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ABSTRACT Conventional communications systems centered on data prioritize maximizing network
throughput using Shannon’s theory, which is primarily concerned with securely transmitting the data despite
limited radio resources. However, in the realm of edge learning, these methods frequently fall short because
they depend on traditional source coding and channel coding principles, ultimately failing to improve
learning performance. Consequently, it is crucial to transition from a data-centric viewpoint to a task-oriented
communications approach in wireless system design. Therefore, in this paper, we propose efficient
communications under a task-oriented principle by optimizing power allocation and edge learning-error
prediction in an edge-aided non-orthogonal multiple access (NOMA) network. Furthermore, we propose
a novel approach based on the ant colony optimization (ACO) algorithm to jointly minimize the learning
error and optimize the power allocation variables. Moreover, we investigate four additional benchmark
schemes (particle swarm optimization, quantum particle swarm optimization, cuckoo search, and butterfly
optimization algorithms). Satisfactorily, simulation results validate the superiority of the ACO algorithm
over the baseline schemes, achieving the best performance with less computation time. In addition, the
integration of NOMA in the proposed task-oriented edge learning system obtains higher sum rate values
than those achieved by conventional schemes.

INDEX TERMS Task-oriented communication, edge learning, non-orthogonal multiple access (NOMA),
learning error, ant colony optimization (ACO).

I. INTRODUCTION efficiently collect and manage this immense volume of data.

Deployments and applications in the Internet of Things
(IoT) involve a vast network of interconnected users that
generate substantial amounts of data. However, transmitting
large quantities of data from diverse IoT devices to a distant
cloud server creates significant communications challenges
and increases latency in transmissions [1]. Consequently, the
concept of edge computing has emerged as an alternative
to traditional cloud computing to tackle these issues.
Edge computing harnesses the storage, communication,
and computational capabilities available at edge servers to
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Additionally, edge servers facilitate quick access to the
extensive data distributed across end-user devices, enabling
rapid model learning and the delivery of intelligent services
and applications to IoT users [2]. Aligned with cutting-edge
smart IoT sensors in 5G networks and the anticipated 6G
networks, edge computing is evolving into edge intelligence,
ushering in a new era of more sophisticated and intelligent
IoT applications and services [3].

In the realm of edge learning, the primary goal is to swiftly
acquire intelligence from the abundant, yet widely dispersed
data generated by subscribed IoT users. This hinges critically
on the processing of data at edge servers, and on establishing
efficient communication between these servers and IoT
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users. However, as opposed to the ever-increasing processing
capabilities of edge servers, communications encounter
obstacles in the form of wireless channel issues, making
it the bottleneck in achieving ultra-fast edge learning [4].
Additionally, the diverse nature of ubiquitous IoT users
and the complexity of transmission environments introduce
interference that significantly undermines the reliability and
communication speed of the [oT network, particularly when
transmitting vast amounts of data to an edge server [5].
To tackle these challenges, traditional data-centric commu-
nication systems aim to maximize network throughput based
on Shannon’s theory, which focuses on securely transmitting
data despite constrained radio resources [6]. Nonetheless,
such approaches often prove ineffective in the context of
edge learning, because they rely on classic source coding
and channel coding theories, failing to enhance learning
performance. Therefore, a shift in wireless system design is
imperative, moving from a data-centric perspective to one that
prioritizes task-oriented communication [1], [7].

In this regard, task-oriented communication aims to extend
its scope beyond transmitting data at the micro level, where
performance is assessed based on factors like bit or packet
error rates, and instead emphasizes communication experi-
ences that consider macro-level performance metrics, such
as learning rate and inference accuracy [8]. Task-oriented
communication in particular can lessen communication load
by supplying only task-relevant information, such as feature
extraction for edge inference, as opposed to sending all the
data and ignoring information structures [9]. For instance,
in [10], the authors introduced a learning-driven communi-
cation strategy designed to optimize local feature extraction,
and distributed feature encoding for task-oriented purposes.
This approach aims to eliminate redundant data and transmit
only crucial information needed for downstream inference
tasks, instead of reconstructing data samples at the edge
server. In [1], the authors achieved effective communication
within the task-oriented framework by optimizing power
allocation and edge learning error prediction. Moreover, they
implemented multi-user scheduling to mitigate interference
issues in densely populated networks. Similarly, in [11], the
authors focused on enhancing learning performance rather
than communication throughput in the edge learning network.
Therefore, they proposed an approach called learning-centric
power allocation (LCPA), which is an analytically based
solution for allocating radio resources in scenarios driven by
learning. Simulation results showed that the LCPA scheme
overcame conventional power allocation methods in terms of
classification error.

None of the previous papers discussed above considered
non-orthogonal multiple access (NOMA) to address spec-
trum scarcity issues caused by the massive connectivity for
future wireless networks in task-oriented communication
systems. Indeed, the IoT’s rapid advances for 5G and
beyond wireless networks must accommodate the massive
connectivity demands imposed by the rapid growth in
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IoT devices. However, this reality introduces a spectrum
scarcity issue, which can be dealt with through the adoption
of a NOMA transmission strategy that operates in the
power domain and employs techniques like superposition
coding and successive interference cancellation [12]. Thus,
motivated by the benefits provided by the NOMA technique
and next-generation communication systems envisioned to be
task-oriented, in this paper, we investigate a low-complexity
design to optimize the learning error and power alloca-
tion for task-oriented communications in an edge learning
NOMA network. In the pursuit of finding optimal solutions,
traditional optimization methods can introduce significant
computational complexity. Additionally, these methods lack
flexibility, requiring reformulation whenever network alter-
ations occur [13]. As a remedy to these limitations, the realm
of metaheuristic algorithms within artificial intelligence (AI)
has emerged, offering a powerful approach to addressing
intricate computation problems. Metaheuristic algorithms
systematically generate potential solutions for optimiza-
tion challenges, subsequently selecting the most promising
option, while maintaining a balance between computational
efficiency and solution accuracy.

In the domains of science and engineering, several meta-
heuristic algorithms have garnered substantial popularity,
including the genetic algorithm [14], cuckoo search (CS)
[15], ant colony optimization (ACO), and particle swarm
optimization (PSO) [16]. Notably, Mohiz et al. [15] delved
into a comprehensive exploration of diverse metaheuristic
algorithms, discerning their effectiveness in optimizing
task placement within network-on-chip cores. Their study
concluded that CS outperformed baseline schemes by exhibit-
ing minimal computational overhead. In [13], quantum
particle swarm optimization (QPSO), an extension of the
PSO algorithm, was applied to optimization problems for
wireless communication networks. The simulation results
showed that QPSO overcame the standard PSO and several
metaheuristic methods to maximize the secrecy energy
efficiency in a cooperative NOMA system. Motivated by
the inherent benefits that metaheuristic algorithms bring
to bear in tackling complex optimization dilemmas, this
paper embarks on evolutionary computing algorithms for
the resolution of power allocation optimization problems in
an edge-learning NOMA system. Among these strategies,
we propose an ACO-based scheme as a promising candidate
that manages to strike a balance between accuracy and
computational complexity. To comprehensively assess the
performance of our proposed network, we formulated two
distinct optimization problems: a single-task case (SC) and
a multiple-task case (MC).

The main contributions of this paper can be summarized as
follows.

« A task-oriented power allocation scheme is proposed for
SC and MC optimization problems where the NOMA
transmission strategy is considered in an edge learning
system to improve network performance. To validate
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the advantage from using NOMA, we evaluate its
performance against the maximum ratio combining
(MRC) technique in terms of achievable data rate.

o Furthermore, we propose a novel power allocation
scheme based on the ACO algorithm. This scheme is
aimed at minimizing learning errors while optimizing
power variables within a task-centric edge learning
NOMA system. In addition, for comparison purposes,
we solve the conventional sum-rate maximization
problem. To assess the practical applicability of our
algorithms, we examine their performance in the context
of three perception tasks related to autonomous driving
systems [17].

« Simulation results show that the proposed ACO-based
algorithm efficiently resolves task-specific power allo-
cation issues with significantly reduced computation
time compared to conventional baseline schemes.
In particular, we investigate four additional algorithms:
QPSO [13], PSO, CS, and butterfly optimization [18].
In addition, our simulations reveal that the implementa-
tion of NOMA in a task-oriented edge learning system
achieved higher data rates in comparison to the standard
MRC technique.

The rest of the paper is structured as follows. The system
model is described in Section II. In Section III, we present
the problem formulation. In Section IV, we described the
proposed ACO-based optimization scheme. In section V,
we provide the simulation results, and the computational
complexity analysis. In section VI, we outline unsolved
problems, and provide future research directions. Finally,
conclusions are described in Section VII.

Il. SYSTEM MODEL

We consider the task-oriented edge learning NOMA system
shown in Figure 1, in which the edge server is equipped with
N antennas. We consider L user groups, with L different
learning tasks, {rq,...,tz}. Let us define the group of
users as 2 = {1, ..., Qr}, where ; represents the users
executing the /-th task, with the number of users equal to
|€2;]. We assume each user is exclusively associated with a

single task, and the total number of users is denoted as K,
L

i.e., K = > |€|. Furthermore, power allocation for each k™

user is deil_olted Dk

Regarding the L distinct learning tasks depicted in
Figure 1, each of these tasks encompasses a specific
dataset, a learning model, the process of fine-tuning model
parameters, and a task-oriented power assignment. Moreover,
he € CN*! denotes the complex-valued channel fast-
fading vector from the k" user to the edge server. It is
assumed that users in a higher indexed group have better
channel conditions than users in a lower indexed group [19].
Without loss of generality, we consider ||h1||2 <,...,<
7% ||2. Following NOMA principles for uplinks that utilize
the successive interference cancellation (SIC) technique, the
decoding process prioritizes channels in descending order of
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FIGURE 1. The system model of NOMA for task-oriented edge learning.

power. This means the signal with the highest power and
associated with the k™ user is decoded first at the edge server.
Subsequently, this initial decoding contains interference from
all users that have comparatively weaker channel conditions.
Thus, the achievable rate of decoding a message from the k"
user can be expressed as follows:

om0z 1+ R b , 2<k<K (la)
A= > pigkjto?
=1k
log, (1+p"g’2""), k=1  (lb)
. o

where gy ; denotes the composite channel gain from the
Jj-th user at the edge server when decoding data of the
k™ user, computzed as gkk = Pk ||hk||§ if j = k, and
ApH . e .
gkj = :01|hk hJ| /”hk”% if j # k. py represents the path
loss of the k™ user, and o2 is the variance of additive
white Gaussian noise. Note that if we consider the MRC
technique, interference from other users is considered noise.

Subsequently, the achievable data rate of the k" user can be
expressed as follows:

P8k, k
K

> Pigkj+o?
=Tk

At the edge server, the number of samples transmitted by
a user to learn task t; can be calculated as follows [1]:

NOMA NOMA
WTA} TA

VIZZ Dl RZ%Z#

ke ke

AYRC —Jog, | 1+ )

+Ri, (3)

where W denotes the total bandwidth in hertz, and T
represents transmission time in seconds. For each data
transmission, D; represents the number of bits. Meanwhile,
for the [ pre-trained task, R; represents the initial amount
of historical data. Furthermore, in order to link wireless
resource allocation with the performance of machine learn-

. . . . A
ing, a nonlinear exponential function, ®; (V;|a;,b;) =
a Vfbl , is formulated to represent the characteristics of the
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learning error function, where the tuning parameters a; and b;
represent non-independent and identically distributed parallel
datasets, respectively. In practice, values for a; and b; are
determined through a process of fitting the learning error
function from the historical dataset. This tuning function
closely aligns with the empirical data of the machine learning
model, showcasing a good degree of alignment [1].

lll. PROBLEM FORMULATION

In this paper, we minimize the learning error function by
jointly optimizing the power allocation variables in the
proposed NOMA edge learning network for multi-users with
task-oriented communication. Moreover, we consider an SC
and an MC. Therefore, the optimization problem for the SC
is formulated as follows:

min asc VS_Cb sc (4a)
{pi}
K
subject to Z pr =P, (4b)
k=1
pr >0, VieQ, (4c)

where constraint (4b) indicates that the power allocation of
all users does not exceed the total available power, P. For the
MC, the optimization problem is formulated as follows:

L
. —b,
min ¢ x aiV
Pe) ; !

subject to  (4b), and (4c), (5a)

where ¢; 2 RiD / i R;D; is the weight of diverse
=1

datasets. Note that the l(;bjective function in (5) can adapt
to various learning tasks by dynamically adjusting weight
factors ¢;, V1. Furthermore, for comparison purposes, we for-
mulate the optimization problem for the traditional sum-rate
maximization as follows:

K
max Z AY OMA
{pr} P

subject to  (4b), and (4c). (6a)

IV. ACO-BASED OPTIMIZATION METHOD

In this research article, we investigate the ACO algorithm to
address the optimization problems formulated in (4a), (5a),
and (6a). Initially, the ACO algorithm was introduced by
Socha and Dorigo for discrete spaces, drawing inspiration
from the foraging behavior of real ants [20]. In the ACO
algorithm, a group collaborates to discover the optimal
solution by utilizing an artificial pheromone trail to navigate
through potential paths or solutions. This sharing of infor-
mation through pheromone deposition enables “the ants”
to construct effective paths using a discrete probabilistic
approach. Nevertheless, the inherent pheromone deposi-
tion mechanism of ACO is tailored for discrete domains,
necessitating adaptation for continuous spaces. Thus, the
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FIGURE 2. The solution archive (three users).

ACO algorithm designed for continuous domains achieves
this by replacing discrete probability distributions with
continuous probability distributions, which are represented
as probability density functions (PDFs) [21]. Within each
iteration of the ACO algorithm, the system learns these PDFs
by accumulating a historical record of candidate solutions,
which is stored in a dedicated solution archive. To be more
specific, ACO retains the most promising solutions within
a designated file, denoted as a solution archive as depicted
in Figure 2. This practice forms a Gaussian probabilistic
model that implicitly simulates the concept of the continuous
pheromone. It is worth noting that a single Gaussian function
is limited to searching in one dimension because it possesses
only one maximum. To overcome this limitation, a Gaussian
kernel PDF is employed, which is essentially a weighted sum
of several one-dimensional Gaussian functions.
Furthermore, to cater to multi-dimensional search spaces,
a distinct Gaussian kernel PDF is constructed for each
dimension. Each of these Gaussian kernel PDFs utilizes three
essential vectors: the weights, the vector of means, and the
vector of standard deviations. This comprehensive approach
allows ACO to adapt and excel at optimization of real-valued
parameters in continuous domains, making it a powerful
tool for solving complex optimization problems. In this
paper, we consider ACO to optimize the power allocation
variables, {py}, which minimizes the cost function given
by the learning error in both the SC and the MC. The set
of power variables, py, is denoted by the vector C. Let
us change the notation of p; to c® where k = 1,...,K
indicates the index of the dimension vector. In this paper,
K = 6 since we consider six users; each of them is assigned
one power allocation variable, cf. Accordingly, the group
of variables is C = {c!, % 3, ¢*, ¢, ¢} . Then, to build
the solution archive [21], random solutions are generated
in the range [0, P] for each c*. Every solution C; of the
archive is composed of a vector of the variables to be
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optimized, {cj , cjz, .. cjk, el ]K } the associated objective
function values, {f (C;)}, and associated weight we; where
j = 1,2,...,r. The solution archive is built in ascending
order according to the performance of the objective function
values, {f (C1),f (C2),...,f (C,)}. Moreover, the weight

of the j-th element in the solution archive can be expressed

as follows:
N 1 l(j— 1)2 )
ej=——exp|—= a
T 2w P12 {r

.
subject to Z we; =1, (7b)
j=1

where ¢ is the intensification factor and is a positive real
number that manages the degree of selection pressure in the
process. For high values of ¢, a large number of possible
solutions in the archive may be chosen. Therefore, as the
value of ¢ rises, convergence may be slower.

In addition, £, denotes the sample size of the new candidate
solutions. The generation of f, is based on a guide solution.
For this purpose, the Roulette wheel selection algorithm is
utilized to choose a guide solution from the solution archive in
accordance with equation (8) such that the higher the fitness,
the higher the probability of selection as a parent solution:

P(C) = . ®)
> weg

a=1

After the guide solution is chosen, the f-th new candidate
solution is generated based on the Gaussian PDF. Thus, for
every decision variable, a Gaussian model is built:

r
k [ k k. k k
Gr (Cf) =2 weN (Cf’ Hguide. Uguidef) : ®)
=1

k k 2
exp _l(cf - “guide,f)
/— k
G guide.f 2 Uguide,f

where cguide,f indicates the k" element of the vector Cauide
in the guide solution. Moreover, the values of mean and
variance for the Gaussian kernels in the guide solution can
be expressed as follows:

N(c,n,0)=

(10)

k k
/’Lguide,f = Cguidef’ (11)

k
gmde f =

where A > O represents the exploration and exploitation
balance. High values of A indicate high exploration. On the
other hand, small values of A represent high exploitation.
It is worth noting that the f-th new candidate solution, Cy =
lf, cff} with f = r 4+ 1,...,r + fr, is generated,
imension by dimension, based on the guide solution.

k=1,...,K, (12)
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Algorithm 1 ACO-Based Scheme to Solve Problems (4a)
and (5a)
1: inputs: set the parameters Itesco, K, fr, ¢, ., N, P.
2: Compute r random solutions in the range of [0, P] for the
power allocation variables to be optimized, {py}, denoted
by C; = {c! ...,CJK},j = 1,2,...,

iz r, and assess
their performance by solving the optimization problems
to obtain {f (C;)}.
3: Sort the r solutions in the archive, A = {C,, C,, ..., C,}
Evaluate the weights in accordance with (7a).
while It < Itesco do
forf =r+1tor+f. do
fork =1to K do
Chose a guide solution from the solution archive.
Generate a sample, cf , from a Gaussmn

D A A

k
distribution with parameters ,u, guide.f* Oguide.f*
10: end
11: Save and assess the generated solution

Cr = {c}, cee c;( } by solving problem (4a) or (5a)
to obtain {f (Cf)}

122 end

13: Update solution archive A = {C,, C,, ..., C, A }

with the best r candidate solutions and remove the
remaining. Sort the r solutions in the archive.
14:  Increase the number of iterations: It = It + 1.
15: end while
16: Output: Set C; {cl, .. cl, cf} as the best
solution for power vanables {r1,... pPks...,px} of
problem (4a) or (5a).

Finally, f. new candidate solutions are assessed to obtain
f (Cf)} and are added to the solution archive: A =

C,,GCy,...,C, +f . Then, the best r solutions are preserved
or the subsequent iteration, and the remaining solutions are
discarded, thereby restoring the solution archive’s size to r.

Accordingly, in each iteration It, where It = 1,2,...,
Itesco, the results in the solution archive are updated to
achieve the most optimal outcome recorded to this point.
Itesco denotes the maximum number of iterations in the
algorithm. Finally, the best result so far is the optimization
result until meeting the termination criteria. Otherwise,
the ACO algorithm recalculates the probabilistic model.
Algorithm 1 summarizes the ACO algorithm to minimize the
learning error in problems (4a) and (5a) while optimizing
power allocation {py} . Note that optimization problems (4a)
and (5a) are solved individually by the ACO algorithm.

V. SIMULATION RESULTS

In this section, we showcase simulation results to assess
the performance of the designed schemes in comparison
to benchmark methods. To generate the simulation results,
we used a computer with a 4 GHz i7-6700K CPU
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TABLE 1. Simulation parameters for swarm-based schemes.

Parameters
Sample size, f, = 20
Number of iterations, Ite aco = 400
Number of iterations, Itepg, = 500
Number of particles, Npso = 80

PSO Inertia weight, Ine = 0.7

Scaling factor, c; = 1.496

Scaling factor, co = 1.496
Number of iterations, IIKQPSO = 500

Algorithm
ACO

QPSO Number of particles, Nopso = 55
Number of iterations, Iteqgs = 500
cs Number of nests, Ncg = 55,

Probability of abandoned maximum, p;*?* = 0.5,
Probability of abandoned minimum, pflnin =0.25
Number of generations, Gpoa = 500
Number of agents, Spoa = 70
BOA Sensory modality, sm = 0.01
Power exponent, pe = 0.01
Switch probability, sp = 0.5

and 16 GB of RAM. The simulation parameter settings for
the proposed wireless communications were similar to those
n [11]. Specifically, we set communication bandwidth W =
180kHz, the number of users to K = 6, the total power
budget at P = 20mW, the path loss of the k™ user was
pr = —90dB, and channel h; was based on CN (0, pil) .
Since we considered multiple-user connectivity in an IoT
network, we assumed the number of user sets is equal to the
number of L different tasks [1]. Therefore, we considered
three tasks, one for each set of users (i.e., three user sets).
Each set was composed of two users. Thus, for task-oriented
learning at the edge, we considered three tasks in autonomous
driving [17]—Task 1: weather classification utilizing RGB
images and a CNN, Task 2: object detection using point
cloud data and sparsely embedded convolutional detection
(SECOND), and Task 3: traffic design using RGB images
and YOLOVS. In these experiments, datasets were generated
by the open-source autonomous driving simulation platform
called CarlaFLCAV. These datasets are available online at
https://github.com/SIAT-INVS/CarlaFLCAV. In the simula-
tion experiments, Task 2 was selected to perform the SC.
Meanwhile, the three-task case representing the MC is given
by Task 1, Task 2, Task 3. Each RGB image contained D; =
D3 = 0.7MB, and that of each point cloud sample D, =
1.6MB. Moreover, the number of historical data samples was
R = Ry = R3 = 300. The learning parameters for Task 1,
Task 2, and Task 3 were (ay, b1) = (10.34, 1.2), (a2, b)) =
(0.5,0.1), and (a3, b3) = (8.89,0.64), respectively. The
results were averaged over several channel realizations.

In the simulations, we considered five swarm-intelligence
schemes: ACO, PSO, QPSO, CS, and BOA. The settings
for the parameters of each algorithm listed in Table 1 were
determined by analyzing the optimal outcomes obtained from
several experiments.

Figure 3 and Figure 4 show the convergence behavior
for the SC and the MC, respectively, of the proposed ACO
algorithm and the four additional swarm intelligence baseline
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schemes when the number of antennas is equal to N = 6,
and the variance of additive white Gaussian noise is 0 =
—90dBm. The learning error is computed by (4a) and (5a) for
the SC and the MC, respectively. From Figure 3 and Figure 4,
we observe that as the number of iterations increased, the
learning error decreased. Moreover, for the SC and the MC,
observe that PSO achieved faster convergence than the other
swarm-learning algorithms, followed by CS and the proposed
ACO algorithm. On the other hand, the worst performance
was given by BOA, followed by the QPSO algorithm.

To validate the superiority of the ACO algorithm over
PSO and CS, we evaluated the algorithms in terms of
computational complexity and computation time. In partic-
ular, the computational complexity of PSO depends of the
number of particles, Npsp, and the number of iterations,
Itepso. Therefore, its computational complexity is expressed
as O (Npso - Itepsp). The computational complexity of CS
relies on the number of nests, Ncg, the probability of
abandonment, pa, and the number of iterations, Itecs.
Therefore, the computational complexity for CS is given by
O (N¢s + (pa - Ncs) - Itecs). Regarding the proposed ACO
algorithm, computational complexity is based on the sample
size,, f;, and the number of iterations, Iteqco, which results
in O (rf . IteACO). Accordingly, we can appreciate the ACO
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TABLE 2. Computational time.

SC- SC- MC- MC-
Algorithm | learning | computation | learning | computation
error time [s] error time [s]

ES 0.2569 1250 0.34737 3587
ACO 0.2574 0.623 0.34740 0.803
PSO 0.2574 1.124 0.34740 1.288
CS 0.2574 2.231 0.34743 2.94
QPSO 0.2574 3.21 0.34743 3.613
BOA 0.2581 2.36 0.34747 2.94

algorithm has the least computational complexity because
it requires fewer particles and iterations than the PSO and
CS algorithms. In Table 2, we evaluate the investigated
schemes in terms of computational time and learning error
performance. Overall, we can see that the learning error
values vary slightly between the algorithms in both the
SC and the MC. However, the main difference among of
them is computation time; the least computation time was
obtained by the proposed ACO algorithm where the result is
remarkably lower than that obtained by CS and PSO. This
can be attributed to the fact that the ACO algorithm achieves
convergence with a smaller number of particles compared
to its counterparts. Moreover, in Table 2, we compare
the learning performance and computational complexity
between the swarm-based algorithms and the traditional
exhaustive search (ES) method, typically employed to
identify optimal solutions in optimization problems. The ES
technique, while thorough, is burdened by its significant
computational demands and slow convergence rate due
to its systematic evaluation of every potential solution.
Notably, the computational complexity of exhaustive search
scales with the number of candidate solutions. In contrast,
our proposed-based scheme called ACO, offers expedited
convergence towards near-optimal solutions and requires less
computational overhead compared to ES.

Figure 5 and Figure 6 show the learning error computed
by (4a) and (5), respectively, considering different available
transmission power levels. To gain more insight into the
proposed edge learning system, Figure 5 and Figure 6 show
the learning error versus the number of antennas, with two
values for the variance of additive white Gaussian noise: o =
—80dBm and ¢ = —90dBm. We can see from Figure 5 and
Figure 6 the benefit of a multiple-antenna system, because as
the number of antennas increased the learning error decreased
for both the SC and the MC. This demonstrates the advantage
of multiple antenna at the edge server.

Furthermore, to validate the advantage of the NOMA
system against the conventional MRC method, Figure 7
and Figure 8 show the sum rate given by the summation
of a user’s rate versus the total power budget. Overall,
observe that as the transmission power increased, the sum rate
improved. This is because by increasing the total available
power, a greater amount of power becomes available for data
transmission from the users to the edge server, resulting in an
increase in the achievable rate that minimizes the objective
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function defined by the learning error. It is worth noting that
according to equations (3) and (5), an increase in the sum
rate corresponds to a decrease in learning error. Moreover,
from Figure 6 and Figure 7, we can see that the edge
learning system with the NOMA technique outperformed
the conventional edge learning with the MRC technique
in terms of sum rate. This is because NOMA can remove
the interference from other users by applying SIC. In this
manner, the decoding process is carried out in descending
order according to the channel conditions, as expressed in (1),
instead of treating the interference from other users as noise,
as in (2).

Figure 9 shows the relationship between learning error and
transmission power in our proposed scheme in (5), which is
designed to minimize the learning error. The baseline scheme,
(6), is primarily focused on the traditional goal of maximizing
the sum rate. The figure reveals a compelling trend as the
power budget increased across all scenarios—a reduction in
learning error. However, insight emerges when comparing
these two schemes. Our proposed optimization framework
in (5) outperformed the conventional sum-rate maximization
approach in (6) by achieving a significantly lower learning
error. This superiority stems from our incorporation of ML
techniques in our optimization problem, a facet that the
sum-rate maximization scheme in (6) neglects.
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Furthermore, Figure 10 shows the edge learning error
versus the number of antennas between the proposed
task-oriented communication with NOMA and the baseline
with MRC. From Figure 10, we can observe that NOMA
is able to reduce learning error compared to the benchmark
MRC scheme, underscoring the efficacy of NOMA in
enhancing edge learning outcomes.
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In addition, to showcase the outstanding generalization
of our proposed ACO-based approach for task-oriented
communication in NOMA networks, we consider three
distinct architectures for various classification: a 6-layer
convolutional neural network (CNN6) deployed for clas-
sifying the MNIST dataset [22], a deep residual network
consisting of 110 layers (ResNet110) applied to the CIFAR10
dataset [23], and a PointNet model utilized for processing
3D point clouds within the ModelNet40 dataset [24]. The
learning parameters for these tasks are: (ap, b1, R1, D1) =
(7.3, 0.69, 300, 6276) , (az, bz, R2, D) =(8.15, 0.44, 1600,
24584), and (a3, b3, R3, D3) = (0.95,0.24, 800, 192008) ,
respectively. For further insights into obtaining these learning
parameters, readers are directed to Section III of [11].
Accordingly, Figure 11 shows the learning error performance
by using the aforementioned three-task case, versus the
transmission power, P, and different number of users, K when
the number of antennas is equal to N=2. Similar to Figure 9,
from Figure 11, we can observe that as the transmission
power increases P, the learning error is improved. On the
other hand, from Figure 11, we can see that as the number of
user increases, the learning error slightly rises since the total
transmission power allocated to each user need to satisfy a
maximum value, P. Therefore, as more users are served in
the system, less power will be assigned to each user, as well
as, the interference between users increases as the number of
users increases.

It is worth to highlight that for time-varying channel
conditions, the implementation of the ACO algorithm is
imperative within each coherence time subsequent to channel
estimation. Approaches rooted in swarm intelligence offer a
promising avenue for optimization, boasting both efficiency
and low complexity. These methods yield solutions that
are nearly optimal while demanding minimal computational
resources and ensuring stable convergence [25]. Such char-
acteristics make them particularly suitable for supporting
delay-sensitive applications across wireless communica-
tion networks. Particularly in scenarios characterized by
highly dynamic channel conditions, the necessity for rapid
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algorithms capable of furnishing nearly optimal solutions
akin to ACO becomes apparent. Furthermore, there exists
the option to adjust ACO parameters, such as sample size
and maximum iteration count, to expedite convergence of the
objective function. However, such alterations entail the risk
of obtaining sub-optimal solutions, potentially local optima
rather than global optimal.

VI. FUTURE WORKS

Future directions in research should investigate the inte-
gration of reinforcement learning (RL) techniques into the
task-oriented communication framework for edge learning
systems. RL is a branch of machine learning that focuses on
learning optimal decision-making policies through interac-
tions with an environment. In the context of edge learning and
communication systems, RL could be utilized to dynamically
adapt communication strategies based on the learning task at
hand [26]. This could involve optimizing power allocation,
resource allocation, and scheduling decisions in real-time to
maximize the learning performance of edge devices. Here,
RL algorithms could adapt communication parameters based
on feedback from the learning process, such as error rates or
learning progress.

Moreover, within the framework of mobile edge computing
systems, mobile devices utilize servers to delegate tasks for
low-latency computing, a process that can occur in either
partial or binary modes. In the partial mode, computational
tasks are divided into two segments: one segment is processed
locally on the mobile device while the other is transferred
to a nearby mobile edge computing server for execution.
Conversely, in the binary mode, the entire task is either
completed locally on the device or transferred entirely to
a nearby mobile edge computing server via the uplink
connection [12], [27]. In terms of future directions, an interest
approach to explore is to joint task offloading and resource
optimization in NOMA-based vehicular networks [27], [28]
with edge computing Al technology. This can be beneficial
from the resource management perspective since both, the
user and the server can perform tasks. However, it also brings
some complexity and security challenges to solve because
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of the load burden at the user and the task transmission in
an open wireless environment susceptible to eavesdroppers’
attacks.

Additionally, the reduction of the communication over-
head plays a crucial role in wireless communications for
optimizing network performance, reducing costs, minimizing
latency, and improving resource allocation. In this paper, the
communication overhead for power allocation with ACO is
primarily attributed to uplink channel estimation, which is
generally performed using pilot symbols. In particular, let
us consider an edge computing system with a coherence
interval composed of €2 symbol periods. The pilot sequences
assigned to users are designed to be pair-wise orthogonal and
consist of ¢ symbols [29]. During the coherence interval,
channel estimation takes ¢ symbols, while the data uplink
transmission occurs in the remaining 2 — ¢ symbols. It’s
important to note that the required number of symbols in the
pilot sequence, ¢, increases with the number of users. For
example, we can select ¢ > K to avoid pilot contamination.
Therefore, the channel estimation overhead increases with
the number of users. However, it is worth noting that state-
of-art schemes for power allocation also necessitate channel
estimation procedures. Therefore, concerning communica-
tion overhead, the proposed ACO-based scheme involves
similar communication overhead compared to state-of-the-
art schemes. In future work, reducing the channel estimation
overhead can be studied through pilot-reuse and investigating
schemes to mitigate pilot contamination in those scenarios.

VIl. CONCLUSION

In this paper we proposed a novel power allocation design
based on the ACO algorithm to optimize the learning error
in a task-oriented edge NOMA system for an SC and an MC.
The proposed ACO-based scheme provides a low-complexity
solution because it requires fewer particles and iterations to
achieve convergence than required by the comparative swarm
learning techniques. Moreover, the ACO algorithm effec-
tively achieved the best performance with less computation
time than its counterparts. Furthermore, simulation results
demonstrated that the integration of NOMA in the proposed
task-oriented edge learning system reaches higher achievable
data rates.
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