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ABSTRACT Estimating the percolating cluster fraction is central to many percolation models. For real
networks, the total size of clusters with loops can be considered a plausible metric for this fraction. In this
paper, we develop a semi-analytic algorithm to estimate clusters with loops for both site and bond percolation
via modifying the message passing algorithm. We compared the estimates of the original message passing
algorithm and our modified version with simulation results on four real networks. Our findings suggest that
our modified algorithm can achieve accuracy for any real network, provided that a sufficient number of
possible states following site or bond occupation are selected and analyzed to calculate the final estimate.

INDEX TERMS Percolation, real network, message passing algorithm, pseudo-random generation.

I. INTRODUCTION
Percolation discusses the connectivity of lattices or networks
under the same site or bond occupation probability, and it is
a well studied topic in statistical physics. When the occupa-
tion probability is reaching some threshold, the percolation
phase transition will take place, and a percolating cluster
begins to appear at that moment. Estimating the fraction of
the percolating cluster when the occupation probability is
above the percolation threshold is a fundamental component
of many percolation analytic models or algorithms (e.g. [1],
[2], [3], [4]). Among them, the message passing algorithm
proposed by Karrer and Newman [5], [6] is pretty outstanding
and discussed or further applied by many following papers
(e.g. [7], [8], [9], [10], [11]). This algorithm will produce
two self-consistent equations for each edge of an undirected
network. Those equations could be solved by numerical itera-
tions, and their solutions will be used to calculate the fraction
of the percolating cluster. By this manner, the message pass-
ing algorithm actually takes the details of local network
topology into consideration, which makes its estimates more
accurate than other percolation models or algorithms. This
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paper aims to develop a modified algorithm at the base of
the message passing algorithm, inheriting its advantages and
improving its defects.

The essence of the message passing algorithm is to esti-
mate the overall size of all clusters with loops. As in an
infinite network, the probability for a loop existing in a
non-percolating cluster could be negligible [12], to calculate
the total size of clusters with loops as an estimate of the
percolating cluster would make sense. However, networks in
the real world usually have finite nodes. In a real network,
if we assume that clusters with loops are parts of the perco-
lating cluster, we actually consider that in an infinite network
corresponding to the present network, those clusters with
loops belong to the percolating cluster. If we further measure
the percolating cluster in numerical simulations based on the
total size of all clusters with loops, instead of the size of the
largest existing cluster, the message passing algorithm will
yield highly accurate estimates on most networks.

According to the proposers of the message passing
algorithm [5], it performs good when the number of short
loops in the network is small. Meanwhile, they also empha-
sized that for some networks with many short loops, its esti-
mates are still accurate. Upon further observation, we have
found that this algorithm does not perform well when the
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network mainly consists of short loops. Additionally, for a
network containing a relatively large number of short loops,
the accuracy of this algorithm is uncertain. On some such
networks, the algorithm may produce accurate estimates,
while on others it may not do so. Nevertheless, it will be of
significance to modify this algorithm to make it applicable to
any network.

We start by demonstrating the message passing algorithm
briefly, followed by an analysis of an unsuccessful estimation
case by the algorithm to identify the source of inaccuracy.
Using these insights, we develop a modified algorithm for
both site and bond percolation. We compare its estimates
with those of the original algorithm and numerical simula-
tions on four real networks. Since our modified algorithm is
semi-analytic, we also discuss the impacts of pseudo-random
generation and the relationship between its accuracy and the
corresponding calculation amount.

II. A SEMI-ANALYTIC ALGORITHM TO ESTIMATE
CLUSTERS WITH LOOPS
A. A DEMONSTRATION OF THE ORIGINAL MESSAGE
PASSING ALGORITHM
The message passing algorithm has already been applied to
bond percolation [5] and site percolation [13] on undirected
networks, respectively. Here, we would like to present simple
demonstrations for both cases. Let us choose node j as the
focus of observation, and Nj denotes the set of its direct
neighbors. Let node i be a direct neighbor of node j, and node
k is another direct neighbor of node j, and then we have i ∈ Nj
and k ∈ Nj\i, where Nj\i denotes the set of direct neighbors
of j excluding i.
For site percolation, we use ui,j to denote the probability

that the edge linking nodes i and j in the direction i -> j(from
here on, it will be referred as edge (i -> j)) is not part of the
percolating cluster after the site occupation. Let p denote the
site occupation probability, and we will obtain

ui,j = 1 − p+ p ·

∏
k∈Nj\i

uj,k . (1)

The reason behind Eq. (1) is very straightforward. If node j is
not occupied (this probability is 1-p), edge (i -> j) will also
not belong to the percolating cluster. Otherwise, the condition
for edge (i -> j) to not be part of the percolating cluster is
that all edges emanating from node j and pointing towards
its neighbors, excluding node i, must also not be part of the
percolating cluster.

In this way, we can list two self-consistent equations for
each edge, and then solve all those equations by numerical
iterations. From Eq. (1) we can see that ui,j = 1 for all i, j is
always a set of solutions. If p is higher than the percolation
threshold pc, another set of solutions will exist. The percola-
tion threshold pc could be given by the inverse of the leading
eigenvalue of the non-backtracking matrix [14], [15], [16].
Then let Si denote the probability that node i belongs to the

FIGURE 1. A diagramatical representation of site occupation on an
undirected triangle, where p denotes the site occupation probability.

percolating cluster, and we have

Si = p · (1 −

∏
j∈Ni

ui,j). (2)

By substituting the solutions of those self-consistent equa-
tions represented by Eq. (1) into Eq. (2), Si could be
calculated. Finally, we can calculate the percolating cluster
fraction S by averaging all Si:

S =

n∑
i=1

Si

n
, (3)

where n is the total number of nodes.
For bond percolation, we have the same self-consistent

equation as Eq.(1), where p denotes the bond occupation
probability and ui,j(or uj,k ) denotes the probability that edge
(i -> j) (or edge (j -> k)) is not part of the percolating cluster
after the bond occupation.

At this moment, the calculation of Si should be adjusted
into

Si = 1 −

∏
j∈Ni

ui,j, (4)

and the percolating cluster fraction Swould still be calculated
by Eq. (3).

B. THE MAIN CAUSE OF THE INACCURACY OF THE
ORIGINAL ALGORITHM
Let us consider a simple site percolation scenario where the
message passing algorithm fails to produce accurate results.
Think about an undirected triangle with nodes 1, 2, and 3 (see
Fig.1). The incidence matrix for that triangle is as follows: 1 1 0

1 0 1
0 1 1

 .
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According to the incidence matrix and Eq. (1), we can list
six self-consistent equations immediately. They are

u1,2 = 1 − p+ p · u2,3
u2,1 = 1 − p+ p · u1,3
u1,3 = 1 − p+ p · u3,2
u3,1 = 1 − p+ p · u1,2
u2,3 = 1 − p+ p · u3,1
u3,2 = 1 − p+ p · u2,1 (5)

where p is the site occupation probability. Then, we should
solves Eqs. (5) by numerical iterations, and substitute the
solutions into the following equations

S1 = p− p · u1,2 · u1,3
S2 = p− p · u2,1 · u2,3
S3 = p− p · u3,1 · u3,2. (6)

Finally, we can calculate the percolating cluster fraction S as
follow:

S =
S1 + S2 + S3

3
. (7)

The leading eigenvalue of the non-backtracking matrix for
that triangle is 1, and so we have pc = 1. It means that for
any p(p < 1), Eqs. (5) only have a set of solutions ui,j = 1.
By substituting these solutions into Eqs. (6) and (7), we have
S = 0. We can see that the result calculated by the message
passing algorithm violates the fact that the triangle has a
probability of p3 to be completely preserved (see Fig. 1). As p
value approaches 1, there is a greater discrepancy between the
estimated value of S (zero) and its true value (p3).
By scrutinizing Eqs. (1) and (5), we find that ui,j in every

equation actually represents a mathematical expectation of
many site occupation results. This design is very concise.
However, it cannot guarantee compatibility with all possi-
ble outcomes, even when the probability of some outcomes
is relatively high. For instance, considering that undirected
triangle, a possible outcome denoted by the solutions ui,j =

0 and S = 1 may not conform to Eqs. (5) for any p(p < 1).
We believe that this is the main cause of the inaccuracy of
the message passing algorithm. Therefore, we will focus on
analyzing several possible states after site or bond occupation,
as long as these states have relatively high probabilities. Then
we could calculate the expectation of the percolating cluster
fractions in these states as the final estimate. Thismethodmay
not be able to describe all possible states just with only one
set of self-consistent equations like the original algorithm.
However, its calculation procedure will fully consider those
most possible states and reflects their impacts on the final
result.

Fortunately, for every possible deterministic state, the mes-
sage passing algorithm can achieve an accurate expectation.
E.g., for that undirected triangle before the site occupation,
we can list the following equations

u1,2 = u2,3

u2,1 = u1,3
u1,3 = u3,2
u3,1 = u1,2
u2,3 = u3,1
u3,2 = u2,1, (8)

and

S1 = 1 − u1,2 · u1,3
S2 = 1 − u2,1 · u2,3
S3 = 1 − u3,1 · u3,2. (9)

Then, each deterministic state after the site occupation
could be described by adjusting Eqs. (8). Here we would
like to use S(nj) and P(nj) to denote the estimate of the total
fraction of all clusters with loops when nj nodes are occupied
after the site occupation and the corresponding probability
for such a state, respectively. The self-consistent equations
for the state when all three nodes are occupied is the same
as Eqs. (8), and by starting numerical iterations with ui,j =

0 and substituting the solutions into Eqs. (9), we finally obtain
S(3) = 1. For other states, we have S(2) = 0, S(1) = 0, and
S(0) = 0. Considering their probabilitiesP(3),P(2),P(1) and
P(0) (see Fig. 1 for details), we have S = p3, which is equal
to the true value. Obviously, real networks often have more
complex structures than that triangle. However, this method
can still be applied to such networks once its specific details
are determined.

C. THE MODIFIED ALGORITHM FOR SITE PERCOLATION
Our modified algorithm for both site and bond percolation
on undirected networks begins with listing self-consistent
equations for each edge before the site or bond occupation.
For edge (i -> j), we have

ui,j = 1 ·

∏
k∈Nj\i

uj,k , (10)

where Nj\i denotes the set of neighbors of j excluding i. If j
has only one neighbor i,wewill have ui,j = 1. For this specific
state, we have

Si = 1 − 1 ·

∏
j∈Ni

ui,j (11)

and

S =

n∑
i=1

Si

n
(12)

where Ni still denotes the set of direct neighbors of node i,
and n is the total number of nodes.

Then, we will select l possible states to calculate the ana-
lytic value of the total proportion of clusters with loops after
the site occupation at any specific site occupation probability
p. The self-consistent equations for each state will be obtained
by adjusting some parts of Eqs. (10), while keeping Eqs. (11)
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and (12) unchanged. In particular, from here on we will no
longer refer to the network typology.

Here we would like to use nj to denote the total number
of occupied nodes at the j-th possible state. Then we should
decide which nodes will be occupied in each state. Obvi-
ously, even the value of nj is fixed, its corresponding site
occupation results will not be unique. The total number of
possible site occupation results would be

((n
nj

))
, and actually

we could only choose one of these results to represent all of
them. Hence, the estimate of the percolating cluster fraction
calculated by the chosen site occupation result should be
close to the expectation of the estimates calculated by all
those results. Some simple and straightforward approaches
such as selecting the first or last nj nodes from all those n
nodes to occupy, may not always guarantee that. Here an
ancient pseudo-random number generator RANDU proposed
by IBM in 1961 [17], [18] is adopted due to its simplicity of
operation, while many other more complex pseudo-random
number generators may also work. The pseudo-random num-
ber generation mechanism of RANDU could be described by

Xi+1 = (216 + 3) · Ximod(231), (13)

where Xi (1≤ Xi ≤231-1) denotes a positive integer. If we
give an integer in that range as the initial seed (e.g. X0 = n),
we will obtain a sequence of pseudo-random integers all in
that range. Further, the range of those pseudo-random num-
bers can be adjusted arbitrarily, e.g. Xi could be converted
to a positive integer Yi(1≤ Yi ≤ Z ), where 231

Z · Yi >

Xi and 231
Z · (Yi − 1) ≤ Xi. By this mechanism, we can

sort all nodes in ascending order according to their identi-
fiers, arbitrarily give the initial seed X0

(
1 ≤ X0 ≤ 231 − 1

)
to produce X1 and convert it to Y1 (1 ≤ Y1 ≤ Z = n), and
take the Y1-th node out of the sequence as the first occu-
pied one. Then we calculate X2 by Eq. (13), and convert it
to Y2 (1 ≤ Y2 ≤ Z = n− 1) to obtain the second occupied
node. That process will be repeated until we get nj occupied
nodes. According to the inherence of the pseudo-random
generator, as long as X0 remains unchanged, the subsequent
pseudo-random numbers as well as the occupied nodes deter-
mined by them will also be fixed.

Given the nodes that are occupied in a specific state,
we can make some adjustments to Eqs. (10) to obtain the
self-consistent equations for that state. Let us focus on the
left-hand of Eq. (10), if node i or j or both of them are
unoccupied, it should be adjusted into ui,j = 1. Otherwise,
it should remain unchanged. By this simple adjustment mech-
anism, we will get self-consistent equations for that state.
Solve them by iterations, and substitute the solutions to Eqs.
(11) and (12), we will get the analytic value of the percolating
cluster fraction for this state. Here we would like to represent
that analytic value for a state where nj nodes are occupied as
S(nj). Take the previous undirected triangle as an example.
For the possible state nj = 2, and assuming that nodes 2 and
3 are occupied while node 1 is unoccupied by the pseudo-
random generation, Eqs. (8) should be adjusted as follows.

The preceding four sub-equations will be straightforward
converted to u1,2 = 1, u2,1 = 1, u1,3 = 1 and u3,1 = 1. The
last two sub-equations should be preserved. In this regard,
we have u2,3 = u3,1 = 1 and u3,2 = u2,1 = 1. By substituting
them to Eqs. (9) and (7), we get S(2)=0.
So far, for each of l selected states denoted by j (1≤ j ≤ l),

we can calculate S(nj), given the number of occupied nodes
nj in that state. Now we should determine nj(1 ≤ j ≤ l) to
ensure that those l states have relatively high probabilities.
Generally speaking, nj should take an integer around [n·p],
where [] means taking the integer part of the value. Let z
(z ≥1) denotes the gap between nj−1 and nj, and for an even
l, we have

nj = [n · p] − (l/2 − j) · z. (14)

z could be determined by the following formulas:

[n·p]+z·l/2∑
i=[n·p]+1−z·l/2

(
n
ni
) · pni · (1 − p)n−ni ≥ 0.99

[n·p]+(z−1)·l/2∑
i=[n·p]+1−(z−1)·l/2

(
n
ni
) · pni · (1 − p)n−ni < 0.99. (15)

If we use the analytic value S(nj) of the state where nj
nodes are occupied to approximate that of the state where the
occupied node number is between nj-z + 1 and nj, we could
calculate the final estimate as follow:

Sfinal =

l∑
j=1

(S(nj) ·

nj∑
i=nj−z+1

(
n
ni
) · pni · (1 − p)n−ni ). (16)

D. THE MODIFIED ALGORITHM FOR BOND PERCOLATION
Our modified algorithm for bond percolation is similar
to site percolation in the following steps: First, we list
self-consistent equations for the original network. These
self-consistent equations can still be represented by Eq. (10).
Then, we should determine the number of occupied edges for
those l selected states after the bond occupation to guarantee
that they have relatively high probabilities. Then, we still
have to adjust Eq. (10) to obtain the new self-consistent
equations for each of l selected states. We should also solve
those self-consistent equations, and substitute the solutions
into Eqs. (11) and (12) to calculate the analytic value of the
total proportion of all clusters with loops for every state.
Finally, we calculate the final estimate of the total proportion
of all clusters with loops after the bond occupation as the
expectation of the corresponding analytic values of those l
selected states.

Here we would like to use m and mj to denote the total
number of edges and the number of occupied edges at the
j- th possible state, respectively. Currently, p denotes the
bond occupation probability, while other variables retain their
previous definitions. The pseudo-random generator RANDU
is also used to determine which edges are occupied at each
possible state. This time we put all edges in a sequence, and
take an edge out of the sequence every time according to the
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pseudo-random generationmechanism similar to the previous
case of site percolation, until we get enough occupied edges.

The adjustment mechanism of Eq. (10) is as follow: we
still have to first check the left-hand of that equation. If edge
(i, j) is unoccupied, we should straightforward convert it to
ui,j = 1. Otherwise, it should be kept unchanged. Then by
solving those self-consistent equations, and substituting the
solutions into Eqs. (11) and (12), we could calculate S(mj).
For example, let us think about the possible state mj = 2 for
bind occupation on the previous undirected triangle. Assum-
ing that edge(1,2) (also edge (2,1)) is unoccupied while
other edges are occupied by the pseudo-random generation,
we should immediately convert the first two sub-equations of
Eqs. (8) to u1,2 = 1 and u2,1 = 1. Then, u1,3 = u3,2, u3,1 =

u1,2, u2,3 = u3,1 and u3,2 = u2,1 should be kept as they
are. By the following iterations, we have u2,3 = 1, u1,3 = 1.
Substitute those solutions into Eqs. (9) and (7), and we will
get S(2)=0.
Parallel to the case of site percolation, we still select l

possible states to calculate the analytic value of the total
proportion of all clusters with loops, and set the occupied
edge numbers of those states with an equal interval z. For an
even l, we have

mj = [m · p] − (l/2 − j) · z. (17)

Now, z could be determined by the following formulas:

[m·p]+z·l/2∑
i=[m·p]+1−z·l/2

(
m
mi

) · pmi · (1 − p)m−mi ≥ 0.99

[m·p]+(z−1)·l/2∑
i=[m·p]+1−(z−1)·l/2

(
m
mi

) · pmi · (1 − p)m−mi < 0.99. (18)

Then, we could calculate the final estimate as follow:

Sfinal =

l∑
j=1

(S(mj) ·

mj∑
i=mj−z+1

(
m
mi

)
· pmi · (1 − p)m−mi ).

(19)

III. APPLICATIONS TO REAL NETWORKS
Four concrete undirected networks are selected and down-
loaded from the well-known network data repository website
Network Repository for comparison between the message
passing algorithm and our modified version. The first net-
work (available at: https://networkrepository.com/power-US-
Grid.php) is the power grid of western states in the United
States, the second one (available at: https://networkrepository
.com/road-minnesota.php) provides the road network ofMin-
nesota, the third one (available at: https://networkrepository.
com/3elt.php) represents a 2D finite element network, while
the last one (available at: https://networkrepository.com/
08blocks.php) is a symmetric power graph of several graphs.
Some common statistics of their characteristics are presented
in Table 1. Here we would like to emphasize that if we use
the total proportion of clusters with loops as the measure of
the percolating cluster in numerical simulations, we will find

TABLE 1. Characteristics of four concrete networks.

that the message passing algorithm provides very accurate
estimates for most real networks. Those four networks are
chosen mainly because the message passing algorithm may
perform not so well on them.

When we apply our modified algorithm to each concrete
network, we will first determine z value at p = 0.5 accord-
ing to formulas (15) for site percolation and formulas (18)
for bond percolation, respectively. That z value will remain
unchanged when p take other values on the same network for
the purpose of simplicity. For each specific p value, we will
take the total number of nodes or edges as the initial seed
(X0 = n for site percolation andX0 =m for bond percolation).
The initial seed will be used to calculate the analytic value
of the total proportion of all clusters with loops for each
of l selected states one by one (the last Xi generated in the
calculation of S(nj) or S(mj) will be used to generate the
next pseudo-random integer in the calculation of S(nj+1) or
S(mj+1)), and based on them we can calculate Sfinal for that
p value. The above specifications will ensure that the results
remain consistent regardless of who operates our modified
algorithm. The core pseudocode of our modified algorithm
has been placed in the appendix section of this paper.

Fig. 2 presents results for site percolation on those four
concrete networks. The first network US Power Grid has
already been utilized by many researchers to examine their
findings (e.g. [4], [19], [20], and in [4], the largest existing
cluster was used as the indicator of the percolating cluster in
numeral simulations). From Fig. 2(a), we can see that the esti-
mates calculated by themessage passing algorithm are always
acceptable on that network. However, the discrepancies are
relatively a bit large when the site occupation probability is
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FIGURE 2. Site percolation results on four concrete networks. Solid-cross
line denotes estimates of the message passing algorithm, solid-circle and
solid-square lines denote estimates of the our modified algorithm when
l=10 and 30, respectively, while bold solid line denotes the total fraction
of nodes clusters with loops counted from numerical simulations and
averaged over 1000 repetitions. The four networks are (a) Us Power Grid,
(b) Minnesota Road Network, (c) 2D Finite Element Network and
(d) Symmetric Power Graph.

between 0.6 and 0.8 (see Fig. 3(a) for details). In that range,
some estimates calculated by our modified algorithm (when
l = 10) are more accurate than those calculated by the
original algorithm when others are not. Totally speaking, the
accuracy of our modified algorithm (when l = 10) is close to
the original algorithm in that range. However, if the number
of the selected states l is raised to 30, the accuracy of our
modified algorithm will be significantly improved, and its
estimates seem to be much closer to the simulation results
than those of the original algorithm.

From Fig. 2(b) and (c) as well as Fig. 3(b) and (c), we find
that the original algorithm performs not well when p takes
some values (from 0.5 to 0.7 on the second network, and from
0.2 to 0.4 on the third network), and at those p values, the
estimates of our modified algorithm (both when l = 10 and
l = 30) are always accurate. The last network is somewhat
special as it is mainly composed by many triangles tied
together, and the original algorithm estimates are not accurate
at most p values (from 0.4 to 0.9) on it (see Fig. 2(d) and
Fig. 3(d)). Further by our observation, the original message
passing algorithm is bound to face challenges when applied
to networks primarily composed of short loops, as exem-
plified by the previously mentioned undirected triangle and
the final real network. In contrast, our modified algorithm
significantly outperforms the original algorithm in both cases.
Based on all the analysis above, we find that the estimates of
our modified algorithm (when l = 30) are always close to the
simulation results. However, we still cannot conclude that the

FIGURE 3. Absolute discrepancies of S estimates for site percolation on
concrete networks. Solid-cross line denotes the absolute discrepancy of S
estimates calculated by the message passing algorithm, while solid-circle
and solid-square lines denote those calculated by our modified algorithm
when l=10 and 30, respectively. The four networks denoted by (a), (b),
(c) and (d) are the same as those in FIGURE 2.

estimate of our modified algorithm (when l = 30) is more
accurate than that (when l = 10) at any p value. For instance,
the estimate (when l = 10) is closer to the simulation value
than that (when l = 30) at p = 0.5 on the last network.
The results for bond percolation on those real networks are

presented in Fig. 4, while their corresponding absolute dis-
crepancies are presented in Fig. 5. We can draw conclusions
similar to the case of site percolation such as at most p values,
our modified algorithm (both when l = 10 and l = 30) per-
form better than the origin one. Or more exactly, considering
both the cases of site and bond percolation, we could conclude
that at some p values where the original message passing
algorithm performs good, our modified algorithm also works
well, and at this moment we cannot say the estimates of which
algorithm are always more accurate. However, at those p val-
ues where the original message passing algorithm performs
not such good (e.g. the absolute discrepancy of the estimate
calculated by the original algorithm is higher than around
0.05), the estimates of our modified algorithm are much more
accurate. Especially, the estimates of our modified algorithm
(when l = 30) are always close to the simulation results at all
p values on all networks.

IV. DISCUSSIONS
Our modified algorithm is semi-analytic as a pseudo-random
number generation is adopted in estimation of the percolating
cluster. Except for the first step listing self-consistent equa-
tions before the site or bond occupation, we do not need to
refer to the specific network topology in the subsequent pro-
cedures. This is the similarity between the original message
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FIGURE 4. Bond percolation results on four concrete networks. Those
networks and symbols are the same as their counterparts in FIGURE 2.

FIGURE 5. Absolute discrepancies of S estimates for bond percolation on
concrete networks. Those networks and symbols are the same as their
counterparts in FIGURE 3.

passing algorithm and our modified version. Further, as long
as the initial pseudo-random seed X0 keep unchanged, the
estimates calculated by our modified algorithm will remain
the same. Even we arbitrarily adopt different initial seeds,
the overall accuracy of those estimates seems not to fluctuate
much.

Parameter l determines the number of states selected by our
modified algorithm to calculate Sfinal. Since for each state,
we have to obtain a set of new self-consistent equations by
adjusting the initial equations and then solve them, the overall

calculation amount of our modified algorithm will be in
proportion to l. Considering that the original message passing
algorithm only has to list and solve one set of such equations,
the calculation amount of our modified algorithm is around
ten times that of the original one when l = 10, and it increases
to thirty times when l = 30. Numerical simulations indicate
that, with l = 10, our modified algorithm ensures better
overall accuracy than the original one on most networks.
Additionally, with l = 30, the estimates of our modified
algorithm consistently closely match the simulation values.

V. CONCLUSION
In summary, we developed a semi-analytic algorithm to esti-
mate the proportion of the percolating cluster by modifying
the message passing algorithm proposed by Karrer et al. and
introducing in a simple pseudo-random number generation
mechanism. Like the original algorithm and other percolation
analytic models, our modified algorithm can be applied to
various real networks to estimate the fraction of the perco-
lating cluster when their nodes or edges experience random
attacks or failures. For instance, this is relevant in situations
where a considerable number of servers in the Internet fail
due to DDoS attacks or numerous roads in a traffic network
become impassable during the morning peak due to conges-
tion.

By comparing the estimates obtained from the original and
modified algorithms with the simulation results, we found
that our modified algorithm consistently produces estimates
more accurate than those of the original algorithm. This is
achieved under the condition of selecting a sufficient num-
ber of states to calculate the final result. The calculation
mechanism of our modified algorithm determines that its esti-
mates are always higher than zero even when the occupation
probability is extremely small. Those estimates may change
with the initial pseudo-random seed, which lead to that this
algorithm may not provide the exact value of the percolation
threshold like other percolation analytic models or algo-
rithms. Nevertheless, our modified algorithm was designed
to address the limitations of the original message passing
algorithm, particularly its performance issues on networks
with many short loops. Its aim is to offer a more accurate
estimation of the percolating cluster on any real network.
We have primarily achieved these goals with our modified
algorithm.

APPENDIX
Here we present the core pseudocode of our modi-
fied algorithm. The corresponding programs, used to list
self-consistent equations for the selected state under both site
percolation and bond percolation, have been uploaded to the
website Zenodo. Please refer to https://zenodo.org/records/
10672999.

The function ‘(int) prandom: (int) ub’ is primarily based
on the pseudo-random number generator RANDU. This func-
tion takes a positive integer ub as input and returns a random
number between 1 and ub. It can be applied to scenarios such
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as randomly selecting one node from a set of n nodes to
occupy. Its design is primarily based on the Eq. (13) and its
related discussions in the main text. The core pseudocode is
outlined below:

X0 <- (216+3)∗X0%231 //the initial value of X0, which
is also the random seed, will be
provided by the user

for i <- 1 to ub
{
if (double)231/ub∗i > X0
break
}
return i
The following program will list the self-consistent equa-

tions for each selected state after the node occupation. The
main parameters, p (site occupation probability), z (the gap in
the number of occupied nodes between two selected states),
X0 (random seed), j (the selected state identifier), and l (the
total number of selected states), should be provided by the
user. The meanings of these parameters are consistent with
those explained in the main text. Additionally, the program
requires inputting the bond data file of the target network,
where the number of nodes n and edges m are determined by
the target network. The core pseudocode is as follows:

nj <- n∗p-(l/2-j)∗z //nj denotes the number of nodes
occupied in the current state, and
its calculation is primarily based
on Eq.(14)

for i <- 1 to n
{
px1[i] <- i //place all nodes into the array px1

according to their identifiers
px2[i] <- 0 //px2[i] represents the occupation status

of node i, where 0 indicates
unoccupied, and 1 indicates occupied.

}
fr <- n //fr represents the number of elements

in px1, with an initial value of n
for <- 1 to nj //selecting one node to occupy each time
{
k <- [prandom: fr]
px2[px1[k]] <- 1 //update the status of the k-th

element in px1 to occupied
for jj <- k to fr-1 //remove the k-th element from px1
px1[jj]=px1[jj+1]
fr <- fr-1
}
cpt1 <-fopen(‘‘output.txt’’,‘‘w’’);//write the self-

consistent equations
one by one into
the file output.txt

for i <- 1 to n
for j <- 1 to n //here j represents a loop variable
if am[i][j]==1&&i!=j //if there is an edge between

nodes i and j, the value of
am[i][j] is 1; otherwise, it is 0.

{
if px2[i]==1&&px2[j]==1
{
fprintf(cpt1,‘‘u%d_%d=1∗’’,i,j);
for k <- 1 to n
if am[j][k]==1&&k!=i
fprintf(cpt1,‘‘u%d_%d∗’’,j,k);
fprintf(cpt1,‘‘1,’’);
}
else
fprintf(cpt1,‘‘u%d_%d=1,’’,i,j);
}
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