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ABSTRACT Automated fault localization in large-scale cloud-based applications is challenging because
it involves mining multivariate time series data from large volumes of operational monitoring metrics.
To improve localization accuracy, automated fault localization methods incorporate feature reduction to
reduce the number of monitoring metrics unrelated to a failure. However, these methods have problems with
inaccuracy, either from removing too many failure-related metrics or from retaining too few failure-unrelated
metrics. In this paper, we present MetricSifter, a feature reduction framework designed to accurately identify
anomalous metrics caused by faults. Our framework locates a failure time window with the highest density
of fault-induced change point times across monitoring metrics with a focus on their temporal proximity.
Experimental results indicate that MetricSifter achieves an accuracy of 0.981, which is significantly better
than the selected baseline methods. Furthermore, experiments combining various reduction methods with
various localization methods demonstrate that MetricSifter improves the recall and time efficiency over the
baseline methods.

INDEX TERMS AIOps, failure management, fault localization, incident response, monitoring, site
reliability engineering.

I. INTRODUCTION
Online services related to social media, online gaming, e-
commerce platforms, and others are increasingly integral
to everyday life. The cloud applications that power these
services require not only high reliability but also continuous
improvement of the user experience through consistent
feature updates [1]. However, the growth in the number of
application components, the diversity of component types,
the complexity of intercomponent dependencies, and the fre-
quency of updates has inevitably led to reliability incidents,
including outages and performance degradation [2]. Studies
analyzing service provider incidents have shown that failure
resolution can be a lengthy process, in some cases lasting
several hours [3], [4]. Ensuring rapid failure diagnosis and
mitigation is therefore critical to maintaining reliability in the
face of recurrent updates.
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Engineers routinely monitor the inner workings of appli-
cation systems by mining collected telemetry data, which
provides insights into the causes of faults that lead to failures.
In the literature, three primary types of telemetry data are
distinguished: metrics, logs, and traces [5], [6]. Monitoring
metrics, the most commonly accessible monitoring data, are
performance metrics such as average service response time
or machine CPU utilization. These monitoring metrics form
a time series, and metrics are sampled at consistent intervals
(e.g., every 15 seconds). Engineers build monitoring systems
in advance to facilitate the instrumentation, storage, and
visualization of metrics [7]. These systems allow them to
perform visual inspections of extensive monitoring metrics,
thereby clarifying the understanding of the operational status
of the service.

Immediate fault localization through visual inspection of
monitoring metrics is challenging in large-scale applica-
tions [8]. Automating the fault localization, i.e., bypassing
the need for visual inspection, remains elusive for several
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reasons. First, the large volume of anomalous metrics results
from complex dependencies between components, and these
dependencies allow anomalies to propagate, resulting in
numerous affected metrics. Second, anomalous patterns
in monitoring metrics are heterogeneous because of the
variety of metric types and the specific roles of the various
components, such as web servers and database servers [9].
Third, the causes of incidents within cloud applications vary
widely, including internal factors such as misconfiguration,
code changes, and resource contention as well as external
factors such as hardware faults, insufficient resources, and
excessive traffic [4]. This variety makes it difficult to predict
and to detect new faults.

Automatic fault localizationmethods with statistical analy-
sis, data mining, andmachine learning for monitoring metrics
have been proposed in recent years [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].
To trace the process of anomaly propagation in application
components, much of the existing research has addressed
the problem of determining hidden underlying topological
relations between monitoring metrics. Because this approach
requires pairwise comparisons, it can quickly become
computationally expensive.Wang et al. reported that as the
number of monitoring metrics increases, the problem space
expands, and typical fault localization methods therefore
suffer from accuracy and time inefficiency [25].
Feature reduction, which is a principal approach to

managing a large number of monitoring metrics, serves as
a crucial preprocessing step in fault localization [25], [26].
We refer to a feature as a monitoring metric represented by a
univariate time series. Fault localization methods reduce the
number of metrics by selecting specific sets, either manually
or automatically. Manual preselection is difficult because the
most useful metrics will vary depending on the fault [17],
[20]. Automated feature reduction methods can be divided
into two main types: normality reduction and redundancy
reduction. Normality reduction retains only those metrics
identified by statistical techniques as anomalies [9], [16],
[25], while redundancy reduction examines similarities (e.g.,
correlation) between the time series of metrics to eliminate
redundancies [14], [18], [26].
Automated feature reduction methods encounter the fol-

lowing performance and evaluation challenges.

A. PERFORMANCE CHALLENGE
The conventional reduction methods typically over- or
under-reduce the essential monitoring metrics. Redundancy
reduction runs the risk of removing useful monitoring metrics
from the set of root fault metrics due to their similarities.
Fig. 1 illustrates cases where root fault metrics have
similar time series patterns or high correlations. Conversely,
normality reduction may fail to remove failure-unrelated
monitoring metrics because it may incorrectly identify
anomalies outside the failure time window as failure-
related. Given these problems, there is a need for a more

FIGURE 1. Examples of fault-induced change points in root fault metrics.
The x-axis is the time index. These change points cluster in time
because the fault-induced anomalies propagate rapidly in the faulty
components. The data were samples from our experimental datasets (see
Table 4). Shown here are time series of all root fault metrics when we
manually injected two types of faults (CPU exhaustion and memory
overload) into Sock Shop or Train Ticket, which are open-source
benchmark applications. For ease of checking the change point indices,
only the 150–179 range of the 0–179 x-axis is depicted.

failure-oriented normality reduction method that is capable
of accurately localizing the failure time window.

B. EVALUATION CHALLENGE
Previous research has not established quantitative evaluation
metrics for feature reduction alone. In [25], the quantitative
contribution of one particular reduction method on fault
localization is shown, but feature reduction itself is not
evaluated. We need to make feature reduction into a
quantitatively evaluable task.

In this paper, we first propose MetricSifter, a failure-
oriented feature reduction framework for multivariate time
series data based on unsupervised learning, to address the
performance challenge. Second, to address the evaluation
challenge, we quantitatively evaluate feature reduction by
conventional classification evaluation metrics for a task that
identifies whether each monitoring metric is failure-related
or failure-unrelated. To accurately localize the failure time
window, MetricSifter leverages the temporal proximity of
change points induced by a fault across monitoring metrics,
as shown in Fig. 1. We design the MetricSifter framework
as a three-step process: offline change point detection in
univariate time series data, time segmentation based on
different densities of detected change points, and selection of
the time segment with the highest change point density, which
is estimated as the failure time window. The monitoring
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metrics with change points within this time segment are
identified as failure-related.

We evaluateMetricSifter through experiments on synthetic
datasets for a simulation study and on real datasets from
two benchmark applications, Sock Shop [27] and Train
Ticket [28], [29], for an empirical study. The simulation study
shows that MetricSifter achieves a classification accuracy of
0.981, outperforming the best baseline method by 0.178 on
average. Experiments combining various feature reduction
methods with different fault localization methods show that
MetricSifter improves the recall of the top-5 root fault metrics
by 0.058 to 0.224 on average over that of the baseline
methods. The empirical study demonstrates that MetricSifter
enhances the average top-5 recall over that of the baseline
methods by 0.019 to 0.051. Moreover, MetricSifter improves
the average execution time by 43.75 to 50.39% over that of
the baselines with a higher improvement of top-5 recall than
those without reduction.

Our contributions in this paper are summarized as follows.

• For the first time, we quantitatively evaluate different
feature reduction methods on their own by formulating
the feature reduction as a task of classifying whether
monitoring metrics are related to a failure or not.

• We propose a feature reduction framework called
MetricSifter that focuses on the proximity of change
point times during a failure across monitoring metrics.
Our algorithm locates a failure time window with the
highest density of the change point times.

• Evaluations ofMetricSifter on both synthetic and empir-
ical datasets demonstrate its effectiveness for feature
reduction in fault localization methods. Furthermore,
it has the best overall impact on the accuracy and the time
efficiency of fault localization compared to the baseline
feature reduction methods.

Section II of this paper provides the background and our
motivation. In Section III, we present the details of our
feature reduction framework. In Section IV, we describe the
experiments to evaluate the feature reduction performance
of our framework and its impact on fault localization, and
in Section V, we report the results. Section VI is a review
of related work. We conclude in Section VII with a brief
summary and mention of future work.

II. BACKGROUND AND MOTIVATION
A. FAULT LOCALIZATION
According to a taxonomy study for dependable comput-
ing [30], a failure and a fault are defined as follows. A failure
is an event that occurs when an online service deviates from
the correct service. This happens when a fault is propagated to
the online service interface and causes the service to deviate
from the correct service. The adjudged or hypothesized cause
of the deviation is called a fault. A failure further causes
an incident when it disrupts services and negatively impacts
customers. We call monitoring metrics directly affected by a
fault root fault metrics.

Fault localization is one of the processes for incident
response in cloud applications. The incident response lifecy-
cle for software system failures consists of five phases [4],
[31]: (i) failure detection and incident reporting, (ii) incident
triage and incident responder assignment, (iii) fault local-
ization, (iv) failure mitigation, and (v) incident resolution.
Service providers are required to immediately complete
phases (i) through (iv).

B. AUTOMATED FAULT LOCALIZATION
The following are preliminaries of automated fault localiza-
tion techniques based on monitoring metrics [32].

1) CATEGORIZATION
Automated fault localization is a telemetry data-driven
approach that represents monitoring metrics. Metric-based
fault localizationmethods can be divided into twomain types,
anomaly-degree and anomaly-propagation, which utilize
fault-included anomalies on the observed time series data as
the clues for localization.

(i) The anomaly-degree methods assume that monitoring
metrics with a higher anomaly degree are more likely to be
root fault metrics [9], [19]. With these methods, anomaly
degrees are calculated for univariate time series, and metrics
are ranked on the basis of these scores. Time series anomaly
detection algorithms for obtaining anomaly scores have been
extensively studied over the years [33], [34]. Schmidl et al.
categorized such algorithms into six method types: fore-
casting, reconstruction, distance, encoding, distribution, and
tree [33]. The existing localization approaches [9], [19] typ-
ically utilize distance or distribution methods. The distance
methods compare points or subsequences using specialized
distance metrics, and then identify anomalies as those with
larger distances than normal subsequences. The distribution
methods estimate the probability distribution of the data or fit
a distribution model to the data. In this category, abnormality
is judged by frequency rather than distance.

(ii) The anomaly-propagation methods localize root fault
metrics by tracing the propagation of fault-induced anomalies
in monitoring metrics [10], [11], [12], [13], [15], [17], [20],
[21], [22], [24], [25], [26], [35]. With these methods, fault
localization is attributed to a source localization problem
of signal propagation in complex networks, which is a
well-studied problem in the field of network science [36].
This attribution regards a source as a root fault metric
and an anomaly as a signal. Ji et al.’s overview of signal
propagation [36] introduced the quantification of propagating
features from observational data to uncover the hidden
underlying network structure. Source localization refers to
finding the source of complex networks using incomplete
available data based on known or discovered network
structures. The methods in the anomaly-propagation family
typically utilize causal discovery techniques [37], [38], which
infer underlying causal relationships from observational
data. Causal discover techniques can be divided into four
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main types: constraint-based, score-based, those exploiting
structural asymmetries, and those exploiting various forms of
intervention [38]. Most fault localization methods [11], [17],
[20], [21], [22], [35] adopt either an original or modified form
of the PC algorithm [39], which is a typical constraint-based
method concerned with conditional independence relation-
ships and is valued as a nonparametric, scalable, and efficient
algorithm for causal discovery [37]. The resulting causality
graph is essentially built on the basis of the correlation
betweenmonitoringmetrics. Some fault localizationmethods
enrich the resulting graph with additional information, such
as the time series correlation [20] or anomaly score [21], [22].
The most common approach to determining the possible root
fault metrics is to visit the resulting graph through traversal
algorithms, such as a breadth-first search, random walk,
or PageRank [40]. The traversability can exclude anomaly
metrics that have no path from the frontend anomalous node
to the root fault metrics, i.e., those that are unrelated to the
failure.

2) STARTING LOCALIZATION TRIGGERED BY DETECTING
SERVICE LEVEL REDUCTION
The learning process in fault localization starts automatically
at failure detection. Most fault localization methods detect
failures by identifying anomalies in the times series for
service level indicator (SLI) metrics [1], which measure
the level of service provided to users [9], [15], [17], [20],
[21], [22]. SLI metrics include response latency, error rates,
and throughput. The fault localization process is initiated
when SLI metrics violate the predefined normal operating
conditions of the service.

3) LOOKUP TIME WINDOW SIZE
Most fault localization methods look back at a fixed time
window from the failure detection time. These methods
estimate the maximum possible time for a failure to occur and
then input time series data within that range. Research [18]
has shown that for a particular bank in China, 80% of
82 failures over a year were detected within nine minutes,
with the longest taking 19 minutes. Some methods [9], [11],
[12], [15], [16], [18], [19], [20] require normal time series
data outside the failure time window and set a lookback
window that includes this normal time window.

4) FAST LOCALIZATION PROCESSING
The conventional fault localization methods typically learn
frommonitoring metric data for each failure and then suggest
potential fault locations. Because this learning process begins
after failure detection, rapid processing is essential. This
requirement arises from the scarcity of past failures in the
target system.

C. PROBLEM FORMULATION
Fig. 2 illustrates how the set of monitoring metrics M at the
time of a failure is categorized into three subsets: root fault

FIGURE 2. Three types of monitoring metrics on anomaly propagation for
a failure. When a fault occurs, the fault-induced anomalies propagate in
the system. These anomalies appear as changes in the time series of some
monitoring metrics (labeled A and B), whereas other metrics (labeled C)
do not have changes. Metrics labeled A are ones that directly indicate the
fault, and metrics labeled B are ones that are indirectly involved in
anomaly propagation. Service Level Indicator (SLI) metrics, which are one
of the metrics labeled B, measure the level of service provided to users.

metrics (MA), metrics involved in anomaly propagation (MB),
and metrics unrelated to the fault (MC ). This classification
is consistent with the fault-error-failure cycle [30], a model
that describes the transition from faults to errors, ending with
failures. Fig. 2 shows the process of anomaly propagation
from a fault to a failure in the service. Anomaly propagation
occurs through network communication or shared resources.
Eventually, these anomalies affect SLI metrics, resulting in
failures that negatively impact service levels. In this context,
the fault localization task is defined as identifying MA

from M .
With feature reduction, we minimize the number of

elements ofMC , which consists of metrics that either have no
anomalies or have anomalies outside the failure. Removing
MC during the initial stages of localization is beneficial,
asMC can introduce noise into the fault localization process.
We write a multivariate time series at the failure detection

time t as X t = [x1t , x
2
t , . . . , x

nmetric
t ], where xit =

[x it−w+1, x
i
t−w+2, . . . , x

i
t ] is the univariate time series of the

ith monitoring metric mi, nmetric is the number of metrics and
w is the observation window size. Table 1 summarizes the key
notations used in this paper.

Our main objective is, once the monitoring system
detects a failure, to identify the possible set of monitoring
metricsMA

∪MB fromMA
∪MB

∪MC based on previously
collected multivariate data X t to localize MA as soon as
possible.

D. FEATURE REDUCTION AND ITS PERFORMANCE
CHALLENGES
Table 2 presents the comparison of existing feature reduction
methods and MetricSifter in fault localization research based
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TABLE 1. Notations.

TABLE 2. Comparison of existing works and MetricSifter.

on monitoring metrics. These methods are categorized into
two types: normality reduction, which involves reducing
monitoring metrics without anomalies, and redundancy
reduction, which involves reducing redundant monitoring
metrics based on data similarities.

1) NORMALITY REDUCTION
As shown in Table 2, existing normality reduction methods
focus on anomalies in univariate time series data as data
characteristics using time series anomaly detection algo-
rithms [33]. Because semi-supervised methods are required
to train subseries in a normal time window, they split each
univariate time series into normal and anomalous subseries
based on a fixed window size. Existing methods except
BIRCH in pursuit of efficiency.

BIRCH [25] utilizes BIRCH clustering [42] to cluster
multivariate time series inside a normal time window.

Specifically, it identifies each univariate time series as
anomalous if its data during an anomalous time window
is distant from any cluster. The K-S test [9], a two-
sample Kolmogorov-Smirnov test (K-S test) [43], is used
to detect differences between the probability distributions
of these two subseries. NSigma uses the n-sigma rule of
z score normalization [12]. The z score transforms the
data into a standard normal distribution by using the mean
and the standard deviation. FluxInfer-AD [16] smooths
each univariate time series while preserving anomalies with
clustering based on Gaussian mixture models [44] and then
applies the three-sigma rule for anomaly detection.

2) REDUNDANCY REDUCTION
Most redundancy reduction methods are based on time
series clustering, which groups together homogenous time
series based on a certain similarity measure. Time series
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clustering is a well-studied problem in the field of data
mining [41]. According to [41], it can be divided into
four components: representation, similarity or distance
measurement, clustering algorithm, and clustering prototype.
Redundancy reduction methods typically use raw time series
as the representation and use the medoid, defined as the
metric with the minimum sum of distances to others in
the cluster, as the prototype. In these methods, either
the Pearson correlation coefficient or shape-based distance
(SBD) is typically utilized as a distance measurement. SBD
measures the shape similarity between two time series by
aligning their shapes, regardless of their amplitude and
phase differences [45]. Clustering algorithms are generally
classified into six groups: partitioning, hierarchical, grid-
based, model-based, density-based clustering, and multi-step
clustering algorithms [41]. Redundancy reduction methods
typically use partitioning or density-based clustering.

Sieve [26] and TS-InvarNet [14] learn metric relationships
during normal operation and generate online predictions by
using trained models. Sieve utilizes k-Shape [45], which
is a partitioning clustering algorithm that uses SBD as a
distancemeasurement. One of themost famous density-based
algorithms is DBSCAN, where a cluster is expanded if its
neighbors are dense [46]. TS-InvarNet utilizes HDBS+SBD
with SBD and HDBSCAN [47], an advanced algorithm that
extends DBSCAN by transforming it into a hierarchical
algorithm to be more adaptive to varying density clusters
without the need for a predetermined main parameter.
PairCorr, instead of using time series clustering, iteratively
removes a monitoring metric from a pair if its Pearson
correlation coefficient exceeds a predefined threshold [22].

3) PERFORMANCE CHALLENGES
In practice, both normality and redundancy reduction meth-
ods still suffer from the following limitations in terms of
accuracy performance.
False Positives: Normality reduction methods can lead to

false positives because anomalies are also common when the
system is running normally. An example of these anomalies is
the periodic spikes caused by routine events such as batch job
executions. These false positives prevent the removal of some
monitoring metrics from MC , which can lead to additional
computation costs in the fault localization algorithm.
False Negatives: In contrast, redundancy reduction meth-

ods can lead to false negatives because sets ofMA andMB are
sometimes similar to other metrics, as shown in Fig. 1. For
example, the shapes of the time series data for the number
of transmitted network packets and the size of transmitted
network data are often similar. Removing some monitoring
metrics inMA

∪MB can lead to a lower localization accuracy.
Because feature reduction should have minimal false neg-

atives that erroneously remove root fault metrics, we adopt
an approach to develop a normality reduction method with
lower false positives. False positives can be reduced if we
localize the failure time window by considering multivariate

FIGURE 3. Pairwise analysis between root fault metrics. The variance of
the fault-caused change point times (b) is significantly smaller than the
variance of the Pearson correlation coefficients (b). Thus, the more
appropriate feature for identifying root fault metrics is the fault-caused
change point time. These metrics are sampled in the datasets
SS-middleware and T T -middleware in Table 4. The change points in (b)
are manually labeled by a domain expert. The horizontal axis in (b) is the
time index that spans the entire observation time window. The
observation window in (a) is the same as in (b). The vertical axis in (a) is
continuous, and that in (b) is integers only.

time series data characteristics, rather than arbitrarily prede-
termining the normal time window. In this paper, we design
MetricSifter as a new framework for normality reduction in
the unsupervised learning type with multivariate analysis.
This approach is unique among the existing works, as shown
in Table 2.

III. FEATURE REDUCTION FRAMEWORK
A. KEY INSIGHTS FROM OBSERVATION
We present fault-caused change point times as data charac-
teristics useful for localizing failure time window through the
following observations.

Fig. 3 shows a pairwise analysis of the absolute value
of the Pearson correlation coefficient and the fault-caused
change point time for MA

∪ MB. The absolute value of the
Pearson correlation coefficient has been used as a similarity
measure for monitoring metrics in previous studies [18],
[20], [23]. Fig. 3(b) shows that the fault-caused change point
time typically clusters around index 160, which corresponds
to the fault time. Fig. 3(a) shows a wide distribution of
the Pearson correlation coefficient, ranging from 0.4 to 1.0.
These observations support the use of change point time as a
common feature for each monitoring metric inMA

∪MB.
This observation is supported by a related field study [9],

in which 13 anomalous patterns were identified in the
monitoring metrics of MA. Low correlations are found
between certain pattern pairs such as spike and level shift.

The metrics in MC either have no change points or have
change points outside the failure time window. Thus, we can
assume that MA

∪ MB falls within the time range where the
change point times are most densely distributed. The highest
density time range is estimated as the failure time window.

To identify fault-caused change point times, we need
to resolve the following two problems. The first problem
is offline change point detection for each univariate time
series data. Change point detection is similar to anomaly
detection, but anomaly detection focuses on identifying
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unusual data points whereas change point detection is about
identifying shifts in the statistical properties over time.
Adopting change point detection effectively resolves the
false positives discussed in Section II-D3 because it does
not require predeterminating the normal time window. The
second problem is change point time segmentation based
on the distribution density of the detected change point
times. The segmentation requires estimating the probability
distribution of the change point times and then finding the
segment boundaries to locate relatively higher density ranges
of the distribution.

B. FRAMEWORK OVERVIEW
We design the MetricSifter framework to combine change
point detection and segmentation to address the perfor-
mance challenges based on the key insights presented in
Section III-A. The MetricSifter framework consists of four
sequential steps (STEP 0 to STEP 3) that produce the final
output. Fig. 4 presents an overview ofMetricSifter, and Fig. 5
exemplifies the critical components in STEPS 1 to 3. The
steps are as follows.

STEP 0 Simple Filter: This preprocessing step filters out
monitoring metrics represented by univariate time series
that show no variation. The objective here is to reduce the
computational cost of STEP 1. STEP 0 removes monitoring
metrics corresponding to time series where all data points
have equal values or where all values in the first-order
difference series are equal.
STEP 1 (Change Point Detection): STEP 1 detects change

points in each univariate time series data that passes the STEP
0 filter. Monitoring metrics with time series that have zero
change points are further removed in this step.
STEP 2 (Change Point Segmentation): STEP 2 separates

the change point indices intomultiple segments based on their
distribution density for each monitoring metric detected in
STEP 1. The indices of segment boundaries are at the relative
minima of the density estimator.
STEP 3 (Select the Largest Segment): STEP 3 selects

the segment with the largest number of members from the
obtained segments. The final output of MetricSifter is then
the monitoring metrics with change points inside the selected
segment.

MetricSifter operates independently on each set of metrics
observed for the application components during STEPS 2 and
3. The output generated by STEP 3 is then used as input to
the fault localization algorithm.

C. CHANGE POINTS DETECTION FOR UNIVARIATE TIME
SERIES DATA
After running STEP0, STEP1 detects change points in the
univariate time series data for all remaining monitoring
metrics. A change point detection algorithm with low
computational complexity is essential for fast processing of
many monitoring metrics.

According to [48], change point detection algorithms are
generally expressed as a combination of the following three
elements: a cost function, a search method, and a constraint.
A cost function measures homogeneity; choosing the cost
function is equivalent to choosing the type of change to detect.
A small value of the cost function indicates the absence of
change points, whereas a larger value indicates their presence.
A search method solves a discrete optimization problem on
the set of change points T to minimize the sum of the
cost function values. A constraint is put on the number of
change points. If the number of change points is unknown,
the optimization function introduces a penalty term pen(T )
for model complexity to prevent detecting too many change
points owing to overfitting. A smaller penalty detects more
change points, whereas a larger penalty detects fewer or no
change points.

We opted to use the mean shift model as the cost function
because it has lower computational complexity than that of
linear regression or autoregression [48]. In the mean shift
model, it is assumed that the time series distribution is
Gaussian with fixed variance. The cost function c(xsub) is
expressed as follows

c(xsub) =
∑
k∈I

∥xsub,k − x̄sub∥22 (1)

where I is the interval of the subseries indices and x̄sub is the
sample mean of the subseries. The computational complexity
of the mean shift model isO(T ), where T is the length of the
time series.

For the search method, we opted to use pruned exact
linear time (Pelt) [48], [49]. Pelt significantly reduces the
computational complexity of the optimization problem by
applying a pruning rule when the penalty term is a linear
function of the number of change points. This pruning rule
allows potential change points to be neither discarded nor
retained from the set of data points. Assuming that partition
lengths are randomly drawn from a uniform distribution, the
average computational cost of Pelt isO(Ccost T |T |), where T
is the length of the time series, and Ccost is the computational
cost when the cost function is called for a subseries [48].

We need to use the penalty term as the constraint
because the number of change points in xit is unknown
in our scenario. To calibrate a linear penalty coefficient
according to xit , we use a heuristic based on the Bayesian
information criterion (BIC), which is a well-known criterion
for model selection [48].We also fit a penalty weight constant
parameter (ω) to BIC as a domain-specific adjustment. The
penalty function pen(T ) is given by

pen(T ) = ω σ 2 logT |T |, (2)

where T is the length of the time series [48]. We set ω = 2.5,
which gives the best accuracy from the upcoming parameter
sensitivity study in Section IV-B5. If no change points are
found within the constraint, the corresponding metric is
removed.
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FIGURE 4. Overview of MetricSifter. Automated fault localization is a step-by-step approach that monitors various components of a cloud
application, detects failures through anomalies in monitoring metrics such as SLI, reduces the complexity of the data, and pinpoints the
potential faults. The final output is a set of metrics that suggest probable fault sources, which are then examined by engineers to address the
problems. Feature reduction is an intermediate process of detecting a failure and localizing a fault. The MetricSifter process as feature
reduction is further broken down into initial simple filtering, change point detection, segmentation of these change point times, and selection
of the most significant segment likely to contain the fault.

FIGURE 5. An example of feature reduction using the MetricSifter
framework. STEP 1 finds one or more change points in each of the six
time series data. STEP 2 first flattens the change point indices into a
one-dimensional array of length 15 and then segments them into five
segments (s1 through s5) based on their density. STEP 3 selects the
largest segment, which is s5 in this example. Even if STEP 1 erroneously
detects change points outside the failure time window (such as the first
and second time series from the bottom), STEPS 2 and 3 can select the
accurate segment.

D. SEGMENTATION OF CHANGE POINT TIMES
Algorithm 1 outlines the procedure for segmenting change
point indices. The input to Algorithm 1 is the set of change
point indices P of unequal length obtained in Section III-C.
First, P is transformed into a one-dimensional vector p1d

(line 1). Second, a probability density function (PDF) is
estimated to fit p1d (line 2). Finally, p1d is segmented by using
the relative minimum indices of the density estimates as the
segment boundaries (lines 3 – 11).

Algorithm 1 Algorithm of Segmentation of Change Point
Times
Input: Change points indices P
Output: Segments S
1: p1d = {p1dr | r = 1, 2, . . .} ← flatten P
2: p̂n(x)← learn PDF according to (3) from p1d

3: w← [1, 2, . . . ,w]
4: e = {ei | i = 1, 2, . . . ,w} ← p̂n(w)
5: i∗ = {i∗j | j = 1, 2, . . .} ← calculate relative minimum

indices of e according to (4)
6: S = {Sj | j = 1, 2, . . . , |i∗| + 1} ← create empty |i∗| +

1 segments
7: S1←

{
p1dr | p

1d
r < w[i∗1], 1 ≤ r ≤ |p

1d
|
}

8: for all i∗j ∈ i
∗ do

9: Sj←
{
p1dr | w[i

∗
j ] ≤ p

1d
r ≤w[i

∗
j + 1], 1≤r ≤ |p1d |

}
10: end for
11: S|S|←

{
p1dr | p

1d
r ≥ w[i∗

|i∗|], 1 ≤ r ≤ |p
1d
|

}

To estimate the probability distribution of the flattened
change point indices p1d , we use kernel density estimation
(KDE) [50], one of the most well-known approaches
to estimate the underlying PDF. KDE is nonparametric
and learns the density shape directly from the data. Let
[x1, x2, . . . , xn] be n data points; then, KDE is given by

p̂n(x) =
1
nh

n∑
i=1

K
(
x − xi
h

)
, (3)

where K is a smooth function (called the kernel function) and
h > 0 is the smoothing bandwidth that controls the amount
of smoothing.

Intuitively, KDE projects each data point into a smooth
‘‘bump’’ whose shape is defined by K . The sum of these
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FIGURE 6. An example of segmentation based on the density distribution
of change points in STEP 2. The × markers are plots of relative minima,
and the vertical lines are segment boundaries. In this example, the
density distribution is separated into ten segments.

bumps is the overall density estimate. High-density areas
have larger density values due to overlapping bumps, whereas
sparse areas have lower values. Since the kernel function
mainly affects the estimation error by a constant shift and the
choice of kernel function has only minimal impact, a standard
Gaussian distribution is common. The bandwidth h strongly
influences the estimation error [51]; however, our dataset
shows a consistent performance regardless of h, as indicated
by the parameter sensitivity study in Section IV-B5. We set
h = 3.5, which provides the best accuracy in the parameter
sensitivity study shown in Section IV-B5.
We obtain the discrete values e from the PDF p̂n(x) learned

by p1d , where x is a vector of elements incremented by 1 from
1 to w.

Given e, the relative minimum indices as the segment
boundaries i∗ are given by

i∗ = {i | (ei < ei−1) ∧ (ei < ei+1), 1 < i < |e|} . (4)

Since the chosen kernel function is a Gaussian-based smooth
function, the relative minima are obtained as points that are
preceded and succeeded by points with higher values.

Finally, the segment set S is obtained from p1d separated by
the boundaries i∗. Fig. 6 illustrates the segmentation process
when using change point indices from a subset of the dataset
prepared for the upcoming empirical study in Section IV-C.
This example shows the partitioning of the data into ten
segments. The last segment, which has the highest density,
contains a fault injection time at index 160.

E. SELECTION OF THE LARGEST SEGMENTS
The largest segment, Smax, is selected from the segment set
S obtained in Section III-D. The size of each segment is
quantified by the sum of the reciprocals of the number of
change points in the monitoring metrics. This segment sizing
avoids overestimating the size of segments outside the failure
time window.

For any given Sj in S, letM (S) be the function that returns
the set of each monitoring metric with the change point
indices in a given segment S. Let N (m) be the function that
returns the number of change point indices found in a given
monitoring metric m. Smax is given by

Smax = argmax
Sj∈S

∑
m∈M (Sj)

1
N (m)

.

The set of monitoring metrics linked to the change point
indices in Smax is the result produced by MetricSifter.

IV. EXPERIMENT
In this section, we evaluate the performance of the various
feature reduction methods through two experiments: a
simulation study based on synthetic datasets and an empirical
study based on practical datasets collected from realistic
mock cloud applications. The datasets and implementation
can be found in our GitHub repository [52].

A. EXPERIMENTAL SETUP
In this section, we describe the experimental settings common
to both the simulation and the empirical study.

1) BASELINE METHODS
We compare MetricSifter with the following representative
methods from each type of normality reduction and redun-
dancy reduction introduced in Section II-D as baselines.
For the normality reduction type, we selected NSigma,

BIRCH, K-S test, and FluxInfer-AD.
For the redundancy reduction type, we selected HDB-

SCAN with SBD (HDBS-SBD) and HDBSCAN with
Pearson correlation (HDBS-R), as redundancy reduction
methods typically utilize SBD or Pearson correlation to
measure similarity and k-Shape or HDBSCAN for clustering.
k-Shape clustering is a method of partitional optimization
clustering that repeatedly refines the clustering to determine
the optimal number of clusters. However, k-Shape is not
included in the baselines given the significant execution
time due to its iterative nature and the impracticality for
online incident response. Redundancy reduction methods
are executed separately for each component since the
computational complexity of clustering scales quadratically
with the number of items.

An ‘‘Ideal’’ method, theoretically tuned to achieve 100%
accuracy by using a ground truth, removes only all MC ,
failure-unrelated monitoring metrics.

2) FAULT LOCALIZATION METHODS
We evaluate the accuracy of fault localization by comparing
the various feature reductionmethods and by combining them
with different fault localization methods.

Random Selection (RS) serves as a benchmark, simulating
the random selection in which engineers, in the absence
of system-specific domain knowledge, continue to select
monitoring metrics one by one until the root fault metrics are
found.
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For our experiment, we selected representative methods
from each type of the anomaly-degree and anomaly-
propagation methods described in Section II-A. We selected
ϵ-Diagnosis from the anomaly-degree family. Most methods
in the anomaly-propagation family include two steps: graph
construction and scoring. For the graph construction step,
we selected Call Graph (CG), which uses a static call
graph to represent network interactions between components,
PC [39], a constraint-based method, DirectLiNGAM [53]
(LiNGAM), a function-based technique, and RCD [11],
an intervention-based method. Inspired by [15], [20], and
[21], PC and LiNGAM improve efficiency by using CG
as prior knowledge to streamline graph construction. For
the scoring step, we categorize the methods into random-
walk-based and regression-based methods. We selected
PageRank [40] as a random-walk-based method, follow-
ing implementations in [15], [16], [24], and [25], and
HT [13], which is the only regression-based approach. As an
exception, RCD does not have a separate scoring phase
because it treats the failure as an intervention in the causal
structure graph on the root fault metrics. Combinations of
graph building and scoring techniques are referred to as
PC+PageRank, LiNGAM+HT, and similar expressions.

3) IMPLEMENTATION
a: FEATURE REDUCTION
We utilized Ruptures [48] for change point detection in
MetricSifter, Statsmodels [54] for KDE, SciPy [55] for
the K-S test and Pearson correlation, Scikit-Learn [56] for
BIRCH, a Gaussian mixture model, DBSCAN, and hdb-
scan [57] for HSDBSCAN, and the authors’ implementation
for SBD.

b: FAULT LOCALIZATION
We used PyRCA [58], which is the latest fault localization
library, for ϵ-Diagnosis, PC, DirectLiNGAM, HT, and RCD,
and Networkx [59] for PageRank. RCD is implemented
with a random processing order for monitoring metrics
when constructing the causal graph, and in our approach,
we averaged the results of 100 RCD models with different
random seeds for its final prediction.

The hyperparameters of the methods utilized in our
experiment can be found in our repository [52]. In principle,
we adopted the settings described in each original paper; and
for those not described, we adopted the default values from
the libraries.

The execution granularity in STEPS 2 and 3 ofMetricSifter
is system-wide in the simulation study (Section IV-B) and
microservice-level in the empirical study (Section IV-C).
We ran the feature reduction and fault localization

processes on a virtual instance within SAKURA Cloud1

with an Intel Xeon Gold 6212U 2.40 GHz CPU (20 cores)
and 96 GiB RAM.

1https://cloud.sakura.ad.jp/

4) EVALUATION METRICS
We adopted different evaluation metrics for each stage of
feature reduction and fault localization.

a: FEATURE REDUCTION
Feature reduction is a task to classify MA

∪ MB, which
is failure-related, and MC , which is failure-unrelated,
as explained in Section II-C. Thus, we adopted three metrics
to evaluate feature reduction alone: specificity, recall, and
balanced accuracy (BA). These are known as evaluation
metrics of classification problems in the simulation study.
In the simulation study, the labels A, B, and C were provided
according to the rules of the data generation, as shown in
Fig. 2. Specificity, recall and BA are given by

Specificity = |M̂C ∩MC
| / |MC

|

Recall =
|(M̂A ∪ M̂B) ∩ (MA

∪MB)|
|MA ∪MB|

BA = (Specificity+ Recall) / 2, (5)

where (M̂A∪M̂B) and M̂C are the predicted sets ofmonitoring
metrics by feature reduction. High specificity means that
many failure-unrelated metrics are reduced while preserving
the root fault metrics. High recall indicates that a significant
number of root fault metrics are retained.

The empirical datasets require manual labeling because of
the lack of rules. Since manual labeling is impractical for the
large numbers ofMB andMC , we manually labeled onlyMA.
Therefore, we utilized three evaluation metrics that can only
be defined by the MA label: reduction rate (RR), recall of
MA (Recall of Root Fault, RF), and proportion of MA in the
reduced set (Proportion of Root Fault, PF). RR, RF, and PF
are given by

RR = |M̂reduced| / |M̂step0|

RF = |M̂A| / |MA
|

PF = |M̂A| / |M̂reduced|, (6)

where M̂reduced is the predicted set of monitoring metrics
reduced by feature reduction and M̂step0 is the predicted set
of monitoring metrics reduced by STEP0 in MetricSifter.
Applying STEP0 to the baselines achieves a fair comparison
with MetricSifter. PF directly indicates the size of the
problem space addressed by fault localization.

Validating these metrics for evaluating feature reduction
is crucial, since this paper is the first to evaluate feature
reduction based on these metrics. In Section IV-B4 we
evaluate whether high feature reduction metrics actually
correlate with high fault localization metrics.

b: FAULT LOCALIZATION
Following evaluations from prior studies [10], [15], [20],
[21], [35], fault localization performance is measured by
recall of the top-k results (AC@K) and average recall
(AVG@K). AC@K assesses the probability that the top-k
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results contain the true root fault metrics. A higher AC@K for
smaller values of k means more accurate fault localization.
AC@K for a given set of faults F is defined as

AC@k =
1
|F |

∑
f ∈F

∑
i<k R[i] ∈ Vrc
min(k, |Vrc|)

, (7)

where R[i] symbolizes each ranked root fault metric and Vrc
is the set of root fault metrics. AVG@k evaluates the overall
performance by averaging AC@k as follows:

AVG@k =
1
k

∑
1≤j≤k

AC@j. (8)

We adopted AVG@K for k ≤ K = 5 because 73% of
developers expect fault localization within the top 5, as shown
by surveys [60].

B. SIMULATION STUDY
1) DATA GENERATION
To generate synthetic datasets, we adopted the data generator
from PyRCA, which generates multivariate time series data
and a directed acyclic graph (DAG). Each node of the
DAG represents the univariate time series of a monitoring
metric, where edges indicate anomaly propagation direc-
tions. We generated four synthetic datasets: 50 nodes with
100 edges, 50 nodes with 200 edges, 100 nodes with
500 edges, and 100 nodes with 700 edges, denoted as DN ,E

Sim
(where N equals nodes and E equals edges). Each DN ,E

Sim
dataset contains different combinations of data generation
parameters and five failures for each parameter set.

The data generator creates a random DAG that satisfies
the desired number of nodes and edges. Anomalies in the
DAG nodes propagate from child to parent. Normal state
data precedes anomalous state data, the latter generated by
introducing perturbations in selected metrics. Each generated
time series contains 160 points representing the normal
time window and 20 for the anomalous time window. The
generation parameters are a set of anomaly types, noise types,
and noise weights. More details of the data generation are
provided in Appendix.

2) PERFORMANCE OF FEATURE REDUCTION
Fig. 7 shows the performance comparison of the various
feature reduction methods on synthetic datasets, where 7(a),
7(b), and 7(c) illustrate the classification effectiveness for
each dataset and 7(d), 7(e), and 7(f) show the balanced
accuracy (BA) over different anomaly and noise types
and noise weight parameters. MetricSifter outperforms the
baseline methods on BA of 0.981 on average, the overar-
ching metric of classification effectiveness. HDBS-SBD and
HDBS-R, redundancy reduction methods, have lower BA
scores because they erroneously remove MA

∪ MB. This
reduction error stems from the similarities between the time
series of MA

∪ MB, as highlighted in Fig. 3. However,
NSigma and BIRCH, which are conservative approaches that

TABLE 3. R2 between the reduction performance metrics and localization
performance metric.

minimize feature reduction, show higher recall rates than
MetricSifter.

3) PERFORMANCE OF FAULT LOCALIZATION WITH FEATURE
REDUCTION
Fig. 8 displays the contribution of the feature reduction
methods to the accuracy of fault localization on the synthetic
datasets. The average AVG@5 of MetricSifter is the best
performance among all baselines except Ideal. The increase
of the average AVG@5 of MetricSifter over the best baseline
NSigma is 0.074 and the increase over the worst baseline
HDBS-SBD is 0.240. However, the average AVG@5 of
MetricSifter does not reach that of Ideal, and the difference
is 0.029.

The difference of the average AVG@5 compared to that
of ‘‘None’’ ranges from –0.101 (HDBS-SBD) to 0.167
(Ideal). The normality reduction methods (except FluxInfer-
AD) have a higher average AVG@5 than that of ‘‘None’’.
However, the redundancy reduction methods (HDBS-R and
HDBS-SBD) have a lower average AVG@5 than that of
‘‘None’’. Therefore, the redundancy reduction methods are
not useful in terms of localization accuracy.

These results suggest that addressing the performance
challenges presented in Section II-D contributes to fault
localization.

4) VALIDITY OF FEATURE REDUCTION ACCURACY METRIC
To validate our chosen evaluation metrics for feature
reduction, we analyze the coefficient of determination R2

[61] between feature reduction accuracy and fault localization
recall. Table 3 shows that BA accounts for 13.9% to 51.0%
of the variability of AVG@5, excluding the results of
ϵ-Diagnosis. Therefore, the reduction performance partially
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FIGURE 7. Performance of different feature reduction methods in the simulation study. (a), (b), and (c) show the specificity, recall and balanced
accuracy (BA), which is a balanced metric of specificity and recall, over different datasets. (d), (e), and (f) show the BA over different anomaly and
noise types and noise weight parameters. The vertical lines (whiskers) on the boxplots represent the variability outside the upper and lower quartiles,
giving a sense of the distribution of performance values. (c), (d), (e), and (f) show that the overall performance of MetricSifter is better than the
baseline methods on average across all datasets and parameters. (a) shows that the specificity of MetricSifter is the best score, but (b) shows that the
recall of MetricSifter is equal to or less than NSigma and BIRCH.

explains the localization recall of the corresponding localiza-
tion methods.

For PC+PageRank, LiNGAM+PageRank and LiNGAM+
HT, the R2 of BA is higher than that of RS. This
suggests that feature reduction especially contributes to
traditional statistical causal discovery methods such as PC
and LiNGAM, which are widely utilized in related works.
The negligible performance of ϵ-Diagnosis, approaching
zero, makes meaningful analysis impossible. For the RCD
and HT-based methods, the R2 of recall is higher than that of
BA. Thus, removing monitoring metrics unrelated to failures
does not significantly increase the localization accuracy of
these methods.

5) PARAMETER SENSITIVITY
We evaluate how changes in the main hyperparameters
of MetricSifter affect the results of feature reduction.
MetricSifter has the two main hyperparameters: the penalty
weight parameter ω in STEP 1 and the KDE bandwidth h in
STEP 2. Fig. 9(a) illustrates the variances in BA resulting
from varying ω and h. BA peaks at ω = 2.5 and h =
3.5, and it decreases significantly as ω approaches 1.0.
This is because reducing the penalty values by lowering ω

allows more change points to occur outside the failure time
window. Fig. 9(b) and (c) indicate BA with different ω and
h, respectively by anomaly type when another parameter is
fixed at the peak. h is stable across different anomaly types,
whereas ω is more sensitive to anomaly type 1. Note that ω

has the same peak for both the anomaly types.

6) ABLATION STUDY
We conduct an ablation study to evaluate the contribution
of each step of MetricSifter to the overall reduction perfor-
mance. In this study, we examine the full version and the
version without STEPS 2 and 3. Since the segmentation in
STEP 2 depends on the change point detection in STEP 1 and
since the upstream selection in STEP 3 depends on STEP 2,
running STEP 2 or STEP 3 in isolation is not feasible.

Fig. 10 illustrates the variance in BA with different ω

for MetricSifter and MetricSifter (w/o STEPS 2 and 3).
The inclusion of STEPS 2 and 3 significantly improves BA,
especially for ω values of less than 2.5, which is the optimal
value shown in IV-B5. Therefore, STEPS 2 and 3 mitigate
the BA loss due to the high sensitivity of ω. For ω values of
2.5 or greater, there is little difference in BA between these
methods. The time series in our synthetic datasets do not have
significant change points outside the failure time window.
Increasing the penalty values prevents the detection of noise
as change points outside the failure time window. As a result,
MetricSifter achieves high BA without STEPS 2 and 3.

C. EMPIRICAL STUDY ON MICROSERVICES DATA
1) DATASET
To evaluate MetricSifter in a practical setting, we used
six datasets with 132 faults from two different cloud
applications of different sizes. The details of these datasets
are summarized in Table 4. The code for creating these
datasets is available in our GitHub repository [62].
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FIGURE 8. Localization accuracy in the simulation study. The vertical lines (whiskers) on the boxplots represent the variability outside the upper and
lower quartiles, giving a sense of the distribution of AVG@5, which is the average recall of top-5 results. Each boxplot corresponds to different datasets
and fault localization methods, showing the spread of AVG@5 achieved by each method. ‘‘None’’ is the baseline without feature reduction. The AVG@5 of
MetricSifter is the best among all baselines except Ideal on average. The normality reduction methods (NSigma, BIRCH, K-S test) except FluxInfer-AD have
a higher AVG@5 than that of ‘‘None’’ on average. The redundancy reduction methods (HDBS-R and HDBS-SBD) have a lower AVG@5 than that of ‘‘None’’
on average.

a: TESTBED
We selected two open-source benchmark applications as test
settings: Sock Shop, which is a sock sales service, and Train
Ticket, which is a train ticket booking service. One or both
of these applications have been widely utilized in many
related works [10], [11], [15], [21], [25], [63]. Sock Shop
consists of seven microservices, and Train Ticket consists

of 41 microservices, positioning it as one of the largest
public microservices benchmarks. Both systems use polyglot
programming (Java, Golang, Node.js, etc.), support databases
such as MongoDB and MySQL, and use HTTP REST for
interservice communication. Compared to Sock Shop, Train
Ticket has longer communication paths and more exposed
metrics.
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FIGURE 9. Parameter sensitivity analysis. The two hyperparameters of
MetricSifter are described in Section III. ω is the penalty weight parameter
in STEP 1 and h is the KDE bandwidth in STEP 2. (a) The variance of BA as
the reduction performance metric with different ω and h parameters. ω is
more sensitive to BA than h. (b) (c) The variance of BA with different ω

and h, respectively, by anomaly type when another parameter is fixed at
the peak. ω is more sensitive to anomaly type 1.

FIGURE 10. Ablation analysis with different ω. The BA of MetricSifter with
and without STEP 2 and STEP 3 is compared across different penalty
weights (ω) on STEP 1. The near-constant high BA across different ω

suggests that MetricSifter is more robust to changes in ω than MetricSifter
w/o STEPS 2 and 3. The robustness of MetricSifter to ω is due to the
contribution of STEPS 2 and 3.

We deployed two separate Kubernetes [64] clusters, one
for Sock Shop and one for Train Ticket, by using the Google

TABLE 4. Microservices dataset summary.

Kubernetes Engine (GKE).2 In a Kubernetes cluster, main
nodesmanage each cluster, andworker nodes host application
container pods. Among the worker nodes, one handles load
generation, another manages metric data storage, and the
other acts as a control node. The rest (five nodes for Sock
Shop and seven for Train Ticket) serve the application
deployments. Worker nodes were equipped with two vCPUs
and 8 GB of RAM, except for the load generator node,
which had 0.5 vCPU and 2 GB of RAM. The microservice
containers were maintained at a replication factor of 1.

b: LOAD GENERATION
To simulate concurrent user access on benchmark appli-
cations, we used Locust,3 which allows workloads to be
customized in a way that reflects actual user interactions.
Workload patterns in Sock Shop mimicked a typical user
journey through the site, starting from landing on the home
page and moving on to browsing product listings and placing
an order. The load was balanced to replicate a realistic
scenario where browsing the home page and catalog is
more common than completing a purchase. We loaded
Train Ticket according to eight user scenarios: 1) login,
2) unauthenticated ticket search, 3) authenticated search
with reservation, 4) baggage check-in for reserved ticket,
5) post-login order payment, 6) no-refund cancellation, 7)
ticket issuance, and 8) post-login ticket rebooking. These
scenarios were run in parallel to mimic the various activities
of numerous users. The load generator sent requests at a
frequency of 200–300 per second (RPS) for Sock Shop and
100–150 RPS for Train Ticket.

2Google Kubernetes Engine: https://cloud.google.com/kubernetes-engine
3Locust: https://locust.io/
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c: FAULT INJECTION
While generating workloads, we injected a set of faults
to emulate performance degradation in microservices
applications. We utilized Litmus Chaos [65], which is
capable of injecting a variety of preconfigured faults
into Kubernetes-managed containers as a fault injector.
We selected two types of faults that are commonly seen in
related work [11], [21], [25]: CPU exhaustion and memory
overload. CPU exhaustion increases the usage of all visible
CPU cores of the container within a container by using the
Pod CPU Hog for Litmus Chaos. Memory overload increases
memory usage by 500 MB within a container by using the
Pod Memory Hog for Litmus Chaos. We injected faults into
nine key containers in Sock Shop (carts, carts-db, catalog,
catalog-db, payment, orders, order-db, user, user-db) and
seven containers in Train Ticket (ts-auth-service, ts-basic-
service, ts-order-service, ts-station-service, ts-train-service,
ts-travel-service, and ts-user-service). The duration of a fault
injection was set to five minutes.

d: DATA COLLECTION
To collect monitoring metric data, we adopted Prometheus
[66], a popular monitoring tool, to scrape and savemonitoring
metrics. We set the scraping interval to 15 seconds in
accordance with a Prometheus user survey [67] indicating
that this was the preferred length.

We obtained the last 180 data points (equivalent to 45 min)
from each time series before the fault injection completion.
Data were excluded only if no anomalies were detected in
any of the SLI metrics. For the SLI suite, we selected a set of
monitoring metrics including average response time, requests
per second (RPS), and error rates collected from the Sock
Shop and Train Ticket frontends.

2) PERFORMANCE OF FEATURE REDUCTION
Table 5 presents the feature reduction results. PF of Met-
ricSifter outperforms the baselines by 22.2% to 65.3%. The
redundancy reduction methods (HDBS-SBD and HDBS-R)
demonstrate particular strength in RR, and the normal-
ity reduction methods (NSigma, BIRCH, K-S test, and
FluxInfer-AD) lead in terms of RF and T(s). Although
MetricSifter performs poorly in T(s), it significantly reduces
the localization time relative to the normality reduction
methods, as detailed in Section IV-C3.
PF of the normality reduction methods is higher than that

of the redundancy reduction methods in all datasets. The high
recall of the normality reduction indicates that the normality
reduction does not removeMA, asMA has an anomaly during
the failure. In contrast, the redundancy reduction decreases
RF because the similarity of monitoring metrics inMA

∪MB

often leads to unintended reductions of MA, as noted in
Section III-A. Moreover, the redundancy reduction methods
show a pronounced escalation in execution time with an
increasing number of monitoring metrics per application
component in contrast to the normality reduction methods.

This can be traced to the computational complexity, which
increases quadratically with the number of metrics.

3) PERFORMANCE OF FAULT LOCALIZATION WITH FEATURE
REDUCTION
Fig. 11 shows the impact of applying feature reduction
methods on the fault localization performance (for simplicity,
items with T(s) exceeding 60 minutes are excluded). In terms
of localization accuracy, the overall results are consistent with
the simulation study described in Section IV-B3.

The average AVG@5 of MetricSifter is the best perfor-
mance among all methods, with an average AVG@5 of
0.119. The difference in the average AVG@5 of MetricSifter
over the best baseline K-S test is 0.014 and that over the
worst baseline HDBS-R is 0.050. The difference of the
average AVG@5 compared to that of ‘‘None’’ ranges from
–0.030 (HDBS-R) to 0.020 (MetricSifter). The normality
reduction methods have equal to or a higher average AVG@5
than that of ‘‘None.’’ However, the redundancy reduction
methods are not useful in terms of localization accuracy
because they have a lower average AVG@5 than that of
‘‘None.’’

The average T(s) of MetricSifter is higher than that of the
redundancy reduction methods by 45.87 to 52.25% but lower
than that of the normality reduction methods by 33.16 to
60.09% and that of ‘‘None’’ by 91.39%. However, T(s)s in
larger datasets with the localization methods (except RCD)
is over one hour, even when applying each feature reduction
method shown in Fig. 11(b).
In conclusion, MetricSifter outperforms the normality

reduction methods in both accuracy and time efficiency,
although it is less time efficient than the redundancy reduction
methods.

V. DISCUSSION
In this section, we discuss both MetricSifter alone and the
overall feature reduction.

A. ADVANTAGES AND LIMITATIONS OF METRICSIFTER
1) FLEXIBILITY AS A FRAMEWORK
MetricSifter provides the flexibility to replace any of its
steps with alternative methods, thereby allowing users to
choose a better method for each step given their specific use
cases. Therefore, our major contribution is not to present new
methods for change point detection and probability density
estimation but rather to design a feature reduction framework
integrated with existing algorithms. In addition, the fault
localization accuracy (as measured in Section IV-C3) can
be further improved by incorporating a more effective fault
localization method into the system.

2) HYPERPARAMETERS
MetricSifter users need to tune two hyperparameters: the
penalty weight ω in STEP 1 and the KDE bandwidth h in
STEP 2. In practice, even suboptimal hyperparameter settings
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TABLE 5. Performance of various feature reduction methods in empirical study.

can be enough to prevent significant performance degradation
of their systems, since parameter h is not sensitive to the
performance and STEPS 2 and 3 reduce the performance
degradation despite the high sensitivity of the parameter ω,
as shown in Sections IV-B5 and IV-B6.

In contrast to the normality reduction methods (excluding
FluxInfer-AD), which must specify the normal time window,
MetricSifter is independent of the time window parameter.
In STEP 3, MetricSifter can identify the anomalous time
window instead of arbitrarily specifying the normal time
window.

3) COMPUTATIONAL COST
The computational cost of MetricSifter is scaled to the
number of application components, as it is designed to be
applied to each component. Users can change the target unit
size of an application component (such as a container or a
microservice) in accordance with their system.

4) METHOD LIMITATIONS
(1) The low proximity of fault-caused change points within
MA
∪MB is at odds with the assumption from the observations

described in Section III-A. In this case, MetricSifter loses
some root fault metrics. (2) MetricSifter may erroneously
remove root fault metrics without any detectable change
points. For example, if a resource nearing full capacity can
cause performance degradation, the degree of change in the

resource metric is small. This limitation is not unique to
MetricSifter, as normality-based reduction methods also rely
on detecting anomalies within root fault metrics, and they
share the same risk of missing such anomalies.

5) LIMITED DATASETS
Since the simulation and empirical studies in Section IV
mimic only a fraction of the possible failure scenarios in a
controlled environment, these scenarios may not fully repre-
sent those in real user systems. As such, the generalizability
of our results may be limited. For example, different data
parametersmay not give consistent results. In our experiment,
the values of three data parameters were fixed: time series
length, the ratio of normal and anomalous window sizes, and
the sampling rate. Changing the data parameters may result in
lower accuracy, so to avoid accuracy loss, MetricSifter users
may need to tune the hyperparameters.

B. LIMITATIONS OF OVERALL FEATURE REDUCTION
1) SCALABILITY WITH MONITORING METRICS VOLUME
With the empirical datasets, fault localization methods
typically experience decreasing top-5 recall and increasing
execution time, regardless of any feature reduction method,
as indicated in Fig. 11. In the datasets with more than
1,000 monitoring metrics, the top-5 recalls fall below 0.2,
which is too low to be practical. Therefore, the feature
reduction methods, including MetricSifter, do not prevent the
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FIGURE 11. Localization performance in the empirical study. The feature reduction methods combining the fault localization methods are compared in
terms of their localization performance and computational efficiency in the empirical study. The boxplots correspond to AVG@5, which is the average
recall of top-5 results. The vertical lines (whiskers) on the boxplots represent the variability outside the upper and lower quartiles, giving a sense of the
distribution of AVG@5. The line plots correspond to T(s). The items with T(s) exceeding 60 minutes are excluded for practicality. Execution time (T(s)) is the
sum of the time spent on reduction and localization. The six datasets (SS-small, SS-medium, SS-large, TT -small, TT -medium, and TT -large) are listed in
Table 4. The average AVG@5 of MetricSifter outperforms the baseline methods, and the average T(s) of MetricSifter is higher than that of the redundancy
reduction methods (HDBS-R and HDBS-SBD) but lower than that of the normality reduction methods (NSigma, BIRCH, K-S test, and FluxInfer-AD).

localization accuracy from degrading with increasing metric
volume. In terms of execution time, the localization methods
(excluding RCD) take more than one hour on large empirical
datasets. Causal learning-based methods such as PC and
LiNGAM benefit marginally from parallel computing due
to the inherent limitations of parallelism in statistical causal
discovery. To address this scalability problem, we implement
safe pruning of MB without degrading the localization
accuracy.

2) VALIDITY OF GROUND TRUTH LABELING
In the empirical study, AVG@k is sensitive to the selection
of root fault metrics as ground truth. In our experiment,
we marked the monitoring metrics that are directly related
to the type and location of the fault as ground truth. For the
memory overload, we marked memory usage metrics such
as mem_used, mem_free, and mem_cached in the injected
component. However, the process of injecting memory
overload simultaneously increases CPU usage metrics such
as cpu_total and cpu_user. It is not obvious, even for domain

experts, whether to select one or both of the CPU andmemory
metrics. Future research in fault localization needs to examine
the dependence of the evaluation metric on the ground truth
labeling.

3) INCOMPATIBILITY WITH FAULT LOCALIZATION METHODS
MetricSifter and other feature reduction methods output
heterogeneousmonitoringmetrics. Heterogeneity poses com-
patibility problems with certain fault localization methods.
For example, AutoMAP [17] requires the same counts and
types of monitoring metrics across application components,
and this requirement is beyond the scope of existing
automated feature reduction.

VI. RELATED WORK
Automating fault localization in cloud applications by utiliz-
ing statistics and machine learning techniques that leverage
telemetry data is a growing field [32], [68]. These initiatives
typically focus on microservices [69], which decompose
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system functionality into numerous small, deployable units
and database clusters within cloud ecosystems.

Telemetry data sources categorize the methods for
automating fault localization into four groups: metric-based,
log-based, trace-based, and multimodal-based. Metric-based
methods localize root fault metrics by identifying anomalies
in the time series of monitoring metrics or their causal
relationships [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. Log-based
methods localize faults through operational text logs during
program execution [70], [71]. Trace-based methods localize
faults through trace data and examine request paths through
systems [63], [72]. Multimodal-based methods analyze two
or more data sources (such as metrics, logs, and traces)
and then delve into faults [73], [74]. Due to the widespread
historical use of metric instrumentation [75], metric-based
research has gained broader applicability. Therefore, in this
paper we focus on metric-based methods.

Fault localization methods can be divided into two main
categories: coarse-grained localization at the component level
and fine-grained localization at themetric level [9], [10], [11],
[15], [19], [35]. In this paper, we emphasize fine-grained
localization, which is more likely to benefit from feature
reduction than coarse-grained localization.

Several researchers have utilized fine-grained anomaly-
degree based techniques. For example, ϵ-Diagnosis [19] uses
p values obtained from a two-sample test that measures the
energy distance [76] between metric data during normal and
faulty states as an indicator of anomalies. PatternMatcher [9]
assigns different weights to these P values by using a
supervised learning approach that identifies time series
patterns in root fault metrics.

Other researchers have used fine-grained anomaly-
propagation based techniques. MicroCause [35] constructs
a modified PC algorithm-based causal structure graph that
accounts for anomaly propagation delay and traces causality
via an adapted random walk method. MicroDiag [15] applies
PageRank to inspect a causal structure graph built by
DirectLiNGAM [53], which is a causal discovery algorithm
based on a structural equation model. CausalRCA [10] also
applies PageRank [40] to navigate a causal structure graph
built by gradient-based causal structure learning, which
detects both the linear and nonlinear causal links between
monitoring metrics. RCD [11] builds a causal structure graph
by performing conditional independence tests on time series
data from both normal and anomalous time windows and
then uses causal interventions to locate faults. To address
the increased computation time caused by a larger number of
metrics, RCD partitions metrics into subsets and then merges
them using a divide-and-conquer model.

VII. CONCLUSION
In this paper, we presented MetricSifter, a feature reduction
framework designed to enhance fault localization perfor-
mance. To address the performance and evaluation challenges
of previous research, we designed MetricSifter to remove

only failure-unrelated monitoring metrics and to quantita-
tively evaluate feature reduction as a binary classification.
Our key insight is that the proximity of fault-caused change
point times across failure-relatedmonitoringmetrics is higher
than that across failure-unrelated metrics. On the basis of this
insight, we designed the failure time localization algorithm
by identifying the highest density of the change point times.
Our framework integrates two traditional statistical models:
offline change point detection for univariate time series
and probability density estimation with KDE to identify
the distribution of the change point times. The results
of simulations and empirical experiments demonstrate that
MetricSifter outperforms several baselines in terms of its
contribution to various fault localization methods. We also
verify that the feature reduction accuracy is useful for
explaining part of the fault localization recall with coefficient
of determination analysis.

Our findings also revealed a scalability challenge with
low localization recall and high computational cost for many
monitoring metrics. To overcome this challenge, in future
work, we plan to redesign the feature reduction to identify
and remove failure-related metrics that are less affected by
the fault localization recall.

APPENDIX
SYNTHETIC DATA GENERATION
Our synthetic datasets presented in Section IV-B were
generated utilizing the PyRCA [58] simulator. The data
generation mechanism of the PyRCA simulator is based on
the following procedure. We generated normal time window
data and anomalous time window data separately and then
combined them as complete time series data for simulation.

The normal window data generation is formally given by

Gi =
∑

Gj∈Pa(Gi)

Dij · fi(Gj)+ βi · noisei, (9)

where Gi is the data of the i-th node, D is the weighted
adjacency matrix encoding the DAG relations, Pa(Gi) is the
parent node ofGi, fi(Gj) is the mapping function, noisei is the
underlying noise data, and βi is the noise weight parameter.
Let a nonzero Gij be a causal link from the j-th to the i-th
node.
noisei and a weight of Gij are generated from exponential

distribution E(1), normal distribution N (0, 1), uniform dis-
tribution U(−0.5, 0.5), or Laplace distribution L(0, 1). The
parameter βi is the weight based on a normal distribution
for each node Gi, represented by sign(x)(abs(x) + 0.2)
(x ∼ N (0, 1)). Alternatively, βi can be based on a uniform
distribution in the range (−2.0,−0.5) ∪ (0.5, 2.0). For the
function fi, options include the identity function fi(x) = x,
the square function fi(x) = x2, the sine function sin(x), and
the hyperbolic tangent function tanh(x). Because of possible
overflow or underflow problems, we fixed fi to the identity
function in our experiments.

To inject a fault F at time t , we first randomly selected
the number of root fault metrics |F|. Since root fault metrics
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are typically a small fraction of the total metrics, |F − 1|
followed a Poisson distribution. We chose anomaly 0 and
anomaly 1 as the fault injection anomaly types. Both involve
injecting faults into Vi ∈ F. The fault variable faulti takes a
random value from a Poisson distribution for Gi ∈ F. The
fault injection for Gi is defined as follows.

Gi =

{ ∑
Dijfi(Gj)+ βi · noisei + faulti (anomaly 0)∑
Dijfi(Gj)+ (βi + faulti) · noisei (anomaly 1)

(10)

Anomaly 0 adds faults to the constant term, and anomaly
1 adds faults to the weight of the noise term. Computing (10)
for all G nodes was repeated until the SLI metric G0 was
detected as an anomaly by using the three-sigma rule. After
each loop, squaring faulti gradually increased the anomaly
degree propagated by the fault.
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