not vary by mode.
qti includes variable energy generation costs including fuel
and variable O&M costs. However, renewable O&M costs
considered here are accounted as fixed O&M costs per active
capacity, represented by the rate oti . Installation cost has two
terms, the fixed cost f ti v

t
i , positive if any installation is made

in plant i, and the variable installation cost r ti x
t
i dependent

on the capacity installed, x ti . Note that a company accounts
for investment costs based on depreciation rates. Here, 1t

indicates the ratio of the investment in year t that deprecates
during the planning horizon and under the accounting scheme
adopted by the company. Thus 1t is decreasing in years,
later years being lightly accounted for by the company within
the project scope. However, the specific accounting scheme
is specific to setting and is analyzed under scenarios, to be
further detailed in the next section. (2) assures that yearly
capacity installation limit is respected, and that the fixed cost
for capacity installation is accounted for, setting vti to 1 if
there is any positive capacity installation (x ti > 0) at the
facility. There is a window for initial capacity installation,
thus an installation with period index t is in service in the
same period; this is indicated by both the initial capacity
equation (3) and capacity update equation (4). Installation
x ti in a later stage t augments previous capacity in t-1 and
becomes active in production during stage t due to (4). Plants
have an overall accessibility factor ai, representing the yearly
output potential from installed capacity (or the respective
period length) accounting for system efficiency, related wind
or insolation conditions. Accessibility factor is distributed to
modes bymode length, as represented by themode dependent
accessibility parameters aji in (5). For instance, the 8 hours
night mode has a3i = 0.33×ai×365×24. Note that the output
from installed capacity in MWs is in terms of MWh per year,
thus accounting for number of hours in a year. For the NG
plant, this duration-based distribution is reasonable, as gen-
eration capacity can be assumed independent of the hour of
the day. For wind plants, this is applicable and preferred here,
yet data and analysis on hourly wind profiles of locations can
alleviate the need for this assumption, possibly providing a
more accurate distribution of capacity accessibility to modes.
However, for PV plants, 99.2% of irradiation is in the day
mode, as a yearly average for the region considered. Thus,
capacity accessibility is confined to the day mode, a1i =

ai × 365 × 24, with no PV output in peak and night modes,
aji = 0, j = 2, 3. Then, (5) poses that the maximum
energy that can be generated from a plant in a specific mode
of the day is the active peak capacity installed times the
accessibility factor of the plant in that mode. (6) states that the
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demand for each mode in each period should be met by the
overall electricity output of all plants in that mode and period.
Finally, vti is a binary variable by (7), as indicating existence
of installation activity at plant i in period t, and plant capacity,
capacity installations, and electricity generation outputs are
nonnegative by (8)-(10).

The notation introduced in Table 1 reveals that some
parameters in (1), (5) and (6) are scenario specific, and effec-
tive investment costs and electricity prices applicable to the
investor possibly differ from market values due to incentive
and subsidies. The fixed (variable) investment cost ˆf ti (r̂

t
i )

applies to the investor as f ti (r
t
i ) after subsidies, and market

electricity wholesale prices ptj apply as π t
ij after incentives.

Both incentive and subsidies are restricted to renewables and
specific to plant types, thus wholesale price is effectively
plant type specific. The subsidy and incentives determin-
ing effective cost and prices, as well as availability factors,
demand and accounting scheme is analyzed under scenarios,
as discussed in the next section after the problem case data is
introduced.

IV. COMPUTATIONAL RESULTS
A. THE NUMERICAL CASE AND DATA ANALYSIS
In the numerical experiments, 21 candidate power plant
locations and a 10-year horizon is analyzed (n=20, H=10).
Potential plant locations are chosen in Türkiye, where the
variation in wind and irradiation conditions represent those
that can be attained in many Central European and Mediter-
ranean Countries, along with many global regions of medium
latitude. Turkish energy market retail price data is used
accordingly, which provides an example for central pricing
throughout electricity demand points. Data collected has four
components: retail prices, investment and production costs,
technology related factors such as development in CFs affect-
ing accessibility rates and future prices. Common periodic
range for data collection is up to 2020, thus we assume that
the planning horizon begins in 2020 and covers until the end
of 2029.

For the installation locations, Southern Anatolia, Aegean
and Mediterranean shore in Türkiye is chosen for ten PV
plants (approximately 1700 kWh/kWp/year output efficiency
on average); mostly Aegean region is chosen for ten wind
plants; and an additional natural gas plant location exists.
Accessibility factors are analyzed based on the location and
global information regarding PV [48] and wind energy [49]
(Table 3 presents a summary of yearly installable capacity
limits, fixed investment costs, variable investment costs and
accessibility factors of plant locations). Despite the high
volatility in fuel prices, natural gas plants appear as a more
cost-effective generation modality compared to coal as of
2020, and is the dominant choice for new fossil-based power
plant installations, thus the alternativemodality to renewables
that the profit seeking investor can choose is a fictive natural
gas plant. As the cost scheme for natural gas capacity installa-
tions do not involve a fixed component [46], mathematically

TABLE 3. For each energy generation modality and location, yearly
installable capacities, fixed investment costs, variable investment costs
and accessibility factors.

there is no difference between one fictive plant with high
installation capacity compared to several locations with lower
capacities.

For investment costs, installation costs for PV module and
wind turbine prices in the global market are considered. The
fixed and variable investment cost scheme and parameters
in Table 3 is in line with project cost and size data for PV
and wind projects in [48] and [49], respectively. We consider
prices in 2020 Turkish Liras (1$ = 6.72 ₤) in our analysis.
For the investment cost and CF of the (combustion tur-

bine) natural gas plant, we refer to the Annual Technology
Baseline database of United States of America National
Renewable Energy Laboratory [46]. Estimates for future
trends in investment costs are also adopted from this database,
and conservative, moderate and advanced scenarios for these
parameters are adopted as presented in this resource.

Periodic operation and maintenance for PV plants involve
surface cleaning, which is done by washing the panels once
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TABLE 4. Additional electricity demand projected, in day, peak and night
modes that should be met by newly installed capacity during years
2020-2029.

a year [50]. The operation and maintenance costs for wind
plants continue with a negative trend since 1984 until 2020
[49], and is again accounted for as fixed O&M costs per
kW of installation per year. The natural gas plant incurs
a fuel cost for each kWh produced. The study refrains
from delving into the intricate econometric modeling of
the heightened volatility in natural gas prices post-2020.
To streamline scenario presentation and reduce complexity,
NG prices and conversion efficiency are maintained at their
most advantageous positions. Thewholesale prices for energy
generators in 2020 are assumed to be 131.5 ₤/MWh [51],
with a recent high conversion efficiency of 0.61, resulting
in a cost of 215.7 ₤/MWh. Accessibility, captured by the
CF, is also presumed to be at a high 80% level, aligning
with the 2035 reference [46]. Notably, NG carries typical
conservative, moderate, advanced investment and O&M cost
scenarios. While these figures may be subject to errors due
to significant Turkish Lira inflation post-2020, the study
acknowledges the omission of detailed econometricmodeling
for precise estimation. The framework allows for the applica-
tion of more refined point estimates, if desired.

Electricity demand is projected to increase rapidly in 2020-
2040 in Türkiye [52], and moderate estimates of additional
generation demand through 2000-2009 is in Table 4. The
incentive project is considered to cover a fraction of this
arising demand, and coverage is considered to be 20%.

For parameter estimation, we use a deterministic approach
in this study, deriving pessimistic, moderate and optimistic
scenarios from the selected time series model. This is a
practical choice, as mean installed capacity share, production
share and utilization results are informative at the aggregate
and central level of planning. In addition, particularly for
a new technology for which the data is recently being col-
lected, or a country/localization for which data collection has
started recently, point estimates are more reliable relative to
error estimates. Autoregressive models of low orders can be
applied on such data to obtain point estimates, and short-term
volatility can render simulation trees overly dispersed. Con-
sider the VAR (p=5) model presented in (Fig. 2), applied

on the day, peak and night mode electricity price time series
(after checking for stationarity: Augmented Dickey-Fuller
test p-values 0.52, 0.44 and 0.55, respectively). There are
31 data points, for estimating the 120-month planning hori-
zon. On a yearly basis, the number of available data points
would be even smaller. Fig. 2 demonstrates the simulation
paths generated using the VAR(p=5) model for day, peak
and night mode prices, where the degree of lags is selected
considering the Akaike Information Criterion. In this case,
simulation paths have a reasonable dispersion, and estima-
tions converge to a mean after demonstrating a fluctuation
pattern for 25 months. However, in line with the scenarios
for capacity factor and investment costs, we derive scenarios
for electricity prices using the VAR model simulations as
follows. At each period, 10%, median and 90% values of
simulated path values at the period are computed. Percentile
values are a subjective choice, however, in this case, the
scenario range is sufficiently covered and distinct scenario
representations are obtained by this approach (Fig. 2, right).
The accounting scheme used is also considered under three

scenarios, adjusting the number of years in the sum-of-the-
years digits (SYD) depreciation model. A more risk averse
investor would require returns to quickly pay off capital
investment, thus accounting by a 10-year SYDmodel. Amore
risk prone investor accounts for the depreciation according
to the entire project life, which is commonly 30 years for a
PV or wind plant, thus using a 30-year SYD scheme. The
moderate scenario in investor attitude towards risk assumes a
20-year SYD depreciation scheme. Under each depreciation
model, an investment made in year 1 depreciates according
to the total of the rates in the first 10 years of the model
used, an investment in year 2 depreciates according to the
total of rates for the first 9 years, and the depreciation within
the planning horizon for an investment in year 10 is only the
rate indicated for the first year of the SYD model used. Fig. 3
displays the fraction of depreciation within the planning hori-
zon for investments in years 1-10 under the three scenarios for
depreciation models.

Overall scenario settings are constructed from various
combinations of scenarios for individual parameters of (1)-
(10), and the MIP is run for each scenario and incentive
setting to find optimal investor choice in each case. Pareto
optimal solutions for each scenario setting are determined
and analyzed for decision making of the central planner,
as explained in the next subsection.

B. PARETO ANALYSIS OF INCENTIVE POLICIES UNDER
SCENARIO SETTINGS
Most parameters of (1)-(10), including CFs, investment and
O&M costs [46], and demand [52] are presented under con-
servative, moderate and advanced scenarios in the resources
for the respective data, and a similar scenario triplet is
devised for electricity wholesale prices and depreciation
models, as discussed in Subsection IV-A. These scenarios
for individual parameters are combined into 18 overall sce-
narios constituting settings for (1)-(10) for an analysis and

VOLUME 12, 2024 38841



A. B. Paç, E. Z. Şeker: Optimizing Incentive Plans for Renewable Energy Growth

FIGURE 2. Estimates for monthly day, peak and night mode electricity prices in the planning horizon of 10 years, 120 months, using a
VAR(p=5) time series model. Estimates are obtained under conservative, moderate and advanced scenarios (left), which correspond to
10, 50, and 90 percentiles of values of paths simulated from the VAR(p=5) model at each time period (right). Estimation is conducted in
months, as the past data available spans a restricted 31 months. Yearly averages are computed from estimates to be used as parameters
in the mixed-integer programming model.

FIGURE 3. The ratio of an investment that depreciates within the 10-year
planning horizon with respect to the year that the investment is made.
Analyzed under three scenarios with respect to investor attitude,
represented by sum-of-the-year-digits depreciation scheme with
10 (SYD10), 20 (SYD20) and 30-year (SYD30) investment spans.

interpretation of investor behavior, program cost and perfor-
mance in terms of renewable transformation. In sum, each
solution of (1)-(10) depends on an overall scenario β∈6

where parameters assume a level as defined by their respec-
tive scenarios β = (ai, oti , f̂

t
i , r̂

t
i , d

t
j , p

t
j , 1

t ). Table 5 presents
the set of scenarios 6 and the settings for the parameters
of (1)-(10) under these scenarios.
In addition to parameters β set by the scenario implemen-

tation in a specific run of (1)-(10), final values of parameters
π t
ij = (1 + αk )ptj , f

t
i = (1 − σk ) ˆf ti , r

t
i = (1 − σk )r̂ ti are

determined by the generation incentive rate αk and invest-
ment subsidy rate σk decided upon by the central planner
for modalities k∈{PV , Wind, NG}(αNG = σNG = 0).
Thus, an optimal solution of (1)-(10) provides the answer
for performance attainable under these settings regarding the
criteria of interest besides the objective value, which is the
overall profit of the profit seeking energy companies.

The intervention program providing incentive and subsi-
dies on renewable energy installations can have three merits:
low cost implies the ability to plan for a project with higher
coverage given a fixed budget, high share of renewable energy
installations at the end of the planning horizon means effec-
tive replacement of fossil-based capacity during the planning
horizon, and a high share in the total electricity generation
throughout the process equals to immediate action for the
environment early on in the planning horizon.

To compare incentive policies regarding the three criteria,
we conduct Pareto analysis on possible choices of incentive
and subsidy levels for wind and PV plants, where the joint
policy choice α = (αW , σW , αPV , σPV ) takes a value from:

5 = IW × SW × IPV × SPV . (11)

Here, IW = SW = {0, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04,
0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3}, and IPV =

SPV = {0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7} . Since wind
has capacity per cost advantage, in addition to accessibility
throughout the day, some wind plants are more profitable
relative to natural gas even before incentives. However,
the range of incentive and subsidy rates stimulating PV
investments is above the range for wind. The policy choice
set 5 is explored and compared via (1)-(10). For α =

(αW , σW , αPV , σPV )∈5, let an optimal solution for (1)-(10)
with policy hyperparameter setting α and scenario setting
β be X∗(α, β) = (x, v,w, y, ), and g1(α, β), g2(α, β), and
g3(α, β) be the values of the three criteria for the optimal
solution, i.e., the total cost of the intervention program

g1(α, β)=
∑H

t=1

∑m

j=1
(
∑

i∈W
αW ptjy

t
ij+

∑
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TABLE 5. Computationally explored scenarios, combining conservative
(Con), moderate (Mod) and advanced (Adv) scenarios for evolution of
parameters such as PV/Wind capacity factors, PV, wind and NG O&M,
fixed/variable investment costs, electricity demand, wholesale prices and
the accounting model (SYDX where X indicates length in years) adopted
by the investor.

+

∑H

t=0
(
∑

i∈W
σW r ti x

t
i +

∑
i∈PV

σPV r ti x
t
i ),

(12)

the share of renewables in the end of horizon installed capac-
ity

g2(α, β) =

∑
i∈W∪PV w

H
i∑n

i=1 w
H
i

, (13)

and the share of renewables in the overall electricity genera-
tion

g3(α, β) =

∑H
t=1

∑m
j=1

∑
i∈W∪PV y

t
ij∑H

t=1
∑m

j=1
∑n

i=1 y
t
ij

. (14)

We evaluate solutions in 5 × 6 and select Pareto optimal
solutions within each scenario β∈6. We seek ϵ− domi-
nance prioritizing share of renewables in installed capacity.
An incentive choice α = (αW , σW , αPV , σPV ) is Pareto
dominated by ᾱ = (ᾱW , σ̄W , ᾱPV , σ̄PV ) if the latter is better
in one but is not worse in any of the three criteria,

g1(ᾱ, β) ≤ g1(α, β) and gl(ᾱ, β) ≥ gl(α, β) for l = 2, 3

(15)

or is better in share of renewables in installed capacity,

g2(α, β) > g2(α, β), (16)

while having shares in generation from renewables no less
than α, considering the tolerance level,

g3(α, β) > (1 − ϵ)g3(α, β), (17)

and having a total program cost not more than α, up to the
tolerance level:

(1 − ϵ)g1(α, β) < g1(α, β). (18)

Instances covering all 18 scenarios and policy settings are run
as a randomly ordered batch on an AMDRyzen Threadripper
3960X 24-Core CPU, 48 GBs of RAM. The solution time is
16069 seconds for 172872 problem instance solutions.

The computational analysis investigates various scenarios
to shed light on the diverse outcomes resulting from opti-
mistic, pessimistic, and moderate perspectives in an incentive
program for renewable energy. Displaying the Pareto opti-
mal solutions in the spectrum of total incentive program
cost for each scenario, possible achievements and risks
involved are presented, especially when parameters evolve
favorably or otherwise. These scenarios not only support the
decision-maker regarding the dynamics at different budget
levels but also underscore the challenges and opportunities
inherent in each scenario.

Scenarios 6, and 13, representing overall optimistic/
advanced and overall pessimistic/conservative scenarios, dis-
tinctly differ from the overall moderate scenario, Scenario 3
(Fig. 4). These three scenarios demonstrate the spectrum
of achievement to the decision maker at different levels of
expense in the incentive program, while pointing out the
extent of risk and opportunities when all parameters jointly
evolve in a favorable way, or in the other direction -even if
such cases are rather unlikely. With low expense programs,
the range for renewable installation shares are 55-65%, where
achievements in the moderate case are close to the pessimistic
case, Scenario 6. However, on the generation side, moder-
ate achieves rather similar to the optimistic scenario, while
the range is 60-80%. As program expense reaches 50 bil-
lion ₤, 60% renewable installation shares are exceeded in
Scenario 6, while Scenario 3 and Scenario 13 exceed 75%.
Renewable shares in generation follow along, but rates are
higher, approaching 90% for the optimistic scenario, as gen-
eration from NG gets confined to the peak mode with high
demand (Fig. 5). With higher wholesale price projections and
higher incentive awards, more ambitious programs reaching
70 billion ₤ expense and 85% renewable installation and gen-
eration shares are possible in the optimistic case. This roughly
1 billion $/7 billion ₤ yearly incentive program expense can
be considered burdensome by the central decision maker,
as it exceeds one third of the entailed economy including
the total of installation, O&M and fuel costs. However, it is
possible to attain a reasonable boost in performance criteria
with a program cost of less than half of this. A program
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FIGURE 4. For the Pareto optimal solutions of overall pessimistic, optimistic and moderate scenarios (Scenarios 6, 13 and 3, respectively,
marked as S6, S13 and S3) the share of renewables (wind+PV) and PV in the end-of-horizon installed generation capacity against the
total intervention program expense for generation incentives and investment subsidies (left). The corresponding share of renewables
and PV only in total energy generation throughout the planning horizon (right).

FIGURE 5. For the Pareto optimal solutions of overall pessimistic, optimistic and moderate scenarios (Scenarios 6, 13 and 3,
respectively, marked as S6, S13 and S3) the share of renewables (wind+PV) and PV in day mode electricity generation throughout
the planning horizon against the total intervention program expense for generation incentives and investment subsidies (left).
PV has no share in generation during peak and night modes, wind dominating the night mode with low budget interventions, while
peak mode requires a large contribution from the natural gas plant (right).

expense of 27 billion ₤ in total corresponds to roughly 20%
of overall cost of commissioning and running the plants
within the scope of the program, renewable installations reach
above 75% and renewable share in generation reaches 82%
for the optimistic scenario, while moderate scenario lags by
a 3% in these criteria (for the pessimistic scenario, gov-
ernment shares 22.5% of the costs, renewable installations
are increased by more than 10% and renewable shares in
generation approaches 75% with more than 20% increase).
By presenting the spectrum of Pareto optimal solutions to (1)-
(10), the central decision maker is informed on the risks
associated with different scenarios and opportunities attain-
able at different budget allocations for the incentive program.

During the day mode, minimal incentive program expen-
diture leads to 100% renewables, but as program expenses
increase, PV takes over the day mode, and the share of
wind increases during peak and nighttime (Fig. 5). Wind has
the capacity per cost advantage, added to the lack of fuel

usage, thus has the larger share without any incentive and
subsidies. PV accounts for the larger part of the increase in
renewable shares with higher incentives, but only with visible
increases in program expense. With around 50 billion ₤ in
expenditures, the share of renewables reaches 100% even at
night (for the overall advanced scenario), but during peak
demand, it remains around 50%, despite increased spending.
During this interval of high demand, generation from natural
gas compensates when wind installations are not enough and
PV cannot contribute.

The accounting scheme, reflecting the investor attitude on
patience for returns, is highly influential. This is clearly indi-
cated by the SYD10 setting in Scenario 1, as installed capacity
reaches 65% with more than 40 billion ₤ program expenses,
while the moderate Scenario 3 with the only difference of
milder SYD20 accounting achieves 75% with less expense
(Fig. 6, left). Yet, a rather extravagant program costing above
40 billion ₤ promises 82% renewable share in generation
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FIGURE 6. The share of renewables (wind+PV) and PV in the end-of-horizon installed generation capacity against the total
intervention program expense for generation incentives and investment subsidies is compared for the Pareto optimal solutions of
scenarios 1, 3, 5, 14, and 15 (left). Scenario 1 (S1) differs from the overall moderate Scenario 3 (S3) by the risk averse depreciation
scheme SYD10, and Scenario 5 (S5) considers the milder SYD30 depreciation schedule. Scenario 14 (S14) differs from S3 by assuming
conservative renewable capacity factor and cost processes, while Scenario 15 (S15) assumes advanced scenarios in renewables. The
corresponding share of renewables and PV only in total energy generation throughout the planning horizon (right).

despite the strict SYD10 accounting under Scenario 1 (Fig. 6,
right). In this case, generation incentives and wind modality
are prioritized. Scenario 5, with a tolerant SYD30 depreci-
ation scheme once again indicates the strong effect, as it
entails large renewable capacity installations in response to
modest incentives. In this case, generation incentive and
investment subsidy expenses are allocated more evenly, and
PV investments support wind installations under smaller pro-
gram budgets. With a budget of 27 billion ₤, 75% renewable
shares in installation are achieved in Scenario 5 (Fig. 6), thus
depreciation scheme accounts formost of the variability in the
overall optimistic scenario –moderate scenario difference (75
vs 72%). In Scenario 15, renewable cost and technology have
an advanced flow, yet compared to Scenario 5, the reduction
on installations due to the SYD20 depreciation scheme can
be compensated only at high incentive expenditures. Scenar-
ios 1, 3 and 5 presenting the depreciation scheme differences
also demonstrate the major portion of the variability in the
range of overall pessimistic-overall optimistic scenarios. The
accounting scheme points out the importance of stimulating
risk averse investors, and upon anticipating such attitude, the
central planner can elicit higher renewable investments with a
relatively higher program budget. Favorable wholesale prices
are not persuasive by themselves, as Scenario 2, Scenario
3 and Scenario 4, have very similar outcomes, despite con-
servative, moderate and advanced wholesale price scenarios,
respectively (no visible difference from Scenario 3, Fig. 4).
Scenario 14 achieves higher renewable installations than
Scenario 1, thus conservative technology and cost scenarios
in renewables are not as tolling as the accounting scheme
(Fig. 6). The difference in renewable shares in final installed
capacity do not directly reflect on shares in generation, since
the day mode is fully covered by renewables even in low
incentive programs, night mode is also mostly covered by
renewables with moderate program scales, and thus the effect

FIGURE 7. The share of renewables (wind+PV) and PV in the
end-of-horizon installed generation capacity against the total
intervention program expense for generation incentives and investment
subsidies is compared for the Pareto optimal solutions of scenarios 7-12.
In Scenarios 7, 9, 11 (S7, S9, S11), renewable energy capacity factors
evolve according to their conservative settings, while investment costs
are on the advanced side. In Scenarios 8, 10, 12 (S8, S10, S12) the case is
the other way round. S9 and S10 explore effects of high demand in
comparison to moderate demand, and S11 and S12 explore effects of
conservative natural gas capacity factor and investment costs -both of
which are negligible. As factors differentiating S7, S9 and S11 (similar for
S8, S10, S12) have negligible effect, plots follow similar curves, thus the
figure effectively displays two curves differentiated by investor response
to investment cost and CF scenarios.

of increasing installed capacity is mostly restricted to the peak
mode.

Scenarios 7, 9, 11 achieve higher installed renewable
capacities under similar program expenses along the major
portion of the program expense spectrum, compared to 8, 10,
12, clearly due to more advantageous investment and O&M
costs (Fig. 7). However, the latter group has the advantage
in CFs, thus achieves slightly higher renewable shares in
total generation. There are no visible differences within the
two groups, thus neither NG cost scenarios nor demand level
scenarios are critical in program outcomes.
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FIGURE 8. The share of renewables (wind+PV) and PV in the
end-of-horizon installed generation capacity against the total
intervention program expense for generation incentives and investment
subsidies is compared for the Pareto optimal solutions of scenarios 1, 3,
16, 17, and 18 (left). Scenario 18 (S18) differs from Scenario 1 (S1) by
advanced scenarios for PV capacity factors, investment costs and
conservative scenarios for wind capacity factors, investment costs; while
S1 assumes moderate scenarios in both modalities. Scenario 16 (S16)
shares the same settings with the overall moderate Scenario 3 (S3),
except advanced PV and conservative wind scenarios like S18. In Scenario
17 (S17), roles in S16 change sides, with advanced wind and conservative
PV scenarios. The corresponding share of renewables and PV only in total
energy generation throughout the planning horizon (right).

Scenarios 3, 14, and 15 compare combined effect of
CF, O&M costs and investment costs in both PV and
wind, Scenario 14 having conservative, Scenario 3 moderate
and Scenario 15 advanced positions on all. The difference
between these scenarios is where PV becomes commercially
viable for investors. Once investment subsidies and genera-
tion incentives render PV investments more profitable, day
time generation from PV augments wind installations and
shares of renewable exceed 75% for Scenario 3, reaching
levels similar to Scenario 15 (Fig. 6, left). When PV and
wind parameters drift to two different sides, shares in installed
capacity at similar expenses can turn slightly lower, but the
advantageous modality pays off in terms of the renewable
shares in generation. When PV is in the advantageous side,
as in Scenario 18, at moderate incentive program expense
levels, PV installations and shares in generation increase, sur-
passing the balanced setting in Scenario 1 (Fig. 8). However,
with a milder depreciation scheme, Scenario 3 dominates
Scenario 16 in low and moderate budget programs, as a
moderate scenario setting in wind combined with less strict
accounting encourages investment into wind plants under low
incentives. When the wind modality is more advantageous,
comparing Scenario 17 with Scenario 3, for instance, low
budget programs achieve higher renewable installation shares
by wind investments.

With restricted investment program budgets, the strategy
is to keep weight on wind, since it assures more capacity
installation per unit cost, and renewable shares in outputs
during all modes of the day. However, higher targets and

completely renewable day time generation can be achieved
only by resorting into additional capacity from PV. Scenario
16 where PV CF and costs evolve according to their advanced
scenarioswhereaswind evolves conservative compares in this
respect to Scenario 17, where wind is advanced and PV is
conservative. With moderate program expenses of 20 billion
₤, 70% in renewable installations are achieved, while 65% is
not achieved in Scenario 16. However, the PV advantage pays
off in Scenario 16 with moderate program expenses, and at
40 billion₤, shares approach 75% in both scenarios, Scenario
16 taking the lead.

Scenarios 7 and 8 (Fig. 7) compare how circumstances in
technology evolution and investment costs trade off. In sce-
nario 7, higher renewable installations are achieved at similar
program costs by the higher pace of reduction in renewable
investment costs, again, these do not translate into renewable
shares in output as high as in Scenario 8, due to the faster
technological advancement and higher CFs in Scenario 8.

V. CONCLUSION
The presented mixed-integer programming model addresses
the crucial challenge of incentivizing renewable energy pro-
duction while meeting the growing energy demand. Acting
as a central planner, the government efficiently identi-
fies suitable energy project sites and sets annual capacity
installation limits for each location. Investors, acting as
profit-maximizing agents, strategically analyze cost compo-
nents and revenue potentials to plan capacity installations
for various energy modalities across different locations. Con-
sidering the energy retail price, an essential factor in the
profit model, the model devised in this study focuses on
purchase price incentives, which differ in their impact on
motivating investments compared to quantity-based subsidy
models found in existing literature.

Computational results demonstrate that significant renew-
able shares can be achieved, covering a major part of the
achievement at a fraction of the cost required for ambitious
policies with costly wind and PV incentives. Under a mod-
erate scenario, final installed capacity share of renewables
below 60% is boosted to 72%, and share in overall electricity
generation reaches 80%, allocating a fractional 27 billion
₤ intervention budget. While an overall optimistic scenario
achieves 75% renewables in installations with this level of
intervention expense, an overall pessimistic scenario attains
60%, although this also corresponds to a visible stimulation
in investment. The variability observed is mainly attributable
to the choice of the depreciation scheme. For instance, using
a milder depreciation scheme in an otherwise moderate
scenario achieves a 75% installation rate, emphasizing the
importance of how the investor accounts for costs, and the
attitude towards risk.

Wind plants, with their cost advantage, emerge as the
course of action with smaller incentives. However, if technol-
ogy evolves favorably for photovoltaics, the combined effect
of increasing capacity factors and reducing investment costs
provides opportunities for attaining above 75% renewable
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installation shares with policies requiring restricted budgets,
similar to an overall optimistic scenario. This is crucial
for renewable transformation, especially in regions abundant
with locations featuring moderate to high irradiation but a
limited wind speed range for efficient generation. Explor-
ing cases by scenarios covering differences in parameters,
including electricity demand, wholesale prices, technology,
and the cost of the natural gas alternative, uncertainties in
these parameters are shown to have negligible impact on the
outcomes of the incentive policy choice.

Limitations of this study suggest a prospective research
direction. With a case involving relevant data, and incorpo-
rating equipment degradation, transmission network, local
demand and local electricity pricing models; period and
location-specific incentive rates under a scenario-based or
possibly stochastic dynamic setting should be considered in
a follow-up study. Additionally, expanding the research to
include a larger number of plant location alternatives and
higher demand coverage would necessitate more efficient
approaches for successfully handling such complex scenarios
in the mathematical programming model solution.
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