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ABSTRACT Abstraction-based formal synthesis with a symbolic control barrier function is useful for
obtaining a finite-state safe controller for an infinite system with sporadic disturbances. In the case of
multiple mobile robots sharing a common workspace, a controller ensuring arrival to destinations without
any collisions is obtained with the symbolic control barrier function, despite the existence of unpredictable
sporadic packet dropouts among robots. In the existing method, a local abstracted model of each robot is
constructed, they are composed to obtain an abstracted model of the entire system, and unsafe transitions
in it are eliminated with a symbolic control barrier function. However, a considerable computation time is
required when the number of robots is large. To solve this problem, a shield called an alternating simulation-
based shield (AS-Shield) was introduced into abstraction-based formal synthesis. As well as the existing
method, a local abstractedmodel for each robot was constructed. Instead of the composition, a local controller
was constructed for each robot, and a safe controller for the robot was obtained by attaching an AS-Shield.
Because a composition to obtain the entire system is not necessary, the control inputs are computable, even
though the number of robots is large. To confirm the validity of the proposed method, it was implemented
using a robot simulator.

INDEX TERMS Alternating simulation, cyber-physical systems, formal methods, hybrid systems, mobile
robots, shield synthesis.

I. INTRODUCTION
Safety is one of the most important requirements for a sys-
tem consisting of multiple mobile robots sharing a common
workspace such as warehouses, autonomous cars, automated
construction machineries, and unmanned aerial vehicles
because collisions between robots or between a robot and an
obstacle must not occur. The collision avoidance method pro-
posed in [1] and [2] is not robust to environmental changes.
Thus, minimally invasive safe controllers have been consid-
ered, such that the control and safety specifications are con-
sidered separately. There are two approaches for minimally
invasive safe controllers: a control barrier function-based
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approach and an optimization-based approach. In particu-
lar, control barrier function-based approaches have received
increasing attention because they require less computational
time than optimization-based approaches [3], [4], [5]. The
control barrier function is a mapping from a state space to
a set of real numbers and is used to design a controller
enforcing set invariance that typically characterizes the safety
of dynamical systems. Nagumo showed a necessary and
sufficient condition for set invariance [6]. This condition
was applied to design controllers that make specified sets
positively invariant [7]. Prajna and Jadbabaie proposed a
similar concept called barrier certificate [8], [9]. A control
barrier function-based approach has been applied to differ-
entiable nonlinear systems [10], [11], [12], such as adaptive
cruise control [13]. The framework of a control system
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that simultaneously considers both control specification and
safety is presented in [14]. It has also been applied to discrete
time systems [15], [16], possibly with Gaussian noise [17].
To ensure the safety of mobile robots sharing a workspace,

communication among them should be considered. For
example, a distributed fault-tolerant controller was designed
in [18], where each robot contained an observer that estimated
the states of the other robots using data received from the
other robots and a fault model. However, the behavior of the
robots is not guaranteed in the case of communication faults.
A method for asymptotically stabilizing a T-S fuzzy system
connected to a delayed network was proposed in [19]. The
tracking control of a system whose dynamics is unknown and
time-varying was considered in [20]. However, the safety of
the controlled systems has not been discussed in these studies.
Consequently, safety against sporadic disturbances such as
packet dropouts has not been ensured.

On the other hand, the design of finite-state controllers
is crucial for mobile robots. This is because the verification
and validation of controllers with infinite numbers of states
often incur considerable cost. Subsequently, an abstraction-
based formal synthesis was proposed [21]. It aims to provide
correct-by-design controllers for infinite and nondetermin-
istic transition systems by using finite-abstracted models.
It starts from the analysis of finite transition systems, possibly
with nondeterministic transitions, to verify the satisfaction
of control specifications [22], [23]. To discuss the rela-
tionship between a controlled system and desired behaviors
(i.e., control specifications), simulation relations and alter-
nating simulation relations have been introduced [24]. These
have been extended to approximate simulation relations and
approximate alternating simulation relations for the finite
abstraction of infinite transition systems, such as hybrid
systems [25], [26], [27], possibly with bounded distur-
bances [28], and cyber-physical systems [29], [30]. Recently,
the authors extended control barrier functions to symbolic
control barrier functions for abstraction-based formal syn-
thesis, in which set invariance is enforced on a (physical)
plant with a finite abstracted controller, despite unpredictable
packet dropouts [31]. The procedure for designing the con-
troller in [31] is as follows:
1) Construct a finite abstracted model of each mobile

robot;
2) Compose them to obtain the entire system;
3) Design an (original) abstraction-based controller for

the entire system without considering the safety;
4) Eliminate unsafe transitions in the entire system com-

puted by the symbolic control barrier function.
However, there is a problem with the composition of the
abstracted models. If each finite abstracted model of a mobile
robot has X states and there are N mobile robots in the
workspace, the entire system has O(XN ) states, which have
a negative impact on the computation.

Instead of composing each mobile robot to consider the
entire system, another approach based on shields was pro-
posed to ensure safety [32], [33]. Figure 1 illustrates the role

FIGURE 1. Summary of the shield attached to the system.

of the shield. The shield was placed between the original
controller and the plant. It monitors the input and output of the
original controller and overwrites the output (i.e., a control
input) with a safe one to prevent violation of the safety spec-
ification. If the output is safe, the shield does not overwrite
it. With the introduction of the shield, the composition of all
robots is not required. This is because the shield is attached
to each mobile robot, and the safety of each robot is ensured
by it. Shields have been applied to a variety of complicated
systems such as multi-agent systems [34], human-interactive
robotics [35], [36], dynamic traffic light controllers [37],
and security-aware path planners [38]. In existing literature,
shields are designed based on the premise that all transitions
in the entire system are deterministic. The premise is restric-
tive because it ensures that all communication packets among
the robots are always delivered successfully. If there is an
unpredictable packet dropout, safety is not guaranteed.

In this study, because we designed a shield based on an
alternating simulation relation between a mobile robot and its
abstracted model, safety is still assured despite unpredictable
packet dropouts, as in the case of [31]. The shield proposed
in this study is called the alternating simulation-based shield
(AS-Shield). The procedure for designing the proposed con-
troller is as follows:

1) Construct a finite abstracted model of each mobile
robot;

2) Design an original abstraction-based controller for each
mobile robot without considering safety;

3) Design an AS-Shield for each mobile robot to avoid
collisions and generate avoidance trajectories;

4) Attach the AS-Shield to the original abstraction-based
controller for each mobile robot.

The AS-Shield is obtained from a finite transition system
such that all transitions in theAS-Shield are safe. To eliminate
unsafe transitions, a symbolic control barrier function was
used in the design of the AS-Shield. We theoretically ensured
that the shield-attached controlled system is safe. Thus, the
mobile robots do not collide and arrive at their target states
successfully. As well as existing literature on shields, we do
not compose all mobile robots in the workspace; therefore,
the number of states in the entire system is reduced from
O(XN ) to O(NX ). We confirmed the validity of the proposed
method using a robot simulator.

In summary, contributions of this paper are as follows:
1) A shield, whose safety under nondeterministic transi-

tions (sporadic disturbances) is guaranteed by alternat-
ing simulation relations, is designed;
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2) Our proposed approach can reduce the computation
time required to obtain the proposed controller com-
pared to the controller designed in [31];

3) A framework of distributed (decentralized) control with
the proposed shield is presented for a mobile robot
example, and its validity is confirmed using a robot
simulator.

The remainder of this paper is organized as follows.
We review the fundamental notions of abstraction-based for-
mal synthesis in Section II. In Section III, the AS-Shield
is defined and the satisfaction of the control and safety
specifications is theoretically assured. We design AS-Shields
for mobile robots in Section IV, where the mobile robots
are modeled in Section IV-A, an AS-Shield for collision
avoidance is designed in Section IV-B, and one for collision
and deadlock avoidance is described in Section IV-C. The
proposed method is evaluated in Section V, and we conclude
this paper in Section VI.

II. PRELIMINARIES
A. NOTATIONS AND DEFINITIONS
We use the notations R, Z, R>0, and Z>0 to describe sets
of real numbers, integers, positive real numbers, and positive
integers, respectively. For x ∈ Rn with n ∈ Z>0, |x| indicates
the∞-norm. For any a ∈ R and any b ∈ R such that a < b,
(a, b] ⊆ R is defined by (a, b] = {x ∈ R | a < x ≤ b}.
For any a ∈ Z and any b ∈ Z such that a < b, [a; b] ⊆ Z is
defined by [a; b] := {x ∈ Z | a ≤ x ≤ b}. For a given set A,
denoted by 2A is the power set of A, and denoted by |A| is the
number of elements.

In the following, we review definitions related to
abstraction-based formal synthesis.
Definition 1 (System [22]): System S is a tuple (X ,X0,U ,

r), where

• X is a set of states;
• X0 ⊆ X is a set of initial states;
• U is a set of inputs;
• r : X × U → 2X is a transition map.

For any x ∈ X , let U (x) := {u ∈ U | r(x, u) ̸= ∅}.
Let S1 = (X1,X10,U1, r1) and S2 = (X2,X20,U2, r2) be

two systems. For a relation R ⊆ X1 × X2 × U1 × U2 over
the state sets X1,X2 and the input sets U1,U2, denoted by
RX ⊆ X1 × X2 is a projection of R to the state sets X1,X2 as
follows:

RX := {(x1, x2) ∈ X1 × X2 |

∃u1 ∈ U1, ∃u2 ∈ U2 : (x1, x2, u1, u2) ∈ R}.

Definition 2 (Alternating simulation relation [22]): Let
S1 = (X1,X10,U1, r1) and S2 = (X2,X20,U2, r2) be two
systems. We call the relation R ⊆ X1 × X2 × U1 × U2 an
alternating simulation relation (ASR) from S1 to S2 if the
following two conditions hold:

1) ∀x10 ∈ X10, ∃x20 ∈ X20 : (x10, x20) ∈ RX ; and

2) ∀x1 ∈ X1, ∀x2 ∈ X2, ∀u1 ∈ U1(x1), ∃u2 ∈ U2(x2):

(x1, x2, u1, u2) ∈ R

⇒ ∀x ′2 ∈ r2(x2, u2), ∃x
′

1 ∈ r1(x1, u1) : (x
′

1, x
′

2) ∈ RX .

Definition 3 (Controller [22]): Let Sp = (Xp,Xp0,Up, rp)
and Sc = (Xc,Xc0,Uc, rc) be two systems, and consider a
relation Rc ⊆ Xc × Xp ×Uc ×Up. We call the pair (Sc,Rc) a
controller for Sp if Rc is an ASR from Sc to Sp.
Definition 4 (System composition [22]): Let S1 =

(X1,X10, U1, r1) and S2 = (X2,X20,U2, r2) be two systems,
and let R ⊆ X1 × X2 × U1 × U2 be a relation. We define
the composition of S1 and S2 with respect to R, denoted by
S := S1 ×R S2 = (X ,X0,U , r), where
• X := X1 × X2;
• X0 := (X10 × X20) ∩ RX ;
• U := U1 × U2;
• r : X × U → 2X is defined as follows: (x ′1, x

′

2) ∈
r((x1, x2), (u1, u2)) iff[

x ′1 ∈ r1(x1, u1)
]
∧

[
x ′2 ∈ r2(x2, u2)

]
∧

[(x1, x2, u1, u2) ∈ R] ∧
[
(x ′1, x

′

2) ∈ RX
]
.

If R = X1 × X2 ×U1 ×U2, we simply denote the composed
system by S1 × S2.

B. ABSTRACTION-BASED FORMAL SYNTHESIS [21]
Let us consider a (physical) plant

S = (X ,X0,U , r), (1)

where X is possibly infinite, and its finite-state abstracted
plant model

Ŝ = (X̂ , X̂0, Û , r̂) (2)

such that there exists an ASR

R ⊆ X̂ × X × Û × U (3)

from Ŝ to S. Assume that we have obtained a finite-state
controller for Ŝ denoted by the pair (ŜC , R̂C ), where

ŜC = (X̂C , X̂C0, ÛC , r̂C ) (4)

is the system describing desired behaviors of Ŝ, and the
relation

R̂C ⊆ X̂C × X̂ × ÛC × Û (5)

is anASR from ŜC to Ŝ. Then, we have the following theorem.
Theorem 1 (Abstraction-based controller [21]): The pair

(SC ,RC ) is a controller for S, where

SC := ŜC ×R̂C Ŝ = (XC ,XC0,UC , rC ) (6)

and the relation RC ⊆ XC × X × UC × U is given by

RC := {((x̂C , x̂), x, (ûC , û), u) ∈ XC × X × UC × U |

[(x̂, x, û, u) ∈ R] ∧ [(x̂C , x̂, ûC , û) ∈ R̂C ]}. (7)

It is easily confirmed thatRC defined by (7) is anASR from
SC to S. Theorem 1 implies that we have a (refined) controller
for S by composing the finite transition systems ŜC and Ŝ.
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C. SYMBOLIC CONTROL BARRIER FUNCTIONS
For a given safe set X ⊆ X of (1), we consider a mapping
B : X → R such that X is described as follows [15], [16]:

X := {x ∈ X | B(x) ≥ 0}. (8)

Definition 5 (Safe controller [31]): Let Sp = (Xp,Xp0,
Up, rp) and Sc = (Xc,Xc0,Uc, rc) be two systems, Rc ⊆
Xc×Xp×Uc×Up be an ASR from Sc to Sp, and Bp : Xp→ R
be a mapping induced by a safe set Xp ⊆ Xp. We call the pair
(Sc,Rc) a safe controller with respect to Xp if the following
condition is satisfied:

∀(xc, xp, uc, up) ∈ Rc s.t. uc ∈ Uc(xc) :

xp ∈ Xp ⇒ rp(xp, up) ⊆ Xp. (9)

To consider the safety of (1) with its finite abstracted
model (2), we define the mapping B̂ : X̂ → R induced by
B : X → R as follows:

B̂(x̂) = inf
x∈X s.t. (x̂,x)∈RX

B(x). (10)

For mapping B̂ : X̂ → R, the following set X̂ is called a safe
set of the abstracted plant model Ŝ:

X̂ := {x̂ ∈ X̂ | B̂(x̂) ≥ 0}. (11)

Definition 6 (Symbolic control barrier function [31]):
Mapping B̂ : X̂ → R is said to be a symbolic control barrier
function if the following condition is satisfied:

∀x̂ ∈ X̂ , ∃û ∈ Û (x̂) : 1B̂(x̂, û)+ B̂(x̂) ≥ 0, (12)

where

1B̂(x̂, û) := min
x̂ ′∈r̂(x̂,û)

B̂(x̂ ′)− B̂(x̂). (13)

For any x̂ ∈ X̂ , let

Û B̂(x̂) := {û ∈ Û (x̂) | 1B̂(x̂, û)+ B̂(x̂) ≥ 0}. (14)

We have the following theorem [31].
Theorem 2 (Abstraction-based safe controller [31]): Let

B : X → R be the mapping describing the safe set (8) to be
considered, and the mapping B̂ : X̂ → R is computed using
(10). If a safe controller for (2) exists with respect to (11), the
refined controller (SC ,RC ) obtained by Theorem 1 is a safe
controller with respect to (8) for (1).
Theorem 2 shows that the safety specification is enforced

on (physical) plant (1) by considering the conservative map-
ping (10) and a symbolic control barrier function with respect
to it. We verified the (physical) plant’s satisfaction with the
safety specifications using its finite-abstracted model.

FIGURE 2. Summary of the alternating simulation-based shield attached
to the (physical) plant.

III. ALTERNATING SIMULATION-BASED SHIELD
In this study, we introduce a novel shield called an
alternating simulation-based shield (AS-Shield) to leverage
abstraction-based formal synthesis. Figure 2 shows the con-
figuration of the shield-attached abstraction-based controller.
The AS-Shield ŜS monitors the input and output of the
finite-state controller (ŜC , R̂C ) and overwrites the output (i.e.,
the control input) with a safe one to prevent a violation of the
safety specification if necessary. In the following, we present
the details of the design of the shield-attached abstraction-
based controller.

The AS-Shield is constructed such that all transitions in it
are safe. Therefore, the AS-Shield was constructed using a
symbolic control barrier function.
Definition 7 (Alternating simulation-based shield):

Assume that the mapping B̂ : X̂ → R computed by (10) is a
symbolic control barrier function for (2). Then, the system

ŜS = (X̂S , X̂S0, ÛS , r̂S ), (15)

is called an alternating simulation-based shield (AS-Shield)
with respect to B̂, where X̂S = X̂ , X̂S0 = X̂0, ÛS = Û , and
r̂S : X̂S × ÛS → 2X̂S satisfies the following condition:

∀x̂S ∈ X̂S ,∀ûS ∈ ÛS :

ûS ∈ ÛS (x̂S )⇒ [ûS ∈ Û B̂(x̂S )] ∧ [r̂S (x̂S , ûS ) = r̂(x̂S , ûS )].

(16)

Note that ŜS is designed with Ŝ and is not dependent on ŜC .
To attach the AS-Shield to the abstraction-based controller,

we introduce the notion of a subtransition system.
Definition 8 (Subtransition system): Let S1 = (X1,X10,

U1, r1) and S2 = (X2,X20,U2, r2) be two systems. We say
that S1 is a subtransition system of S2 if the following
conditions hold:

• X1 ⊆ X2;
• X10 ⊆ X20;
• U1 ⊆ U2;
• ∀x ∈ X1,∀u ∈ U1(x) : r1(x, u) = r2(x, u).

VOLUME 12, 2024 37155



M. Mizoguchi, T. Ushio: Abstraction-Based Safe Control With AS-Shields and Its Application to Mobile Robots

If S1 is a subtransition system of S2, we use the notation
S1 ⊆ S2.
The ŜS defined by (15) is a subtransition system of Ŝ. For
subtransition systems, we have the following lemma.
Lemma 1: Let Sp = (Xp,Xp0,Up, rp) and Sc = (Xc,Xc0,

Uc, rc) be two systems such that Sc ⊆ Sp. The following
relation Rc ⊆ Xc × Xp × Uc × Up is an ASR from Sc to Sp:

Rc = {(xc, xp, uc, up) ∈ Xc × Xp × Uc × Up |

[xc = xp] ∧ [uc = up]}. (17)

The proof of Lemma 1 is shown in Appendix A.
We attach the AS-Shield to the abstraction-based controller

as follows.
Definition 9 (Shield-attached controller): Assume that

B̂ : X̂ → R computed by (10) is a symbolic control barrier
function for (2) and that ŜC defined by (4) satisfies ŜC ⊆ Ŝ.
Let ŜS = (X̂S , X̂S0, ÛS , r̂S ) be an AS-Shield with respect to
B̂. Then, the pair

(Ŝ∪, R̂∪) = ((X̂∪, X̂∪0, Û∪, r̂∪), R̂∪) (18)

is called a shield-attached controller induced by ŜC and ŜS ,
where X̂∪ = X̂ , X̂∪0 = X̂0∩X̂ , Û∪ = Û , r̂∪ : X̂∪×Û∪→ 2X̂∪

is defined as follows:

r̂∪(x̂∪, û∪) = (r̂C (x̂∪, û∪) ∩ r̂mS (x̂∪, û∪)) ∪ r̂S (x̂∪, û∪), (19)

where r̂mS : X̂∪ × Û∪→ 2X̂∪ is defined by

r̂mS (x̂
m
S , ûmS ) =

{
r̂(x̂mS , ûmS ) if ûmS ∈ Û

B̂(x̂mS );
∅ otherwise,

(20)

and R̂∪ ⊆ X̂∪ × X̂ × Û∪ × Û is defined by

R̂∪ = {(x̂∪, x̂, û∪, û) ∈ X̂∪ × X̂ × Û∪ × Û |

[x̂∪ = x̂] ∧ [û∪ = û]}. (21)

Lemma 2: The pair (Ŝ∪, R̂∪) defined by (18) is a safe
controller for Ŝ with respect to B̂.
The proof of Lemma 2 is shown in Appendix B.

Finally, we have the following main theorem.
Theorem 3 (Shield-attached abstraction-based controller):

The refined controller (S∪,R∪) is a safe controller with
respect to (8) for (1), where

S∪ := Ŝ∪ ×R̂∪ Ŝ = (X∪,X∪0,U∪, r∪) (22)

and R∪ ⊆ X∪ × X × U∪ × U is defined as follows:

R∪ = {((x̂∪, x̂), x, (û∪, û), u) ∈ X∪ × X × U∪ × U |

[(x̂, x, û, u) ∈ R] ∧ [(x̂∪, x̂, û∪, û) ∈ R̂∪]}. (23)

The proof of Theorem 3 is shown in Appendix C.
It is concluded that the shield-attached abstraction-based

controller enforces the desired behaviors described by (4) and
safety by (15) on (1).

In the next section, we concretely design AS-Shields for a
mobile robot such that the robot moves to its destination with-
out colliding with obstacles or other robots in a workspace.

FIGURE 3. An example of multiple mobile robots (N = 3).

FIGURE 4. The configuration of each mobile robot.

IV. AS-SHIELDS FOR A MOBILE ROBOT
Let N ∈ Z>0 be the number of mobile robots in a workspace.
We use the notation MRi (i ∈ [1;N ]) to specify the i-th
mobile robot. Figure 3 shows an example of the entire system
with N = 3. The objective is to move each robot to its
destination without colliding with obstacles (walls) or other
robots. The configuration of each robot was the same as that
shown in Fig. 4. Each wheel on the robot is controlled using
a servo motor. In addition, each robot is equipped with an
emitter and receiver for broadcast communication.

Each robot is modeled as a discrete-time system, and all
robots are time-synchronized. In each time step, the following
computations were performed:

1) Receive information from the other robots;
2) Determine a control input by an original

abstraction-based controller or an AS-Shield;
3) Drive the servo motors to rotate the wheels;
4) Transit to the next state on the original abstraction-based

controller and AS-Shield;
5) Send information to the other robots.

Computations 1)-5) are executed only once in each time step.
Even when a packet dropout occurs, the information is not
sent again in a single time step. Instead, we send (possibly
updated) information at the next time step.

In the following, we impose the following assumptions:
• The workspace where the robots move is bounded and
the positions of the obstacles are known;
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FIGURE 5. An example of packet dropouts (N = 3).

• The number of robots in the workspace is known;
• The communication among robots sometimes fails ran-
domly due to packet dropouts;

• Each robot sends (at least) its current and next position
at each time step.

Recall that communication among robots is broadcast; that
is, each robot sends information to all other robots. When a
packet dropout occurs, the information in the dropped packet
is not delivered. For example, in Fig. 5, the position ofMR2 is
not sent to MR1 and that of MR3 is not sent to MR2.

When a packet dropout occurs, the robot does not reach the
next position at the next time step because it does not leave the
current position to prevent collisions caused by incomplete
information (refer to (24)). Then, the next position sent at each
time step is the position of the mobile robot at the next time
step, assuming that the robot successfully receives all packets
from other robots. Thus, the next position sent by each robot
does not always imply that the robot is in the next position
at the next time step. Nevertheless, no collisions are assured
because AS-Shields prohibit the proceeding to the current
(and next) positions of the other robots. Details of the design
of the AS-Shields are presented in Sections IV-B and IV-C.
Each robot detects packet dropouts by comparing the number
of received packets with the number of other robots in the
workspace.

We designed a homogeneous controller for MR1, MR2,
. . ., MRN . Thus, we designed a controller for a single mobile
robot MRi (i ∈ [1;N ]) in Sections IV-A-IV-C.

A. MODELING AND ABSTRACTION
First, we modeled the dynamics of MRi. Because it is
connected to a network to communicate with other robots,
we consider the two-wheel robot (denoted by Sr ) and the
network (denoted by Sn), and compose them to obtain a
model of MRi. The system Sr = (X r ,X r0 ,U r , rr ) is given
by X r = {(xr , yr , θ r ) | xr ∈ R, yr ∈ R, θ r ∈ (−π, π]},
X r0 = X r , and U r

= {(a, b) | a ∈ R, b ∈ (−π, π]}.
Here, the state (xr , yr , θ r ) ∈ X r consists of x (horizontal)
and y (vertical) coordinates of the center of the robot, and the
angle of the robot from x-axis. In addition, input (a, b) ∈ U r

consists of the translation distance and rotation angle. For

FIGURE 6. Automaton model of dynamics of the communication channel.

simplicity, it was assumed that the robot could translate or
rotate exclusively. In other words, it cannot simultaneously
perform translational and rotational motions. Subsequently,
the transition map rr : X r × U r

→ X r is given by

rr ((xr , yr , θ r ), ur )

=



{(xr + a cos θ r , yr + a sin θ r , θ r )}
if ur = (a, 0);

{(xr , yr , θ r + b)}
if ur = (0, b) and θ r + b ∈ (−π, π];

{(xr , yr , θ r + b− 2π )}
if ur = (0, b) and θ r + b > π;

{(xr , yr , θ r + b+ 2π )}
if ur = (0, b) and θ r + b ≤ −π;

∅ otherwise.

The dynamics of the communication network were modeled
using an automaton, as shown in Fig. 6. The system Sn =
(Xn,Xn0 ,Un, rn) is given by Xn = {0, 1}, Xn0 = {0}, U

n
=

{⊥}, and rn : Xn × Un
→ 2X

n
is given by the automa-

ton. To address packet dropouts, a ‘‘safety mechanism’’ was
embedded in each robot MRi. In other words, if a packet
dropout is detected (i.e., xn = 1), the mobile robot MRi does
not accept any input for translation. This is because MRi may
collide owing to incomplete information on the positions of
the other robots. By contrast, any input for rotation is always
accepted. Consequently, the plant model of MRi is given
by a nondeterministic transition system S = (X ,X0,U , r),
where X = X0 = X r , U = U r , and the transition map
r : X × U → 2X given by

r((x, y, θ), u)

=

{
rr ((x, y, θ), u) ∪ {(x, y, θ)} if u is for translation;
rr ((x, y, θ), u) if u is for rotation.

(24)

Second, we considered an abstracted model of MRi. The
workspace was separated into a finite number of grids,
as shown in Fig. 7. In each time step, we move MRi to the
next grid, rotate it by±π/2 [rad], or maintain its current state.
Let the grid size be g ∈ R>0 [m] and let the number of grids
on the x-axis (resp. y-axis) be 2m + 1 (resp. 2n + 1) with
m ∈ Z>0 (resp. n ∈ Z>0). Then, the abstracted model Ŝ =
(X̂ , X̂0, Û , r̂) is given by X̂ = {(gx̂, gŷ, θ̂ ) | x̂ ∈ [−m;m], ŷ ∈
[−n; n], θ̂ ∈ {−π/2, 0, π/2, π}}, X̂0 = X̂ , and Û =

{û+t , û−t , ûϵ, û+r , û−r }. Each input û+t (resp. û−t ) implies +g
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FIGURE 7. The workspace is separated into grids.

[m] (resp. −g [m]) translation and û+r (resp. û−r ) implies
+π/2 [rad] (resp. −π/2 [rad]) rotation, and ûϵ implies no
motion. The input û ∈ Û is converted to u ∈ U with the
following map I : Û → U :

I (û) =



(g, 0) if û = û+t ;
(−g, 0) if û = û−t ;
(0, π/2) if û = û+r ;
(0,−π/2) if û = û−r ;
(0, 0) if û = ûϵ .

(25)

The transition map r̂ : X̂ × Û → 2X̂ is defined as follows:

r̂((gx̂, gŷ, θ̂ ), û)

=



{(g(x̂ + 1), gŷ, θ̂ ), (gx̂, gŷ, θ̂ )}
if [û = û+t ∧ θ̂ = 0] ∨ [û = û−t ∧ θ̂ = π ];

{(g(x̂ − 1), gŷ, θ̂ ), (gx̂, gŷ, θ̂ )}
if [û = û−t ∧ θ̂ = 0] ∨ [û = û+t ∧ θ̂ = π ];

{(gx̂, g(ŷ+ 1), θ̂ ), (gx̂, gŷ, θ̂ )}

if [û = û+t ∧ θ̂ =
π

2
] ∨ [û = û−t ∧ θ̂ = −

π

2
];

{(gx̂, g(ŷ− 1), θ̂ ), (gx̂, gŷ, θ̂ )}

if [û = û−t ∧ θ̂ =
π

2
] ∨ [û = û+t ∧ θ̂ = −

π

2
];

{(gx̂, gŷ, θ̂ + π/2)}

if û = û+r ∧ θ̂ ∈ {−
π

2
, 0,

π

2
};

{(gx̂, gŷ,−π/2)}
if û = û+r ∧ θ̂ = π;

{(gx̂, gŷ, θ̂ − π/2)}

if û = û−r ∧ θ̂ ∈ {0,
π

2
, π};

{(gx̂, gŷ, π)}

if û = û−r ∧ θ̂ = −
π

2
;

{(gx̂, gŷ, θ̂ )}
if û = ûϵ .

(26)

Despite (26), r̂((gx̂, gŷ, θ̂ ), û) = ∅ if the state after the transi-
tion is out of the boundaries of theworkspace or ifMRi tries to
pass a position occupied by an obstacle during the transition.
Ultimately, the state after the transition is computed using
Algorithm 1.

Algorithm 1 Compute the state after the transition with
consideration of the boundaries and the obstacle positions

Input: the current state (gx̂, gŷ, θ̂ ), the input û, the set of
obstacle positions Ô ⊆ {(gx̂o, gŷo) | x̂o ∈ [−m;m], ŷo ∈
[−n; n]}

Output: the state after the transition
1: (gx̂ ′, gŷ′, θ̂ ′)← r̂((gx̂, gŷ, θ̂ ), û) computed by (26)
2: if x̂ ′ < −m, m < x̂ ′, ŷ′ < −n, or n < ŷ′ then
3: # out of the boundary
4: return NULL
5: else if (gx̂ ′, gŷ′) ∈ Ô then
6: # occupied by an obstacle
7: return NULL
8: else
9: return (gx̂ ′, gŷ′, θ̂ ′)

10: end if

Then, the following relation R ⊆ X̂ × X × Û × U is an
ASR from Ŝ to S:

R = {((gx̂, gŷ, θ̂ ), (x, y, θ), û, u) ∈ X̂ × X × Û × U |

[
∣∣(gx̂, gŷ)− (x, y)

∣∣ ≤ g/2] ∧ [|θ̂ − θ | ≤ 0.01] ∧

[I (û) = u]}. (27)

We move MRi to its target state. Let the target state
be (gx̂t , gŷt , θ̂t ) ∈ X̂ . To obtain a path to (gx̂t , gŷt , θ̂t ),
we apply the Dijkstra algorithm and obtain the system ŜC =
(X̂C , X̂C0, ÛC , r̂C ) where X̂C = X̂ , X̂C0 = X̂0, ÛC = Û , and
r̂C : X̂C × ÛC → 2X̂C is given by

r̂C (x̂C , ûC ) =

{
r̂(x̂C , ûC ) if ûC = D(x̂C );
∅ otherwise,

(28)

whereD : X̂C → ÛC is themap indicating the first element of
the input sequence obtained as a Dijkstra path1 from x̂C ∈ X̂C
to (gx̂t , gŷt , θ̂t ) ∈ X̂C .

Since ŜC ⊆ Ŝ holds, Lemma 1 shows that the following
relation R̂C ⊆ X̂C × X̂ × ÛC × Û is an ASR from ŜC to S:

R̂C = {(x̂C , x̂, ûC , û) ∈ X̂C × X̂ × ÛC × Û |

[x̂C = x̂] ∧ [ûC = û]}. (29)

B. COLLISION AVOIDANCE
First, we defined a safe set X ⊆ X . Let the radius of the
robot be rd ∈ R>0. To prevent collisions, we have to maintain

1In this example, we use the Dijkstra algorithm for path planning. Other
technologies, such as roadmap technologies and crisp logic, are also appli-
cable to the design of ŜC .
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FIGURE 8. The worst case in terms of the distance between two robots.

distances from the other robots greater than 2rd . Therefore,
the mapping B : X → R is defined as follows:

B((x, y, θ)) = min
(xi,yi)∈P∪P ′

|(xi, yi)− (x, y)| − 2rd , (30)

where P ⊆ R2 (resp. P ′ ∈ R2) is a set of current (resp. next)
positions of the other robots MRj (j ̸= i).

Second, we computed B̂α
: X̂ → R using (10). Recall

that Ŝ is the abstracted model of S and that the workspace
is divided into grids. Because all the positions in the same
grid are abstracted to the central position of the grid, multiple
mobile robots must not be located in the same grid. In addi-
tion, owing to sensor and actuator noises, errors exist between
the actual position of the robot and the center of the grid.
We assume that the position error is bounded by e ∈ R>0.
Referring to Fig. 8, we set the grid size g ∈ R>0 such that the
following condition is satisfied:

g > 2(rd + e). (31)

Then, it is guaranteed that each robot does not collide with
the other robots as long as no grid contains multiple robots.
Here, B̂α

: X̂ → R is given by

B̂α((gx̂, gŷ, θ̂))

= min
(gx̂i,gŷi)∈P̂∪P̂ ′

∣∣(gx̂, gŷ)− (gx̂i, gŷi)
∣∣− 2(rd + e), (32)

where P̂ ⊆ {(gx̂, gŷ) | x̂ ∈ [−m;m], ŷ ∈ [−n; n]} (resp. P̂ ′ ⊆
{(gx̂, gŷ) | x̂ ∈ [−m;m], ŷ ∈ [−n; n]}) is the set of the
abstracted current (resp. next) positions of the other robots
MRj (j ̸= i). Note that (10) is satisfied. The safe set X̂ α is
given by

X̂ α
= {(gx̂, gŷ, θ̂ ) ∈ X̂ | (gx̂, gŷ) ̸∈ P̂ ∪ P̂ ′}. (33)

Third, we design an AS-Shield as follows:

Ŝα
S = (X̂α

S , X̂α
S0, Û

α
S , r̂α

S ), (34)

where X̂α
S = X̂ , X̂α

S0 = X̂0 ∩ X̂ α , Ûα
S = {ûϵ}, and r̂α

S : X̂
α
S ×

Ûα
S → 2X̂

α
S is defined by

r̂α
S (x̂, ûϵ) = r̂(x̂, ûϵ) = {x̂}. (35)

Note that (16) is satisfied because input ûϵ is always safe.

FIGURE 9. A case where a deadlock occurs if we block positions on
original trajectories.

Finally, we obtain the shield-attached controller (Ŝα
∪
, R̂α
∪
)

with Ŝα
S and B̂α as in Definition 9, and the refined controller

(Sα
∪
,Rα
∪
) as in Theorem 3.

In fact, Ŝα
S is not sufficient because of deadlocks. A case in

which a deadlock occurs is presented in Section V-B.

C. COLLISION AND DEADLOCK AVOIDANCE
We consider not only collisions, but also deadlock avoid-
ance. For collision avoidance, we used the discussion in
Section IV-B. In addition, avoidance trajectories were gen-
erated for deadlock avoidance. Recall that all transitions in
the AS-Shield must be safe. It is necessary to ensure that the
robot is always safe while moving on an avoidance trajectory
generated by the AS-Shield. Each robot must not proceed to
the positions on the avoidance trajectories of the other robots.
Additionally, each avoidance trajectory must not contain
positions that are currently occupied by other robots. Based
on the above discussion, we introduce the notion of blocked
positions to ensure the safety of the avoidance trajectories.
Definition 10 (Blocked position): It is said that robot MRi

blocks a position (gx̂, gŷ) for x̂ ∈ [−m;m] and ŷ ∈ [−n; n]
if MRi prohibits any robot except MRi entering the position
(gx̂, gŷ). If a robot MRi blocks a position (gx̂, gŷ), we say
that (gx̂, gŷ) is a blocked position by MRi or that (gx̂, gŷ) is
blocked by MRi.
It is assumed that each robot MRi can block any position
except for the positions currently occupied or already blocked
by other robots.

Each robot uses the following blocked positions. When the
AS-Shield in MRi generates an avoidance trajectory, MRi
blocks all positions on the trajectory. Note that the other
robots MRj (j ̸= i) do not enter these positions (prohibition to
enter these positions is performed by the AS-Shield on MRj).
MRi releases a blocked position when it passes that position.

We briefly explain why blocked positions are used not
for an original trajectory to the destination (gx̂t , gŷt , θ̂t ) but
for avoidance trajectories. Consider a simple case with two
mobile robots in a workspace, as shown in Fig. 9. The initial
position of MR1 is at the entrance of a narrow passage, and
the destination is at the dead end. The initial position of
MR2 is in the narrow passage, and the destination is out of it.
Because MR2 is on the MR1’s trajectory, MR1 cannot block
the positions. Similarly, MR2 cannot block the positions,
which implies a deadlock. Therefore, blocked positions are
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used not for the original trajectories but for the avoidance
trajectories.

Let B̂i be the set of positions on an avoidance trajectory
generated by MRi and B̂j (j ̸= i) be the set of blocked
positions byMRj.2 Let B̂ :=

⋃
j̸=i B̂j. If a position in B̂i exists

that is blocked by another robotMRj (j ̸= i),MRi may collide
with MRj while moving on the avoidance trajectory; that is,
the AS-Shield is not obtained. Thus, the generated avoidance
trajectory is valid only if all the positions on it are not blocked
by any other robot. If a position on the avoidance trajectory
is blocked by another robot, MRi discards the avoidance
trajectory and holds the position. Recall that computations
1)-5) are executed only once in a single time step. When a
trajectory was discarded, another avoidance trajectory was
generated at the next time step.

Ultimately, we obtain a mapping B̂β
: X̂ → R as follows:

B̂β ((gx̂, gŷ, θ̂ ))

= min
(gx̂i,gŷi)∈P̂∪P̂ ′∪B̂

∣∣(gx̂, gŷ)− (gx̂i, gŷi)
∣∣− 2(rd + e). (36)

The safe set X̂ β is given by

X̂ β
= {(gx̂, gŷ, θ̂ ) ∈ X̂ | (gx̂, gŷ) ̸∈ P ∪ P ′ ∪ B̂}. (37)

Then, we design an AS-Shield

Ŝβ
S = (X̂β

S , X̂β

S0, Û
β
S , r̂β

S ), (38)

where X̂β
S = X̂ , X̂β

S0 = X̂0 ∩ X̂ β , Ûβ
S = Û , and r̂β

S : X̂
β
S ×

Ûβ
S → 2X̂

β
S is defined by

r̂β
S (x̂, û)

=


r̂(x̂, û) if [1B̂β (x̂, û)+ B̂β (x̂) ≥ 0] ∧ [B̂i ∩ B̂ = ∅];
{x̂} if [B̂i ∩ B̂ ̸= ∅] ∧ [û = ûϵ];
∅ otherwise.

(39)

We obtain the shield-attached controller (Ŝβ
∪
, R̂β
∪
) with Ŝβ

S and
B̂β as in Definition 9, and the refined controller (Sβ

∪
,Rβ
∪
) as

in Theorem 3. In addition to collision avoidance, as in (34),
AS-Shield (38) generates safe avoidance trajectories using
the blocked positions.

We present an algorithm for generating an avoidance
trajectory. In summary, we search for and set a temporal
destination (i.e., the terminal of an avoidance trajectory)
and generate a path to it. The temporal destination must be
reachable from the current state without passing the obstacle
positions or positions currently occupied or blocked by other
robots. To consider the blocked positions, we modify the
computation of the transition, as shown in Algorithm 2.

2Together with its current and next position, each robot MRj sends posi-
tions included in B̂j to the other robots at each time step.

Algorithm 2 Compute the state after the transition by con-
sidering the currently occupied or blocked positions

Input: the current state (gx̂, gŷ, θ̂ ), the input û, the set of
obstacle positions Ô ⊆ {(gx̂o, gŷo) | x̂o ∈ [−m;m], ŷo ∈
[−n; n]}, the set of current positions of the other robots
P̂ ⊆ {(gx̂p, gŷp) | x̂p ∈ [−m;m], ŷp ∈ [−n; n]},
the set of next positions of the other robots P̂ ′ ⊆
{(gx̂p

′

, gŷp
′

) | x̂p
′

∈ [−m;m], ŷp
′

∈ [−n; n]}, the set of
blocked positions by the other robots B̂ ⊆ {(gx̂b, gŷb) |
x̂b ∈ [−m;m], ŷb ∈ [−n; n]}

Output: the state after the transition
1: (gx̂ ′, gŷ′, θ̂ ′)← r̂((gx̂, gŷ, θ̂ ), û) computed by (26)
2: if x̂ ′ < −m, m < x̂ ′, ŷ′ < −n, or n < ŷ′ then
3: # out of the boundary
4: return NULL
5: else if (gx̂ ′, gŷ′) ∈ Ô ∪ P̂ ∪ P̂ ′ ∪ B̂ then
6: # occupied or blocked by an obstacle or another robot
7: return NULL
8: else
9: return (gx̂ ′, gŷ′, θ̂ ′)

10: end if

In addition, the temporal destination should not be on the
trajectories of the other robots. Let T̂ j (j ̸= i) be the set
of positions on the MRj’s trajectory and let T̂ :=

⋃
j̸=i T̂ j.

An algorithm to obtain an avoidance trajectory is presented
in Algorithm 3.

In terms of the deviations from the original path to des-
tination (gx̂t , gŷt , θ̂t ), avoidance trajectories with short path
lengths are preferable. However, a livelock may exist if the
shortest avoidance trajectory is always computed. Therefore,
we introduce randomness byrand()%10=0 in Algorithm 3;
that is, if a shorter trajectory is found, it is accepted with a
probability of 10%. We also introduce another randomness
in triggering Algorithm 3 for the design of (38); that is, some
robots sometimes do not generate their avoidance trajectories,
even though a possible deadlock is detected. This is because
they expected that the avoidance trajectories generated by
other robots would resolve the deadlock.

Because the avoidance trajectories are safely generated,
there is no deadlock, and all the robots successfully arrive at
their destinations. The results are presented in Section V-C.

V. EVALUATION
In this section, we present the results of our proposed method.
We set the size of the workspace as 2 [m] × 2 [m] and
abstract it with 0.2 [m] × 0.2 [m] grids (i.e., g = 0.2 and
m = n = 5). The Khepera IV was used as the mobile
robot. Khepera IVwas released by K-team [39], and its radius
rd is 70.40 [mm]. Khepera IV is equipped with two servo
motors whose position error e is less than 0.02 [m], so (31) is
satisfied.

To simulate Khepera IV robots, we used Webots software
released by Cyberbotics [40] and randomly injected packet
dropouts in the simulated communication. The simulation
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Algorithm 3 Compute the avoidance trajectory

Input: the current state (gx̂, gŷ, θ̂ ), the input û, the set of
obstacle positions Ô ⊆ {(gx̂o, gŷo) | x̂o ∈ [−m;m], ŷo ∈
[−n; n]}, the set of current positions of the other robots
P̂ ⊆ {(gx̂p, gŷp) | x̂p ∈ [−m;m], ŷp ∈ [−n; n]},
the set of next positions of the other robots P̂ ′ ⊆
{(gx̂p

′

, gŷp
′

) | x̂p
′

∈ [−m;m], ŷp
′

∈ [−n; n]}, the set of
blocked positions by the other robots B̂ ⊆ {(gx̂b, gŷb) |
x̂b ∈ [−m;m], ŷb ∈ [−n; n]}, the set of positions
on the other robots’ trajectory T̂ ⊆ {(gx̂ t , gŷt ) | x̂ t ∈
[−m;m], ŷt ∈ [−n; n]}

Output: the sequence of states indicating the avoidance tra-
jectory

1: result.clear() # output container
2: path_len← INFINITY # path length
3: (gx̂d , gŷd , θ̂d )← (−1,−1,−1) # temporal dest
4: Generate the abstracted plant model with Algorithm 2
5: Apply the Dijkstra algorithm on the generated model
6: for (gx̂ t , gŷt , θ̂ t ) ∈ X̂ do
7: flag← TRUE
8: if (gx̂ t , gŷt ) ∈ Ô ∪ P̂ ∪ P̂ ′ ∪ B̂ ∪ T̂ then
9: # infeasible temporal destination
10: flag← FALSE
11: end if
12: if flag = TRUE then
13: tmp_result ← the Dijkstra path obtained at

step 5 from (gx̂, gŷ, θ̂ ) to (gx̂ t , gŷt , θ̂ t )
14: if tmp_result is successfully obtained then
15: if tmp_result.len() < path_len then
16: # shorter avoidance trajectory found
17: if rand()%10 = 0 then
18: # update the result
19: path_len← tmp_result.len()
20: result← tmp_result
21: end if
22: end if
23: end if
24: end if
25: end for
26: return result

TABLE 1. Simulation environment.

environment is shown in Table 1, and the initial and target
positions are set as shown in Table 2.

A. CONVENTIONAL VS PROPOSED METHOD
Let us consider the conventional method, where all the robots
in the workspace are composed, the abstracted model of the

TABLE 2. Simulation parameters (N = 3).

FIGURE 10. The numbers of states and transitions in the entire system.

entire system is constructed, and unsafe transitions in it are
eliminated. Let N = 1. Because a robot is located in a grid
that is not occupied by an obstacle, the number of states in
the entire system is the same as the number of grids not
occupied by the obstacles, that is, 51 states in the case of
Fig. 7. Each state has five transitions because |Û | = 5.
Thus, 255 transitions were considered in the entire system.
Let N = 2. Each robot was located in a grid that was not
occupied by an obstacle or another robot. Thus, the number
of states of the entire system was 51 × 50 = 2550. Each
2550 state had 25 transitions because |Û × Û | = 25. Thus,
there were 63750 transitions. In general, if there are N robots
in the workspace, the number of states in the entire system is
calculated as 51!/(51 − N )! and that of the transitions is by
5N×51!/(51−N )!. The number of states and transitions in the
entire system increased exponentially, as shown in Fig. 10.

In contrast, because of the introduction of the AS-Shields,
the number of states in the entire system is reduced to 51 ×
2×N = 102N and that of transitions is to 51× 5× 2×N =
510N because each robot has its own original controller and
AS-Shield.

B. AS-SHIELD WITHOUT DEADLOCK AVOIDANCE
We executed a simulation using the AS-Shield Ŝα

S given
by (34). The results are shown in Fig. 11. Note that there
are no collisions among the robots, which is assured by
Theorem 3. Each robot sends its current and next positions,
and the shield checks the received position information.
However, MR2 and MR3 do not arrive at their destinations
because the shields in both MR2 and MR3 overwrite control
inputs with ûϵ . The current position of MR2 is (0.0,−0.2),
and the next position is (0.0,−0.4). The current position
of MR3 is (0.0,−0.6), and the next position is (0.0,−0.4),
which is the same as MR2. Consequently, a deadlock
occurred.

VOLUME 12, 2024 37161



M. Mizoguchi, T. Ushio: Abstraction-Based Safe Control With AS-Shields and Its Application to Mobile Robots

FIGURE 11. The deadlock by the collision avoidance.

FIGURE 12. The successful behavior by the proposed controller.

C. AS-SHIELD WITH DEADLOCK AVOIDANCE
We executed a simulation using AS-Shield Ŝβ

S given by (38).
Each robot sends its current and next positions and a set
of blocked positions, and the shield checks the received
position information. The results are shown in Fig. 12.
Each robot successfully arrived at its destination without
collision or deadlock. When MR2 and MR3 arrived at the
same positions as shown in Fig. 11, a possible deadlock is
detected by MR2 and MR3. Then, MR2 and MR3 gener-
ate AS-Shield (38). In this experiment, MR3 obtained an
avoidance trajectory heading to the state (0.0,−0.8, π), and
MR2 did not generate an avoidance trajectory. Note that
MR2 and MR3 confirmed safety by communicating their
positions on the avoidance trajectory (i.e., blocked posi-
tions). When MR3 transits from the state (0.0,−0.6, π/2) to
(0.0,−0.8, π/2), it blocks (0.0,−0.6) and (0.0,−0.8).When
MR3 proceeds to (0.0,−0.8, π/2), the blocked position is
only (0.0,−0.8), and the next position of MR3 is (0.0,−0.8)

TABLE 3. Simulation parameters (N = 4).

FIGURE 13. The successful behavior in spite of the different number of
robots.

because it transits from (0.0,−0.8, π/2) to (0.0,−0.8, π).
Then, MR2 proceeds to the position (0.0,−0.6) and arrives
at the destination. On the other hand, MR3 transits from
(0.0,−0.8, π) to (0.0,−0.8, π/2) for the shortest path from
(0.0,−0.8, π) to the target position (−0.6, 0.6). However, the
position (0.0,−0.6) is occupied by MR2. Then, MR3 gen-
erates another avoidance trajectory (0.0,−0.8, π/2) →
(0.0,−0.8, 0) → (0.2,−0.8, 0) → (0.2,−0.8, π/2) →
(0.2,−0.6, π/2) → (0.2,−0.4, π/2). These positions are
blocked while MR3 is on the avoidance trajectory. When
MR3 arrives at (0.2,−0.4, π/2), it resumes to head to the
target position and finally arrives at (−0.6, 0.6). Therefore,
it is confirmed that each robot successfully arrives at its target
state under unpredictable packet dropouts by dynamically
generating avoidance trajectories with probabilistic computa-
tion and by negotiating the trajectories with the other robots.

Let us consider the case where another robot MR4 exists
in the workspace. The initial and target positions are listed in
Table 3. Recall that we designed homogeneous controllers.
The controller for MR4 is then obtained in the same manner
as MR1, MR2, and MR3. Figure 13 shows the results, and it
is confirmed that the desired behavior was obtained.

VI. CONCLUSION
We propose alternating simulation-based shields (AS-
Shields) attached to an abstraction-based controller. Because
AS-Shields are constructed with symbolic control bar-
rier functions such that transitions to unsafe states are
disabled, it is theoretically assured that shield-attached
abstraction-based controllers enforce both control and safety
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specifications. We applied AS-Shields to a system consisting
of multiple mobile robots sharing a workspace. We designed
an AS-Shield for a system that achieves collision and dead-
lock avoidance under unpredictable packet dropouts among
robots. We confirmed that all the robots arrived safely at
their target states. In terms of the performance of mobile
robots, several path-planning methods must be compared
by investigating the effects of updating control inputs using
AS-Shields. Future work should investigate the generality of
the proposed method by applying it to other systems, such as
autonomous cars, construction machineries, and unmanned
aerial vehicles.

APPENDIX A
PROOF OF LEMMA 1
We prove that Rc defined by (17) satisfies the conditions for
ASR from Sc to Sp.
First, consider any xc0 ∈ Xc0. Because Xc0 ⊆ Xp0 holds,

we have xc0 ∈ Xp0. Thus, (xc0, xc0) ∈ RcX holds.
Next, consider any (xc, xc) ∈ RcX and any uc ∈ Uc(xc).

Because Sc ⊆ Sp holds, we have rc(xc, uc) = rp(xc, uc). Thus,
we have ∀x ′p ∈ rp(xc, uc) : [x ′p ∈ rc(xc, uc)] ∧ [(x ′p, x

′
p) ∈

RcX ]. □

APPENDIX B
PROOF OF LEMMA 2
We prove that R̂∪ defined by (21) is an ASR from Ŝ∪ to Ŝ and
that (9) is satisfied.
First, consider any x̂∪0 ∈ X̂∪0. Since X̂∪0 = X̂0 ∩ X̂ ,

we have x̂∪0 ∈ X̂0 and B̂(x̂∪0) ≥ 0. Consequently, we have
(x̂∪0, x̂∪0) ∈ R̂∪X .
Next, consider any (x̂∪, x̂) ∈ R̂∪X such that x̂∪ = x̂ ∈ X̂

and any û∪ ∈ Û∪(x̂∪). Here, we present two cases.
1) Suppose r̂C (x̂∪, û∪) ∩ r̂mS (x̂∪, û∪) ̸= ∅ holds. By (20),

we have û∪ ∈ Û B̂(x̂∪) = Û B̂(x̂) ⊆ Û (x̂). Then, we have
(x̂∪, x̂, û∪, û∪) ∈ R̂∪. In addition, for any x̂ ′ ∈ r̂(x̂, û∪),
we have x̂ ′

∪
= x̂ ′ ∈ r̂C (x̂∪, û∪) ∩ r̂mS (x̂∪, û∪) ⊆

r̂∪(x̂∪, û∪). Then, (x̂ ′∪, x̂
′) ∈ R̂∪X holds. Moreover,

by the definition of Û B̂, we have1B̂(x̂∪, û∪)+B̂(x̂∪) ≥
0. Thus, we have

B̂(x̂ ′∪) ≥ min
x̂ ′′∈r̂(x̂∪,û∪)

B̂(x̂ ′′)

= 1B̂(x̂∪, û∪)+ B̂(x̂∪) ≥ 0, (40)

which implies x̂ ′
∪
= x̂ ′ ∈ X̂ .

2) Suppose r̂C (x̂∪, û∪) ∩ r̂mS (x̂∪, û∪) = ∅ and r̂S (x̂∪,
û∪) ̸= ∅ hold. By (16), we have û∪ ∈ Û B̂(x̂∪) =
Û B̂(x̂) ⊆ Û (x̂). Then, (x̂∪, x̂, û∪, û∪) ∈ R̂∪ holds. Since
r̂S (x̂∪, û∪) = r̂(x̂, û∪), for any x̂ ′ ∈ r̂(x̂, û∪), we have
x̂ ′
∪
= x̂ ′ ∈ r̂S (x̂∪, û∪) ⊆ r̂∪(x̂∪, û∪). Thus, (x̂ ′∪, x̂

′) ∈
R̂∪X holds. Moreover, by the definition of Û B̂, we have
1B̂(x̂∪, û∪)+B̂(x̂∪) ≥ 0. Based on the same discussion
as in the previous case, we have x̂ ′

∪
= x̂ ′ ∈ X̂ .

Therefore, the pair (Ŝ∪, R̂∪) is a safe controller for Ŝ with
respect to B̂. □

APPENDIX C
PROOF OF THEOREM 3
ByLemma 2, the pair (Ŝ∪, R̂∪) is a safe controller with respect
to (10) for (2). In addition, the pair (S∪,R∪) is the refined
controller obtained by Theorem 1. Therefore, Theorem 2
shows that (S∪,R∪) is a safe controller with respect to (8)
for (1). □
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